1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149
|
#include <torch/csrc/jit/frontend/ir_emitter.h>
#include <c10/util/Exception.h>
#include <c10/util/StringUtil.h>
#include <torch/csrc/jit/api/function_impl.h>
#include <torch/csrc/jit/frontend/canonicalize_modified_loop.h>
#include <torch/csrc/jit/frontend/convert_to_ssa.h>
#include <torch/csrc/jit/frontend/parser.h>
#include <torch/csrc/jit/frontend/schema_matching.h>
#include <torch/csrc/jit/frontend/script_type_parser.h>
#include <torch/csrc/jit/ir/ir.h>
#include <torch/csrc/jit/passes/canonicalize.h>
#include <torch/csrc/jit/passes/constant_pooling.h>
#include <torch/csrc/jit/passes/constant_propagation.h>
#include <torch/csrc/jit/passes/dead_code_elimination.h>
#include <torch/csrc/jit/passes/inline_forked_closures.h>
#include <torch/csrc/jit/passes/inliner.h>
#include <torch/csrc/jit/passes/lift_closures.h>
#include <torch/csrc/jit/passes/lower_tuples.h>
#include <torch/csrc/jit/passes/normalize_ops.h>
#include <torch/csrc/jit/runtime/interpreter.h>
#include <torch/csrc/jit/runtime/operator.h>
#include <torch/csrc/jit/testing/hooks_for_testing.h>
#include <torch/csrc/jit/ir/constants.h>
#include <c10/util/Optional.h>
#include <atomic>
#include <climits>
#include <set>
#include <stack>
namespace torch {
namespace jit {
using FunctionTable = std::unordered_map<std::string, Function&>;
using ValueTable = std::unordered_map<std::string, SugaredValuePtr>;
using TypeTable = std::unordered_map<std::string, TypePtr>;
using AttributeMap = std::unordered_map<std::string, Const>;
using ListAttributeMap = std::unordered_map<std::string, std::vector<Const>>;
struct Refinement {
Refinement(std::string identifier, TypePtr type)
: identifier_(std::move(identifier)), type_(type) {}
const std::string& identifier() const {
return identifier_;
}
TypePtr type() const {
return type_;
}
private:
std::string identifier_;
TypePtr type_;
};
struct RefinementSet {
// When a comparison like x is None is made, we associate type refinements
// with its true value and its false value. If a boolean that has refinements
// associated with it is used in a conditional of an if statement, the true
// and false refinements are inserted into the corresponding blocks
using Refinements = std::vector<Refinement>;
RefinementSet(Refinements true_refinements, Refinements false_refinements)
: true_refinements_(std::move(true_refinements)),
false_refinements_(std::move(false_refinements)) {}
RefinementSet(Refinement single) : RefinementSet({std::move(single)}, {}) {}
RefinementSet(Refinement single_true, Refinement single_false)
: RefinementSet(
Refinements({std::move(single_true)}),
Refinements({std::move(single_false)})) {}
RefinementSet() {} // empty
RefinementSet And(const RefinementSet& rhs) const {
// if the result of an AND is true, both a & b had to be true,
// so we take the union of a.true_refinements and b.true_refinements.
// if the result is false, either a or b could have been false,
// so we take their intersection.
return RefinementSet(
unionSet(true_refinements_, rhs.true_refinements_),
intersectSet(false_refinements_, rhs.false_refinements_));
}
RefinementSet Or(const RefinementSet& rhs) const {
// if the result of an OR is true, either a & b could have been true,
// so we take the intersection of a.true_refinements & b.true_refinements.
// if the result is false, both a and b had to be false,
// so we take their union.
return RefinementSet(
intersectSet(true_refinements_, rhs.true_refinements_),
unionSet(false_refinements_, rhs.false_refinements_));
}
RefinementSet Not() const {
return RefinementSet(false_refinements_, true_refinements_);
}
const std::vector<Refinement> activeRefinements() const {
return true_refinements_;
}
private:
static bool sameVar(const Refinement& a, const Refinement& b) {
return a.identifier() == b.identifier();
}
static Refinements unionSet(const Refinements& a, const Refinements& b) {
Refinements result = a;
for (const Refinement& r : b) {
auto it =
std::find_if(result.begin(), result.end(), [&](const Refinement& e) {
return e.identifier() == r.identifier();
});
if (it == result.end()) {
result.push_back(r);
} else if (*it->type() != *r.type()) {
// we only keep refinements when they exactly match one
// refinement type, for instance, we do not attempt to refine:
// isinstance(x, float) and isinstance(x, int)
result.erase(it);
}
}
return result;
}
static Refinements intersectSet(const Refinements& a, const Refinements& b) {
Refinements result;
for (const Refinement& r : a) {
auto it = std::find_if(b.begin(), b.end(), [&](const Refinement& e) {
return e.identifier() == r.identifier();
});
if (it != b.end() && r.type() == it->type()) {
result.push_back(r);
}
}
return result;
}
Refinements true_refinements_;
Refinements false_refinements_;
};
struct CondValue {
CondValue(
Value* value,
RefinementSet refinements,
c10::optional<bool> static_if)
: value_(value),
refinements_(std::move(refinements)),
static_if_(static_if) {}
CondValue(
Graph& g,
const SourceRange& loc,
bool static_value,
RefinementSet refinements)
: value_(g.insertConstant(static_value, loc)),
refinements_(std::move(refinements)),
static_if_(static_value) {}
Value* value() const {
return value_;
}
const RefinementSet& refinements() const {
return refinements_;
}
c10::optional<bool> staticIf() const {
return static_if_;
}
private:
Value* value_;
RefinementSet refinements_;
c10::optional<bool>
static_if_; // certain expression cause us to emit a static if statement
// this value is present if this is the case.
// this is not equivalent to value_ being a constant
// it is possible for value_ to be constant but for
// the expression that produced it to not trigger the
// static if behavior. e.g. use of a variable assigned
// to a constant
};
enum NoneStatus { ALWAYS, MAYBE, NEVER };
NoneStatus canBeNone(Value* v) {
if (v->node()->mustBeNone()) {
return ALWAYS;
}
if (v->type()->kind() == OptionalType::Kind) {
return MAYBE;
}
return NEVER;
}
static Value* asSimple(const SugaredValuePtr& value) {
if (SimpleValue* sv = dynamic_cast<SimpleValue*>(value.get())) {
return sv->getValue();
}
return nullptr;
}
static std::shared_ptr<MagicMethod> makeMagic(
const std::string& name,
SugaredValuePtr base) {
return std::make_shared<MagicMethod>(name, base);
}
// Auxiliary data structure for desugaring variable binding into our always
// explicitly scoped language as we descend down nested control structures in
// the frontend (which themselves don't introduce scopes)
//
// The Environment keeps track of two tables, one for values which are not first
// class and a type table for values which are. When a first class value
// is set in the environment, we emit a prim::Store which sets the
// name of the variable to appropriate type, and when a first-class value is
// referenced we emit a prim::Load that generates a value of the appropriate
// type.
//
// a = 1
// print(a)
// becomes:
// = prim::Store[name="a"](%a.1)
// %a : int = prim::Load[name="a"]()
// prim::Print(%a)
struct Environment {
Environment(
Function& method,
ResolverPtr resolver,
Block* b,
std::shared_ptr<Environment> next = nullptr)
: method(method),
resolver(std::move(resolver)),
b(b),
next(std::move(next)) {}
Function& method;
ResolverPtr resolver;
std::unordered_map<std::string, std::function<std::string()>> error_messages;
Block* b;
std::shared_ptr<Environment> next;
// set type error in the lowest environment. if the variable is used after an
// error has been set, then we will use the more informative error message
void setVariableTypeError(
const std::string& name,
std::function<std::string()> msg) {
auto runner = this;
while (runner->next) {
runner = runner->next.get();
}
runner->error_messages[name] = msg;
}
// see if type error has been set for a variable
c10::optional<std::string> findVariableTypeError(const std::string& name) {
auto runner = this;
while (runner->next) {
runner = runner->next.get();
}
auto msg = runner->error_messages.find(name);
if (msg != runner->error_messages.end()) {
return msg->second();
} else {
return c10::nullopt;
}
}
SugaredValuePtr insertLoad(const std::string& name, const TypePtr& type) {
auto g = b->owningGraph();
auto load = g->insertNode(g->createLoad(name, type));
if (meaningfulName(name)) {
load->output()->setDebugName(name);
}
return std::make_shared<SimpleValue>(load->output());
}
// note: type is not always the same as v->type(), e.g.
// type: Optional[Tensor]
// v->type(): Tensor
void insertStore(
const std::string& name,
const SourceRange& loc,
Value* v,
TypePtr type) {
auto g = b->owningGraph();
g->insertNode(g->createStore(name, v))->setSourceRange(loc);
type_table[name] = type;
}
SugaredValuePtr findInThisFrame(const std::string& name) {
auto it = value_table.find(name);
if (it != value_table.end()) {
return it->second;
}
auto it2 = type_table.find(name);
if (it2 != type_table.end()) {
return insertLoad(name, it2->second);
}
return nullptr;
}
SugaredValuePtr findInParentFrame(const std::string& name) {
return next ? next->findInAnyFrame(name) : nullptr;
}
void setType(const std::string& name, TypePtr type) {
type_table[name] = std::move(type);
}
SugaredValuePtr findInAnyFrame(const std::string& name) {
for (auto runner = this; runner; runner = runner->next.get()) {
if (auto r = runner->findInThisFrame(name)) {
return r;
}
}
return nullptr;
}
Block* block() {
return b;
}
void setVar(const SourceRange& loc, const std::string& name, Value* value) {
setSugaredVar(
loc,
name,
std::make_shared<SimpleValue>(value),
/*annotated_type=*/nullptr);
}
void setSugaredVar(
const SourceRange& loc,
const std::string& name,
SugaredValuePtr value,
TypePtr annotated_type) {
Value* as_simple_value = asSimple(value);
if (as_simple_value && !as_simple_value->hasDebugName() &&
meaningfulName(name) &&
// note: if the value wasn't defined in this block, we might be giving a
// name only used inside this block to a value outside of this. this is
// not normally helpful for debugging and causes import/export jitter.
as_simple_value->node()->owningBlock() == block()) {
as_simple_value->setDebugName(name);
}
// prevent re-assignment involving any sugared values
// any reassignment like:
// a = ...
// while ...
// a = ..
// requires 'a' to be first-class in the graph since its value depends on
// control flow
if (auto parent = findInParentFrame(name)) {
if (annotated_type) {
throw ErrorReport(loc)
<< "Attempting to declare and annotate the type of variable '"
<< name << "' but it is already defined in an outer block";
}
if (!as_simple_value) {
throw ErrorReport(loc)
<< "Cannot re-assign '" << name << "' to a value of type "
<< value->kind() << " because " << name
<< " is not a first-class value. Only reassignments to first-class values are allowed";
}
Value* simple_parent = asSimple(parent);
if (!simple_parent) {
throw ErrorReport(loc)
<< "Cannot re-assign '" << name << "' because it has type "
<< value->kind() << " and " << name
<< " is not a first-class value. Only reassignments to first-class values are allowed";
}
auto parent_type = unshapedType(simple_parent->type());
as_simple_value = tryConvertToType(
loc,
*b->owningGraph(),
parent_type,
as_simple_value,
/*allow_conversions=*/true);
std::stringstream why_not;
if (!as_simple_value->type()->isSubtypeOfExt(parent_type, &why_not)) {
auto error = ErrorReport(loc);
error << "Variable '" << name << "' previously has type "
<< simple_parent->type()->repr_str()
<< " but is now being assigned to a value of type "
<< as_simple_value->type()->repr_str();
// Special-cased error msg if we're trying to assign to a tensor list.
if (simple_parent->type()->kind() == TypeKind::ListType &&
as_simple_value->type()->kind() == TypeKind::ListType) {
error << "\nEmpty lists default to List[Tensor]. Add a variable "
"annotation to the assignment to create an empty list "
"of another type (torch.jit.annotate(List[T, []]) where T "
"is the type of elements in the list for Python 2)";
}
error << "\n" << why_not.str();
throw error;
}
}
if (as_simple_value) {
if (!annotated_type) {
annotated_type = as_simple_value->type();
}
if (!as_simple_value->type()->isSubtypeOf(annotated_type)) {
throw ErrorReport(loc)
<< "Variable '" << name << "' is annotated with type "
<< annotated_type->repr_str()
<< " but is being assigned to a value of type "
<< as_simple_value->type()->repr_str();
}
insertStore(name, loc, std::move(as_simple_value), annotated_type);
} else {
value_table[name] = std::move(value);
}
}
SugaredValuePtr getSugaredVar(const Ident& ident, bool required = true) {
return getSugaredVar(ident.name(), ident.range());
}
Value* getVar(const Ident& ident) {
return getSugaredVar(ident)->asValue(ident.range(), method);
}
void throwVarNotFoundError(
const std::string& ident,
const SourceRange& range) {
// check if this value was not emitted in an if statement because of a
// type mismatch. if it was, then we print a more informative error msg
if (auto msg = findVariableTypeError(ident)) {
throw ErrorReport(range) << *msg << "and was used here";
}
throw ErrorReport(range) << "undefined value " << ident;
}
SugaredValuePtr getSugaredVar(
const std::string& ident,
const SourceRange& range,
bool required = true) {
auto retval = findInAnyFrame(ident);
if (!retval) {
static std::unordered_map<std::string, SugaredValuePtr> globals = {
{"print", std::make_shared<PrintValue>()},
{"tuple", SpecialFormValue::create(prim::TupleConstruct)},
{"float",
makeMagic(
"__float__",
std::make_shared<CastValue>(FloatType::get(), aten::Float))},
{"int",
makeMagic(
"__int__",
std::make_shared<CastValue>(IntType::get(), aten::Int))},
{"bool",
makeMagic(
"__bool__",
std::make_shared<CastValue>(BoolType::get(), aten::Bool))},
{"str",
makeMagic(
"__str__",
std::make_shared<CastValue>(StringType::get(), aten::str))},
{"getattr", SpecialFormValue::create(prim::GetAttr)},
{"hasattr", SpecialFormValue::create(prim::HasAttr)},
{"isinstance", SpecialFormValue::create(prim::isinstance)},
// todo(zach): remove when we can correctly export torch.full via ONNX
// or we have implicit conversion that can convert numbers to tensors
{"_to_tensor",
std::make_shared<CastValue>(TensorType::get(), prim::NumToTensor)},
{"len",
makeMagic(
"__len__",
std::make_shared<BuiltinFunction>(aten::len, at::nullopt))},
{"hex",
makeMagic(
"__hex__",
std::make_shared<BuiltinFunction>(aten::hex, at::nullopt))},
{"oct",
makeMagic(
"__oct__",
std::make_shared<BuiltinFunction>(aten::oct, at::nullopt))},
{"round",
makeMagic(
"__round__",
std::make_shared<BuiltinFunction>(aten::round, at::nullopt))},
{"hash", std::make_shared<BuiltinFunction>(aten::hash, at::nullopt)},
{"id", std::make_shared<BuiltinFunction>(prim::id, at::nullopt)},
{"min", std::make_shared<BuiltinFunction>(prim::min, at::nullopt)},
{"max", std::make_shared<BuiltinFunction>(prim::max, at::nullopt)},
{"abs", std::make_shared<BuiltinFunction>(prim::abs, at::nullopt)},
{"all", std::make_shared<BuiltinFunction>(aten::all, at::nullopt)},
{"divmod",
std::make_shared<BuiltinFunction>(aten::divmod, at::nullopt)},
{"list", std::make_shared<BuiltinFunction>(aten::list, at::nullopt)},
{"ord", std::make_shared<BuiltinFunction>(aten::ord, at::nullopt)},
{"chr", std::make_shared<BuiltinFunction>(aten::chr, at::nullopt)},
{"bin", std::make_shared<BuiltinFunction>(aten::bin, at::nullopt)},
{"range", SpecialFormValue::create(prim::range)},
{"zip", SpecialFormValue::create(prim::zip)},
{"enumerate", SpecialFormValue::create(prim::enumerate)},
{"rangelist",
std::make_shared<BuiltinFunction>(prim::rangelist, at::nullopt)},
{"sorted",
std::make_shared<BuiltinFunction>(aten::sorted, at::nullopt)},
// Only AssertionError is bound so that we can use it from emitAssert,
// all other exceptions should be resolved at the Python level
{"AssertionError",
std::make_shared<ExceptionValue>("AssertionError")},
};
auto it = globals.find(ident);
if (it != globals.end()) {
retval = it->second;
}
}
if (!retval) {
if (auto type = resolver->resolveType(ident, range)) {
if (auto tuple_type = type->cast<TupleType>()) {
retval = std::make_shared<NamedTupleConstructor>(tuple_type);
}
}
}
if (!retval) {
retval = resolver->resolveValue(ident, method, range);
}
if (!retval) {
if (auto type = resolver->resolveType(ident, range)) {
if (auto class_type = type->cast<ClassType>()) {
retval = std::make_shared<ClassValue>(class_type);
}
}
}
if (!retval && required) {
throwVarNotFoundError(ident, range);
}
return retval;
}
Value* getVar(const std::string& ident, const SourceRange& range) {
return getSugaredVar(ident, range)->asValue(range, method);
}
void removeVar(const Ident& ident, bool check_if_removed = false) {
bool removed = false;
for (auto runner = this; runner; runner = runner->next.get()) {
auto a = runner->value_table.erase(ident.name());
auto b = runner->type_table.erase(ident.name());
removed = a || b;
}
if (check_if_removed && !removed) {
throwVarNotFoundError(ident.name(), ident.range());
}
}
std::vector<std::string> definedVariables() {
std::vector<std::string> result;
for (auto& kv : type_table) {
result.push_back(kv.first);
}
return result;
}
private:
TypeTable type_table;
ValueTable value_table;
};
template <class T>
static Value* materializeConstant(
T val,
Graph& graph,
const SourceRange& r,
std::unordered_map<T, Value*>& map) {
auto existing_constant = map.find(val);
if (existing_constant != map.end()) {
return existing_constant->second;
}
WithInsertPoint guard(graph.block()->nodes().front());
auto new_constant = graph.insertConstant(val, r);
map[val] = new_constant;
return new_constant;
}
inline bool isSupportedListElementType(const TypePtr& type) {
return type->isSubtypeOf(TensorType::get()) ||
type->isSubtypeOf(NumberType::get());
}
// Information for each def being emitted.
// Defs can be nested to support closures so we need a stack of this information
// Currently records information about the functions return type.
struct DefContext {
TypePtr declared_return_type_; // nullptr if not annotated
TypePtr merged_return_type_; // nullptr if a Return has not been seen yet
};
enum class LoopStatus { NOT_IN_LOOP, IN_LOOP, IN_UNROLLED_LOOP };
struct WithLoopStatus {
WithLoopStatus(LoopStatus* prev, LoopStatus new_status) {
prev_value_ = *prev;
prev_ptr_ = prev;
*prev = new_status;
}
~WithLoopStatus() {
*prev_ptr_ = prev_value_;
}
private:
LoopStatus* prev_ptr_;
LoopStatus prev_value_;
};
struct to_ir {
to_ir(
const Def& def,
ResolverPtr resolver_,
const Self* self,
Function& method) // method being constructed
: method(method),
graph(method.graph()),
resolver(std::move(resolver_)),
typeParser_(resolver),
environment_stack(nullptr) {
AT_ASSERT(resolver);
pushFrame(graph->block(), /*starts_def=*/true);
// Type annotations exclude explicitly typing the "self" parameter, so in
// the case that this is a method with self we expect one fewer parameter
// annotation than the number of parameters this Def takes.
if (self && def.decl().params().size() == 0) {
throw ErrorReport(def.decl().params().range())
<< "methods must have a self argument";
}
method.setSchema(emitDef(def, self, graph->block()));
// NB ORDERING: SSA conversion has to occur before
// lifting of closures and forks, this way closures are converted
// to SSA while part of their original graph, and closures are ready to
// be inlined into forked closures
ConvertToSSA(graph);
// convert loops with an iter and body condition specified to
// python-recognize while loops. we do this so they can be exported,
// and run the pass early to avoid jitter. Like conversion to SSA,
// it only needs to run once.
CanonicalizeModifiedLoops(graph);
// Convert Ops to a Normalized Form
NormalizeOps(graph);
runCleanupPasses(graph);
}
private:
Function& method;
std::shared_ptr<Graph> graph;
ResolverPtr resolver;
std::unordered_map<int64_t, Value*> integral_constants;
std::unordered_map<double, Value*> fp_constants;
std::unordered_set<Block*> exit_blocks;
ScriptTypeParser typeParser_;
LoopStatus loop_status_ = LoopStatus::NOT_IN_LOOP;
// Singly-linked list of environments. This top element contains a member
// `next` that points to the most immediate enclosing scope's value.
std::shared_ptr<Environment> environment_stack;
std::vector<DefContext> def_stack_;
size_t temp_name_count_ = 0;
std::string createTempName(const std::string& prefix) {
return prefix + c10::to_string(temp_name_count_++);
}
void pushFrame(Block* b, bool starts_def = false) {
if (starts_def) {
def_stack_.emplace_back();
}
environment_stack =
std::make_shared<Environment>(method, resolver, b, environment_stack);
}
std::shared_ptr<Environment> popFrame(bool ends_def = false) {
auto old_frame = environment_stack;
environment_stack = environment_stack->next;
if (ends_def) {
def_stack_.pop_back();
}
return old_frame;
}
// If the graph might not return, add an implicit None return at the end
void handleMaybeNoReturn(const Def& def, Block* block) {
auto decl_ret = def_stack_.back().declared_return_type_;
if (exit_blocks.count(block) == 0) {
auto decl_ret = def_stack_.back().declared_return_type_;
if (decl_ret && decl_ret != NoneType::get()) {
throw ErrorReport(def.range())
<< "Function was not annotated as having type None, but does not "
<< "return along all paths";
}
WithInsertPoint b(*block->nodes().end());
emitReturn(Return::create(
def.range(), Expr(Compound::create(TK_NONE, def.range(), {}))));
} else {
// if we haven't seen any return statements, but the graph block exits
// (the function always throws) then we accept the declared return type if
// it exists or set it to none
if (def_stack_.back().merged_return_type_ == nullptr) {
def_stack_.back().merged_return_type_ =
decl_ret != nullptr ? decl_ret : NoneType::get();
}
}
}
FunctionSchema emitDef(const Def& def, const Self* self, Block* block) {
auto schema = typeParser_.parseSchemaFromDef(def, bool(self));
// TODO need guards on init returning none
if (schema.returns().size() == 1) {
def_stack_.back().declared_return_type_ = schema.returns().at(0).type();
}
std::vector<Argument> arguments =
emitFormalArguments(def, self, schema, block);
// body
auto stmts_list = def.statements();
emitStatements(stmts_list.begin(), stmts_list.end());
handleMaybeNoReturn(def, block);
std::vector<Argument> returns = {emitOutput(def.range(), schema, block)};
return {def.name().name(), "", std::move(arguments), std::move(returns)};
}
// see [setstate type]
static TypePtr getTypeForSetStateArg(const Def& def, const Self* self) {
TORCH_CHECK(self, "Expected __setstate__ to have a `self` argument");
auto getstate = self->getClassType()->findMethod("__getstate__");
if (!getstate) {
throw ErrorReport(def.range())
<< "`__setstate__` defined but not `__getstate__`. "
<< "You must have both defined on a ScriptModule "
<< "to customize serialization.\n"
<< "Did you forget to use `@torch.jit.export`?";
}
getstate->ensure_defined();
return self->getClassType()
->getMethod("__getstate__")
.getSchema()
.returns()
.at(0)
.type();
}
// see [setstate type]
static bool shouldDeriveSetStateType(
const Def& def,
const FunctionSchema& schema) {
const bool noTypeAnnotations = std::all_of(
schema.arguments().begin(),
schema.arguments().end(),
[](const Argument& arg) { return arg.is_inferred_type(); });
bool shouldInfer = def.name().name() == "__setstate__" && noTypeAnnotations;
if (!shouldInfer) {
return false;
}
// Do some additional basic validation that the __setstate__ func is
// well-formed
TORCH_INTERNAL_ASSERT(def.name().name() == "__setstate__");
const auto numDeclParams = def.decl().params().size();
if (numDeclParams != 2) {
throw ErrorReport(def.range())
<< "Expected 2 arguments for `__setstate__`, got: " << numDeclParams;
}
return true;
}
std::vector<Argument> emitFormalArguments(
const Def& def,
const Self* self,
const FunctionSchema& schema,
Block* block) {
std::vector<Argument> arguments; // for schema
// inputs
auto it = def.decl().params().begin();
auto end = def.decl().params().end();
auto expected_annotation_size = def.decl().params().size();
if (self) {
expected_annotation_size--;
}
if (schema.arguments().size() != expected_annotation_size) {
throw ErrorReport(def.decl().params().range())
<< "Number of type annotations for"
<< " function parameters (" << schema.arguments().size() << ")"
<< " does not match the number of parameters on the function ("
<< expected_annotation_size << ")!";
}
if (self) {
AT_ASSERT(it != end);
const auto& name = (*it).ident().name();
Value* new_input = block->addInput()->setDebugName(name);
environment_stack->setSugaredVar(
(*it).ident().range(),
name,
self->makeSugared(new_input),
/*annotated_type=*/nullptr);
arguments.emplace_back(name, new_input->type());
++it;
}
// [setstate type]
// __setstate__ is special, because if the user leaves it un-annotated we
// will derive the type for `state` from the output type of __getstate__.
// This is necessary so that we can allow submodules to appear in `state`.
bool shouldDeriveType = shouldDeriveSetStateType(def, schema);
size_t arg_annotation_idx = 0;
for (; it != end; ++it) {
auto& name = (*it).ident().name();
// Add the input to the graph
Value* new_input = block->addInput();
if (meaningfulName(name)) {
new_input->setDebugName(name);
}
// Record the type for the schema and set the Type on the Value*
auto arg = schema.arguments().at(arg_annotation_idx++);
if (shouldDeriveType) {
TORCH_INTERNAL_ASSERT(schema.arguments().size() == 1);
const auto& inferredStateType = getTypeForSetStateArg(def, self);
arg = arg.cloneWithType(inferredStateType);
}
arguments.push_back(arg);
new_input->setType(arguments.back().type());
// NB: set type of new_input before setVar call so the Store is
// typed appropriately
environment_stack->setVar((*it).ident().range(), name, new_input);
}
return arguments;
}
Argument emitOutput(
const SourceRange& range,
const FunctionSchema& schema,
Block* block) {
// handleMaybeNoReturn ensures that merged_return_type_ is always set
auto ret_type = def_stack_.back().merged_return_type_;
TORCH_INTERNAL_ASSERT(ret_type);
// in the ConvertToSSA pass, prim::ReturnStmts are lowered so that the
// correct return value is set. Until then, we have a correctly-typed
// placeholder return value. This is needed so that closures & graphs
// are correctly typed.
auto placeholder_return =
graph->insertNode(graph->createUninitialized(ret_type))->output();
block->registerOutput(placeholder_return);
return Argument("", def_stack_.back().merged_return_type_);
}
void emitStatements(const List<Stmt>& statements) {
return emitStatements(statements.begin(), statements.end());
}
// XXX - right now closures are used _only_ for defining gradients internally
// There are several unfinished aspects that make them unusable generally
// 1. We do not have a type, ivalue, operator to represent prim::Function, so
// closure_node has type None
// 2. There is no export logic for it yet, so it cannot be
// exported/python_printed
// 3. There is nothing preventing the assignment of already existing variables
// inside the closures
// the changes to those variables will just get forgotten.
// 4. There is no parsing support in frontend.py, this is intentional since it
// prevents people from accidentally using this feature.
std::shared_ptr<ClosureValue> emitClosure(
const std::function<void(Block*)>& emit_body) {
Node* closure_node = graph->insertNode(graph->create(prim::Function, 1));
// it is not a real thing yet, so just say the type is None
closure_node->output()->setType(NoneType::get());
Block* block = closure_node->addBlock();
WithLoopStatus loop_guard(&loop_status_, LoopStatus::NOT_IN_LOOP);
{
WithInsertPoint guard(block);
pushFrame(block, /*starts_def=*/true);
emit_body(block);
popFrame(/*ends_def=*/true);
}
return std::make_shared<ClosureValue>(closure_node->output());
}
void emitClosure(const Def& def) {
// invoked once the closure block is set as the environment
auto emit_body = [&](Block* closure_block) {
emitDef(
def,
nullptr,
closure_block); // ignore schema return, we just wont use it for now
// since we never create a Method for the closure
};
auto closure_value = emitClosure(emit_body);
environment_stack->setSugaredVar(
def.name().range(),
def.name().name(),
closure_value,
/*annotated_type=*/nullptr);
}
void checkBreakContinue(
const SourceRange& loc,
const std::string& stmt_name) {
if (loop_status_ == LoopStatus::NOT_IN_LOOP) {
throw ErrorReport(loc) << "SyntaxError: '" << stmt_name << "'"
<< " outside loop";
} else if (loop_status_ == LoopStatus::IN_UNROLLED_LOOP) {
throw ErrorReport(loc)
<< "Because we emit iteration over modulelists or tuples as "
"unrolled loops, we do not support break or continue inside the body of these loops";
}
}
void emitBreak(const Break& stmt) {
checkBreakContinue(stmt.range(), "break");
auto break_node =
graph->create(prim::BreakStmt, {}, 0)->setSourceRange(stmt.range());
graph->insertNode(break_node);
}
void emitContinue(const Continue& stmt) {
checkBreakContinue(stmt.range(), "continue");
auto continue_node =
graph->create(prim::ContinueStmt, {}, 0)->setSourceRange(stmt.range());
graph->insertNode(continue_node);
}
void emitDelete(const Delete& stmt) {
if (stmt.expr().kind() == TK_SUBSCRIPT) {
Subscript subscript(stmt.expr());
const List<Expr>& subscript_exprs = subscript.subscript_exprs();
if (subscript_exprs[0].kind() == TK_SLICE_EXPR) {
throw ErrorReport(stmt.range())
<< "del statements only support deletion at a single index, "
"slicing is not supported"
" (see https://github.com/pytorch/pytorch/issues/31430)";
}
const SugaredValuePtr sv = emitSugaredExpr(subscript.value(), 1);
const SourceRange& val_range = subscript.value().range();
Value* idx = emitExpr(subscript_exprs[0]);
Value* val = sv->asValue(val_range, method);
// If val is a class instance, this is a method call to a type-specific
// implementation of del defined in a __delitem__ method.
if (auto cls = val->type()->cast<ClassType>()) {
if (!cls->findMethod("__delitem__")) {
throw ErrorReport(stmt.range())
<< "Class does not define __delitem__";
}
// Use MethodValue to call the method to handle recursion.
MethodValue(val, "__delitem__")
.call(stmt.range(), method, {idx}, {}, 0);
} else {
auto node = graph->create(aten::Delete, {val, idx}, 0)
->setSourceRange(stmt.range());
graph->insertNode(node);
}
} else if (stmt.expr().kind() == TK_VAR) {
Var var(stmt.expr());
environment_stack->removeVar(var.name(), /*check_if_removed=*/true);
} else {
throw ErrorReport(stmt.range())
<< "del statements are only supported for deleting"
" list and dict items and variables";
}
}
void emitReturn(const Return& stmt) {
Value* result = emitExpr(stmt.expr());
TypePtr result_type = def_stack_.back().declared_return_type_;
// result type is annotated, every return must convert to that type
if (result_type) {
// this guard skips implicit conversion from None -> Tensor for the return
// type. otherwise forgetting a return a function returning a tensor will
// cause a None to be converted to a tensor.
if (!(result_type->isSubtypeOf(TensorType::get()) &&
result->type()->isSubtypeOf(NoneType::get()))) {
result = tryConvertToType(
stmt.range(),
*graph,
result_type,
result,
/*allow_conversions=*/true);
}
if (!result->type()->isSubtypeOf(result_type)) {
throw ErrorReport(stmt.range())
<< "Return value was annotated as having type "
<< result_type->repr_str() << " but is actually of type "
<< result->type()->repr_str();
}
} else {
result_type = def_stack_.back().merged_return_type_;
if (!result_type) {
result_type = result->type();
}
auto merged_result_type = unifyTypes(result_type, result->type());
if (!merged_result_type) {
throw ErrorReport(stmt.range())
<< "Previous return statement returned a value of type "
<< result_type->repr_str()
<< " but this return statement returns a value of type "
<< result->type()->repr_str();
}
result_type = merged_result_type.value();
}
AT_ASSERT(result_type);
def_stack_.back().merged_return_type_ = result_type;
// If the annotated return type is Any and the result type is not Any,
// cast the result to Any to facilitate type unification between return
// statements on different code paths (e.g. different branches of an if,
// body and containing scope of a loop).
if (result_type == AnyType::get() && result->type() != AnyType::get()) {
result = graph->insertUncheckedCast(result, result_type);
}
graph->insertNode(graph->create(prim::ReturnStmt, {result}, 0));
exit_blocks.insert(environment_stack->block());
}
void emitStatements(
List<Stmt>::const_iterator begin,
List<Stmt>::const_iterator end) {
for (; begin != end; ++begin) {
auto stmt = *begin;
ErrorReport::CallStack::update_pending_range(stmt.range());
switch (stmt.kind()) {
case TK_IF:
emitIf(If(stmt));
break;
case TK_WHILE:
emitWhile(While(stmt));
break;
case TK_FOR:
emitFor(For(stmt));
break;
case TK_ASSIGN:
emitAssignment(Assign(stmt));
break;
case TK_AUG_ASSIGN:
emitAugAssignment(AugAssign(stmt));
break;
case TK_EXPR_STMT: {
auto expr = ExprStmt(stmt).expr();
emitSugaredExpr(expr, 0);
} break;
case TK_RAISE:
emitRaise(Raise(stmt));
break;
case TK_ASSERT:
emitAssert(Assert(stmt));
break;
case TK_RETURN: {
emitReturn(Return(stmt));
} break;
case TK_CONTINUE: {
emitContinue(Continue(stmt));
} break;
case TK_BREAK: {
emitBreak(Break(stmt));
} break;
case TK_PASS:
// Emit nothing for pass
break;
case TK_DEF:
emitClosure(Def(stmt));
break;
case TK_DELETE:
emitDelete(Delete(stmt));
break;
case TK_WITH:
emitWith(With(stmt));
break;
default:
throw ErrorReport(stmt)
<< "Unrecognized statement kind " << kindToString(stmt.kind());
}
// Found an exit statement in this block. The remaining statements aren't
// reachable so we don't emit them.
if (exit_blocks.count(environment_stack->block()))
return;
}
}
RefinementSet findIsNoneRefinements(
Expr lhs,
Value* lhs_value,
Expr rhs,
Value* rhs_value,
int tok) {
if (rhs.kind() != TK_NONE && lhs.kind() == TK_NONE) {
// make 'None is var' into 'var is None'
return findIsNoneRefinements(rhs, rhs_value, lhs, lhs_value, tok);
}
if (rhs.kind() != TK_NONE || lhs.kind() != TK_VAR) {
return {};
}
// statement must be var {is, is not} None
auto name = Var(lhs).name().name();
// XXX - while it should in theory be possible to specialize
// the `x is None` to know x has type NoneType, we have previously not
// done this. Unfortunately, doing this will make the type None
// propagate further in all loaded models. The handling of
// unwrap_optional will fail in these cases since export did
// not expect that the input would be none and an unannotated None.
// cannot be passed to unwrapoptional To enable this,
// we need to (1) implement a real casting operator
// annotated(T, X) that stays in the graph and does the cast
// and (2) only enable this OPTIONAL_NONE when loading newer
// graphs because it is incompatible with older graphs.
// Refinement none(name, RefinementKind::OPTIONAL_NONE);
if (auto optional_type = lhs_value->type()->cast<OptionalType>()) {
Refinement present(name, optional_type->getElementType());
if (tok == TK_IS) {
return RefinementSet({}, {present});
} else { // TK_ISNOT
return RefinementSet({present}, {});
}
}
return RefinementSet();
}
CondValue emitCondExpr(const Expr& expr) {
switch (expr.kind()) {
case TK_AND:
case TK_OR: {
auto binop = BinOp(expr);
return emitShortCircuitLogical(
binop.range(), binop.lhs(), binop.rhs(), expr.kind() == TK_OR);
}
case TK_NOT: {
CondValue v = emitCondExpr(Expr(expr.tree()->trees()[0]));
Value* result = emitBuiltinCall(
expr.range(), *graph, aten::__not__, {v.value()}, {});
c10::optional<bool> static_if;
if (v.staticIf()) {
static_if = !*v.staticIf();
}
return CondValue(result, v.refinements().Not(), static_if);
} break;
case TK_IS:
case TK_ISNOT: {
// meta programming on AST for is/is not cases and emit branches base on
auto cond_op = BinOp(expr);
Value* lhs_val = emitExpr(cond_op.lhs());
Value* rhs_val = emitExpr(cond_op.rhs());
auto lhs_none = canBeNone(lhs_val);
auto rhs_none = canBeNone(rhs_val);
// Dispatch logic (A: ALWAYS, N: NEVER, M: MAYBE):
//
// AA, -> statically IS always holds, IS_NOT never holds
// AN , NA-> statically IS_NOT always holds, IS never holds
// MA, MM, MN, NM, NN, AM -> cannot prove anything statically
bool its_is = expr.kind() == TK_IS;
if (lhs_none == ALWAYS && rhs_none == ALWAYS) {
return CondValue(*graph, expr.range(), its_is, {});
} else if (
(lhs_none == ALWAYS && rhs_none == NEVER) ||
(lhs_none == NEVER && rhs_none == ALWAYS)) {
// lhs_val/rhs_val with A/M: only emit never_none_branch
return CondValue(*graph, expr.range(), !its_is, {});
} else {
auto kind = getNodeKind(expr.kind(), expr.get()->trees().size());
Value* cond_value = emitBuiltinCall(
expr.get()->range(),
*method.graph(),
kind,
{lhs_val, rhs_val},
{});
auto refinements = RefinementSet(findIsNoneRefinements(
cond_op.lhs(), lhs_val, cond_op.rhs(), rhs_val, expr.kind()));
return CondValue(cond_value, refinements, c10::nullopt);
}
} break;
default: {
if (expr.kind() == TK_APPLY) {
auto apply = Apply(expr);
auto callee = Apply(expr).callee();
if (callee.kind() == TK_VAR) {
if (Var(callee).name().name() == "isinstance") {
checkApplyNumInputs(apply, 2);
return emitIsInstance(apply.inputs()[0], apply.inputs()[1]);
}
if (Var(callee).name().name() == "hasattr") {
checkApplyNumInputs(apply, 2);
return emitHasAttr(apply.inputs()[0], apply.inputs()[1]);
}
}
}
auto expr_out = emitToBool(expr.range(), emitExpr(expr));
c10::optional<bool> static_if = c10::nullopt;
if (expr_out->node()->kind() == aten::is_scripting) {
static_if = true;
}
return CondValue(expr_out, RefinementSet({}), static_if);
} break;
}
}
std::shared_ptr<Environment> emitSingleIfBranch(
Block* b,
const List<Stmt>& branch,
const RefinementSet& refinements) {
pushFrame(b);
WithInsertPoint guard(b);
insertRefinements(branch.range(), refinements);
emitStatements(branch);
return popFrame();
}
Node* create(Symbol kind, const SourceRange& loc, size_t n_outputs) {
return graph->create(kind, n_outputs)->setSourceRange(loc);
}
Value* emitTernaryIf(const TernaryIf& expr) {
CondValue cond_value = emitCondExpr(expr.cond());
auto true_expr = [&] { return emitExpr(expr.true_expr()); };
auto false_expr = [&] { return emitExpr(expr.false_expr()); };
return emitIfExpr(expr.range(), cond_value, true_expr, false_expr);
}
Value* emitListComprehension(const ListComp& lc, const TypePtr& type_hint) {
const auto loc = lc.range();
const auto targets_list = List<Expr>::create(lc.range(), {lc.target()});
const auto itrs = List<Expr>::create(lc.range(), {lc.iter()});
// If there is no type hint, and this is emitted over an iterable that is
// unrolled and of length 0, then we emit a List of tensors
Value* list_value = graph->insertNode(graph->create(prim::ListConstruct, 1))
->output()
->setType(ListType::ofTensors());
bool type_set = false;
if (type_hint) {
if (!type_hint->cast<ListType>()) {
throw ErrorReport(loc)
<< "Expected list type annotation for list comprehension"
", found "
<< type_hint->repr_str();
}
list_value->setType(type_hint);
type_set = true;
}
// comprehension introduces it's own scope. no variable assigned
// leaks into the rest of the graph
Node* n =
graph->insertNode(create(prim::LocalVariableScope, lc.range(), 0));
auto* comprehension_block = n->addBlock();
pushFrame(comprehension_block);
WithInsertPoint guard(comprehension_block);
auto emit_body = [&]() {
auto comprehension_out = emitExpr(lc.elt());
if (!type_set) {
list_value->setType(ListType::create(comprehension_out->type()));
type_set = true;
}
NamedValue self = NamedValue(loc, "self", list_value);
NamedValue input = NamedValue(loc, "", comprehension_out);
emitBuiltinCall(loc, *graph, aten::append, {input}, {}, self);
};
emitFor(targets_list, itrs, loc, emit_body);
popFrame();
return list_value;
}
// Insert subtyping refinements
void insertRefinements(const SourceRange& loc, const RefinementSet& ref) {
for (const Refinement& r : ref.activeRefinements()) {
Value* v = environment_stack->getVar(r.identifier(), loc);
Value* new_v = graph->insertUncheckedCast(v, r.type());
environment_stack->setVar(loc, r.identifier(), new_v);
}
}
CondValue emitShortCircuitLogical(
const SourceRange& loc,
const Expr& first_expr,
const Expr& second_expr,
bool is_or) {
CondValue lhs = emitCondExpr(first_expr);
// if the continue expr in the short circuit is not evaluated,
// than the const expression is False if the short circuit
// is an `and` and True if the short circuit is an `or`.
// `False and expr` -> False, `True or expr` -> True
//
// inserting it as a constant makes optimization easier
// if it's an OR the first expr is emitted in the true branch
// and the second expr in the false branch, if it's an AND the opposite
auto get_const_expr = [&] { return graph->insertConstant(is_or, loc); };
c10::optional<CondValue> rhs;
auto get_continue_expr = [&] {
rhs = emitCondExpr(second_expr);
return rhs->value();
};
// if this is an OR, eval second expression if first expr is False
// If this is an AND, eval second expression if first expr is True
Value* new_result;
c10::optional<RefinementSet> refinements;
c10::optional<bool> static_if;
if (is_or) {
new_result = emitIfExpr(loc, lhs, get_const_expr, get_continue_expr);
refinements = lhs.refinements().Or(rhs->refinements());
if ((lhs.staticIf() && *lhs.staticIf()) ||
(rhs->staticIf() && *rhs->staticIf())) {
static_if = true;
} else if (lhs.staticIf() && rhs->staticIf()) {
static_if = *lhs.staticIf() || *rhs->staticIf();
}
} else {
new_result = emitIfExpr(loc, lhs, get_continue_expr, get_const_expr);
refinements = lhs.refinements().And(rhs->refinements());
if (((lhs.staticIf() && !*lhs.staticIf()) ||
(rhs->staticIf() && !*rhs->staticIf()))) {
static_if = false;
} else if (lhs.staticIf() && rhs->staticIf()) {
static_if = *lhs.staticIf() && *rhs->staticIf();
}
}
return CondValue(new_result, std::move(*refinements), static_if);
}
Value* emitIfExpr(
const SourceRange& range,
const CondValue& cond_value,
std::function<Value*()> true_expr,
std::function<Value*()> false_expr) {
Node* n = graph->insertNode(create(prim::If, range, 0));
n->addInput(cond_value.value());
auto* true_block = n->addBlock();
auto* false_block = n->addBlock();
auto emit_if_expr = [this, &range](
Block* b,
const RefinementSet& refinements,
std::function<Value*()> expr_value) {
pushFrame(b);
WithInsertPoint guard(b);
insertRefinements(range, refinements);
Value* out_val = expr_value();
b->registerOutput(out_val);
popFrame();
};
emit_if_expr(true_block, cond_value.refinements(), std::move(true_expr));
emit_if_expr(
false_block, cond_value.refinements().Not(), std::move(false_expr));
auto true_type = true_block->outputs().at(0)->type();
auto false_type = false_block->outputs().at(0)->type();
auto unified = unifyTypes(true_type, false_type);
if (!unified) {
throw ErrorReport(range)
<< "if-expression's true branch has type " << true_type->repr_str()
<< " but false branch has type " << false_type->repr_str();
}
// Add op outputs
auto expr_value = n->addOutput()->setType(*unified); // Resulting value
return expr_value;
}
Value* emitToBool(const SourceRange& loc, Value* v) {
Value* out;
try {
auto bool_cast = environment_stack->getSugaredVar("bool", loc);
out = asSimple(bool_cast->call(loc, method, {v}, {}, 0));
} catch (...) {
throw ErrorReport(loc) << "Could not cast value of type "
<< v->type()->repr_str() << " to bool";
}
// cast value not response for checking output type
if (!out->type()->isSubtypeOf(BoolType::get())) {
throw ErrorReport(loc)
<< "expected a bool expression for condition but found "
<< out->type()->repr_str();
}
return out;
}
void emitIfElseBlocks(
const SourceRange& loc,
const CondValue& cond_value,
const List<Stmt>& trueBranch,
const List<Stmt>& falseBranch) {
// this is a static if statement: that is, it contains a subset
// of operators where we are willing to specialize the if statement
// to be only the true or false branch when the condition is statically
// known. This is used to meta-program modules, for instance, when a
// submodule is absent, an is None check can be used to ensure the
// accesses to the None check, which would error, are not compiled.
if (cond_value.staticIf()) {
if (*cond_value.staticIf()) {
insertRefinements(loc, cond_value.refinements());
emitStatements(trueBranch);
} else {
insertRefinements(loc, cond_value.refinements().Not());
emitStatements(falseBranch);
}
return;
}
Node* n = graph->insertNode(create(prim::If, loc, 0));
n->addInput(cond_value.value());
auto* true_block = n->addBlock();
auto* false_block = n->addBlock();
// Emit both blocks once to get the union of all mutated values
auto save_true =
emitSingleIfBranch(true_block, trueBranch, cond_value.refinements());
auto save_false = emitSingleIfBranch(
false_block, falseBranch, cond_value.refinements().Not());
bool true_exits = exit_blocks.count(true_block);
bool false_exits = exit_blocks.count(false_block);
if (true_exits && false_exits) {
exit_blocks.insert(n->owningBlock());
}
// In python, every variable assigned in an if statement escapes
// the scope of the if statement (all variables are scoped to the function).
// Script is a subset of python: we consider variables to be in scope
// as long as there is a definition of the variable along all paths
// through the if statement
// ----
// if ...:
// a =
// else:
// ...
// ... = a # error, a is not defined along all paths
// ----
// if ...:
// a =
// else:
// a =
// ... = a # OK, a is defined along all paths
// ----
// a = ...
// if ...:
// a =
// ... = a # OK, a is defined along all paths
// if ...:
// a =
// else:
// return
// ... = a # OK, a is always defined
// ordered set, because we want deterministic graph output
std::set<std::string> mutated_variables;
// When we access either the true or false environment,
// we need to set the insertion point so the prim::Load is inserted
// into the right block.
// if var is only defined in one branch save error in case it's used later
for (auto& v : save_true->definedVariables()) {
{
WithInsertPoint insert(false_block);
if (save_false->findInAnyFrame(v) || false_exits) {
mutated_variables.insert(v);
} else {
ErrorReport error(loc);
environment_stack->setVariableTypeError(v, [=]() -> std::string {
error << v << " is not defined in the false branch";
return error.what();
});
}
}
}
for (auto& v : save_false->definedVariables()) {
{
WithInsertPoint insert(true_block);
if (save_true->findInAnyFrame(v) || true_exits) {
mutated_variables.insert(v);
} else {
ErrorReport error(loc);
environment_stack->setVariableTypeError(v, [=]() -> std::string {
error << v << " is not defined in the true branch";
return error.what();
});
}
}
}
// Register outputs in each block
for (const auto& x : mutated_variables) {
Value* tv;
Value* fv;
{
WithInsertPoint insert(true_block);
if (!true_exits) {
tv = save_true->getVar(x, loc);
}
}
{
WithInsertPoint insert(false_block);
if (!false_exits) {
fv = save_false->getVar(x, loc);
}
}
// if both branches exit don't emit any variables
// if one branch exits then we allow the all variables in the other branch
// to escape scope since they are well-defined
if (true_exits && false_exits) {
continue;
} else if (true_exits) {
tv = graph->createUninitialized(fv->type())
->insertBefore(true_block->return_node())
->output();
graph->createStore(x, tv)->insertBefore(true_block->return_node());
} else if (false_exits) {
fv = graph->createUninitialized(tv->type())
->insertBefore(false_block->return_node())
->output();
graph->createStore(x, fv)->insertBefore(false_block->return_node());
}
auto unified = unifyTypes(tv->type(), fv->type());
// attempt to unify the types. we allow variables to be set to different
// types in each branch as long as that variable is not already in scope,
// or if that variable does not get used later. here, we save the error
// so that the error message will be more informative in the case that is
// used later. When a is accessed in (a + 1), the error will get printed
// if cond:
// a = 1
// else:
// a = tensor
// b = a + 1
//
if (!unified) {
ErrorReport error(loc);
error << "Type mismatch: " << x << " is set to type "
<< tv->type()->repr_str() << " in the true branch"
<< " and type " << fv->type()->repr_str()
<< " in the false branch";
if (save_true->findInParentFrame(x) ||
save_false->findInParentFrame(x)) {
throw error;
} else {
environment_stack->setVariableTypeError(
x, [=]() -> std::string { return error.what(); });
continue;
}
}
environment_stack->setType(x, *unified);
}
}
CondValue emitHasAttr(const Expr& objExpr, const Expr& attrExpr) {
auto obj = emitSugaredExpr(objExpr, 1);
if (attrExpr.kind() != TK_STRINGLITERAL) {
throw ErrorReport(attrExpr)
<< "hasattr's second argument must be a string literal";
}
const std::string& name = StringLiteral(attrExpr).text();
const bool hasAttr = obj->hasAttr(objExpr.range(), method, name);
return CondValue(*graph, objExpr.range(), hasAttr, {});
}
CondValue emitIsInstance(const Expr& obj, const Expr& classinfo) {
// turn (float, (int, tuple)) into a flat list of types and type kind
// category checks: tuple_check = true, types = {float, int}
struct GatheredTypes {
GatheredTypes(ScriptTypeParser parser) : typeParser_(std::move(parser)) {}
void gather(Expr classinfo) {
if (classinfo.kind() == TK_TUPLE_LITERAL) {
for (Expr e : TupleLiteral(classinfo).inputs()) {
gather(e);
}
return;
}
TypePtr type = typeParser_.parseTypeFromExpr(classinfo);
types.emplace_back(type);
}
bool staticallyTrue(const TypePtr& actual_type) {
// is this isinstance check statically true?
for (const TypePtr& typ : types) {
if (actual_type->isSubtypeOf(typ)) {
return true;
}
}
return false;
}
bool maybeOfKind(TypeKind kind, const TypePtr& actual_type) {
if (actual_type->kind() == AnyType::Kind) {
return true;
}
if (auto op = actual_type->cast<OptionalType>()) {
return op->getElementType()->kind() == kind;
}
return false;
}
bool staticallyFalse(const TypePtr& actual_type) {
for (const TypePtr& typ : types) {
if (typ->isSubtypeOf(actual_type)) {
return false;
}
if ((typ->isSubtypeOf(AnyListType::get()) &&
maybeOfKind(ListType::Kind, actual_type)) ||
(typ->isSubtypeOf(AnyTupleType::get()) &&
maybeOfKind(TupleType::Kind, actual_type))) {
return false;
}
}
return true;
}
ScriptTypeParser typeParser_;
std::vector<TypePtr> types;
};
GatheredTypes gathered(typeParser_);
gathered.gather(classinfo);
auto val = emitExpr(obj);
RefinementSet refinement;
if (gathered.types.size() == 1 &&
gathered.types.at(0)->isSubtypeOf(val->type()) &&
obj.kind() == TK_VAR) {
std::string ident = Var(obj).name().name();
Refinement isinstance(std::move(ident), gathered.types.at(0));
refinement = RefinementSet({isinstance}, {});
}
if (gathered.staticallyTrue(val->type())) {
return CondValue(*graph, obj.range(), true, std::move(refinement));
}
if (gathered.staticallyFalse(val->type())) {
return CondValue(*graph, obj.range(), false, std::move(refinement));
}
// check maybe true/false at runtime, need an actual op
Value* result =
graph->insertNode(graph->createIsInstance(val, gathered.types))
->output();
return CondValue(result, std::move(refinement), c10::nullopt);
}
void emitIf(const If& stmt) {
Expr cond = stmt.cond();
CondValue cond_value = emitCondExpr(cond);
emitIfElseBlocks(
stmt.range(), cond_value, stmt.trueBranch(), stmt.falseBranch());
}
// *********************** Loop Operators ************************************
// Emits a loop operator with the form:
// Loop(max_trip_count)
// block0(loop_counter) {
// <body>
// }
// block1 {
// <loop condition>
// -> (condition)
// }
// For loops will have an empty loop condition block with condition set to
// true. In the convert to ssa pass, the loop condition will correctly
// inlined. and inputs and outputs added so that the loop conforms to the
// semantics specified at
// https://github.com/onnx/onnx/blob/master/docs/Operators.md#Loop
void emitLoopCommon(
SourceRange range,
const std::function<void()>& emit_body,
const SugaredValuePtr& iter_val,
c10::optional<List<Expr>> targets,
c10::optional<Expr> cond) {
Value* max_trip_count_val = nullptr;
if (iter_val != nullptr) {
max_trip_count_val = iter_val->len(range, method);
} else {
max_trip_count_val = materializeConstant(
std::numeric_limits<int64_t>::max(),
*graph,
range,
integral_constants);
}
Node* n = graph->insertNode(create(prim::Loop, range, 0));
auto* body_block = n->addBlock();
{
Block* condition_block = n->addBlock();
pushFrame(condition_block);
Value* out;
if (cond) {
WithInsertPoint insert(condition_block);
out = emitToBool(cond.value().range(), emitExpr(cond.value()));
} else {
WithInsertPoint insert(n);
out = graph->insertConstant(true, range);
}
condition_block->registerOutput(out);
popFrame();
}
n->addInput(max_trip_count_val);
WithLoopStatus loop_guard(&loop_status_, LoopStatus::IN_LOOP);
Value* trip_count =
body_block->addInput()->setType(IntType::get()); // Iteration num
{
pushFrame(body_block);
WithInsertPoint guard(body_block);
// if the FOR iters and targets are present, emit FOR target assignments
if (iter_val != nullptr && targets) {
Value* cur_elem = iter_val->getitem(range, method, trip_count)
->asValue(range, method);
SugaredValuePtr sv = std::make_shared<SimpleValue>(cur_elem);
List<Expr> target_exprs = targets.value();
validateAssignLhsExpr(target_exprs, range);
// if target exprs are more than 1, it means iteration unpacking on LHS
// we create Tuple literal to wrap those target exprs for assignments
if (target_exprs.size() > 1) {
Expr tl = TupleLiteral::create(range, target_exprs);
target_exprs = List<Expr>::create(range, {tl});
}
emitExprsAssign(target_exprs, {sv}, range, /*n_binders=*/1);
}
emit_body();
popFrame();
}
}
void emitUnrolledLoop(
const SourceRange& loc,
const std::function<void()>& emit_body,
SugaredValuePtr iterable,
const List<Expr>& targets) {
auto static_len = iterable->staticLen();
TORCH_INTERNAL_ASSERT(
static_len, "Unrolled loop iter should have static length");
int64_t len = *static_len;
WithLoopStatus loop_guard(&loop_status_, LoopStatus::IN_UNROLLED_LOOP);
// In order to support ModuleLists which return different types,
// as with an nn.Sequential which has a module that returns a Dict and then
// a module which returns a Tensor,
// we do not push a new environment frame because if we did all intermediary
// values would have to subtype the input type.
for (int64_t i = 0; i < len; ++i) {
auto index =
materializeConstant(i, *method.graph(), loc, integral_constants);
auto sugared_value = iterable->getitem(loc, method, index);
emitExprsAssign(
targets, {sugared_value}, targets.range(), /*n_binders=*/1);
emit_body();
}
}
void emitFor(
const List<Expr>& targets,
const List<Expr>& itrs,
const SourceRange& loc,
const std::function<void()>& emit_body) {
if (itrs.size() != 1) {
throw ErrorReport(loc) << "List of iterables is not supported currently";
}
// Emit loop information for builtinFunction values like range(), zip(),
// enumerate() or SimpleValue like List, Tensor, Dict, etc.
SugaredValuePtr sv = emitSugaredExpr(itrs[0], 1);
SugaredValuePtr iterable = sv->iter(loc, method);
// We unroll the loop for iterables that contain ModuleLists so that we can
// compile Heterogenous module lists.
if (!iterable->shouldEmitUnrolled()) {
emitLoopCommon(loc, emit_body, iterable, targets, {});
} else {
emitUnrolledLoop(loc, emit_body, iterable, targets);
}
}
void emitFor(const For& stmt) {
auto emit_body = [&]() { emitStatements(stmt.body()); };
emitFor(stmt.targets(), stmt.itrs(), stmt.range(), emit_body);
}
void emitWhile(const While& stmt) {
auto cond = stmt.cond();
auto emit_body = [&]() { emitStatements(stmt.body()); };
emitLoopCommon(stmt.range(), emit_body, nullptr, {}, cond);
}
void emitWith(const With& stmt) {
auto targets = stmt.targets();
// Keep a stack of entered objects so they can be exited
// in the right order.
std::stack<Value*> entered;
for (const auto& target : targets) {
Expr e = target.target();
auto* rhs = emitExpr(e);
auto* n = graph->insertNode(graph->create(prim::Enter, {rhs}));
entered.push(rhs);
auto rhsClass = rhs->type()->expect<ClassType>();
if (!rhsClass) {
throw ErrorReport(e.range())
<< "With item expression does not return a class type";
}
auto* enterMethod = rhsClass->findMethod("__enter__");
auto* exitMethod = rhsClass->findMethod("__exit__");
if (!enterMethod || !exitMethod) {
throw ErrorReport(e.range())
<< "Object returned by with item expression does not define __enter__ and __exit__ methods";
}
// Check the schema of __enter__.
auto& enterSchema = enterMethod->getSchema();
if (enterSchema.arguments().size() != 1) {
throw ErrorReport(e.range())
<< "__enter__ must have only one argument and one return value";
}
// Check the schema of __exit__.
auto& exitSchema = exitMethod->getSchema();
if (exitSchema.arguments().size() != 4) {
throw ErrorReport(e.range())
<< "__exit__ must have four arguments and no return value";
} else {
if (exitSchema.returns().at(0).type() != NoneType::get()) {
throw ErrorReport(e.range()) << "__exit__ must have no return value";
}
for (unsigned i = 1; i < 4; ++i) {
if (exitSchema.arguments().at(i).type() != AnyType::get()) {
throw ErrorReport(e.range())
<< "argument " << i
<< " of __exit__ must have Any type; TorchScript does not currently support passing exception type, value, or traceback to the __exit__ function.";
}
}
}
// Set the output of the enter node to be the return type of __enter__.
n->output(0)->setType(enterSchema.returns().at(0).type());
// Set i = e.__enter__() so that references to i in the body of the with
// will resolve correctly.
if (target.var().present()) {
Var i = target.var().get();
environment_stack->setVar(i.range(), i.name().name(), n->output(0));
}
}
emitStatements(stmt.body());
// Insert all the corresponding prim::Exit nodes.
while (!entered.empty()) {
auto* input = entered.top();
entered.pop();
auto* n = graph->create(prim::Exit);
graph->insertNode(n);
n->addInput(input);
}
}
// Currently we do not support assigning exceptions to variables,
// a = Exception("hi")
// raise a
//
// We ignore the expression following raise
void emitRaise(const Raise& raise) {
auto sv = emitSugaredExpr(raise.expr(), 1);
Value* error_message = nullptr;
if (auto exception_instance =
std::dynamic_pointer_cast<ExceptionMessageValue>(sv)) {
// The typical case, an instance of the exception class was thrown:
// raise RuntimeError("error")
error_message = exception_instance->getValue();
} else if (
auto exception_class = std::dynamic_pointer_cast<ExceptionValue>(sv)) {
// A bare exception was thrown so add an empty message. e.g.
// raise RuntimeError
error_message = insertConstant(*graph, "", raise.range());
} else {
// The raise was not followed by an exception (i.e. it was something like
// `raise "error"` instead of `raise RuntimeError("error")`)
throw ErrorReport(raise.range())
<< "exceptions must derive from BaseException";
}
if (!error_message->type()->isSubtypeOf(StringType::get())) {
error_message = graph->insert(aten::str, {error_message});
}
graph->insert(prim::RaiseException, {error_message}, {}, raise.range());
exit_blocks.insert(environment_stack->block());
}
// emit assserions as an if branch so that assertions will reuse the
void emitAssert(const Assert& stmt) {
CondValue cond_value = emitCondExpr(stmt.test());
List<Stmt> true_branch = List<Stmt>::create(stmt.range(), {});
// Create an `AssertionError("the_message")` call
auto message = (stmt.msg().present())
? stmt.msg().get()
: StringLiteral::create(stmt.range(), "");
auto callee = Var::create(
stmt.range(), Ident::create(stmt.range(), "AssertionError"));
auto apply = Apply::create(
stmt.range(),
callee,
List<Expr>::create(stmt.range(), {message}),
List<Attribute>::create(stmt.range(), {}));
List<Stmt> false_branch =
List<Stmt>::create(stmt.range(), {Raise::create(stmt.range(), apply)});
emitIfElseBlocks(stmt.range(), cond_value, true_branch, false_branch);
}
// Validate that the `lhs` Expr's in an assignment statement are valid. That
// is:
//
// 1) All lhs Expr's are either Var, Tuple or Starred nodes
// 2) There is at most one Starred node in the lhs Expr
// 3) A Starred node can only appear when there is another non-Starred lhs
// Expr. Concretely this means that `*abc = func()` is illegal. Unpacking
// all outputs into a tuple is covered by `abc = func()`.
bool validateAssignLhsExpr(const List<Expr>& lhs, const SourceRange& r) {
size_t num_normal_assign = 0;
size_t num_starred = 0;
for (const auto& assignee : lhs) {
if (assignee.kind() == TK_VAR || assignee.kind() == TK_SUBSCRIPT ||
assignee.kind() == TK_TUPLE_LITERAL) {
num_normal_assign++;
} else if (assignee.kind() == TK_STARRED) {
num_starred++;
} else {
throw ErrorReport(assignee) << "lhs of assignment must be a variable, "
<< "subscript, or starred expression";
}
}
if (num_starred > 1) {
throw ErrorReport(r)
<< "Only one starred expression is allowed on the lhs";
}
if (num_starred > 0 && num_normal_assign == 0) {
throw ErrorReport(r) << "A Starred expression may only appear on the "
<< "lhs within the presence of another non-starred"
<< " expression";
}
return num_starred;
}
// Get the appropriate builtin op for this augmented assignment
// If the RHS is a tensor, return the corresponding ATen in-place op
// If it's a list of scalars, then return the corresponding list augment op
Symbol getAugOp(const AugAssign& stmt, const TypePtr& type) {
bool use_inplace_op = type->isSubtypeOf(TensorType::get()) ||
type->kind() == TypeKind::ListType;
switch (stmt.aug_op()) {
case '+':
return use_inplace_op ? aten::add_ : aten::add;
case '-':
return use_inplace_op ? aten::sub_ : aten::sub;
case '/':
return use_inplace_op ? aten::div_ : aten::div;
case '*':
return use_inplace_op ? aten::mul_ : aten::mul;
case '%':
return use_inplace_op ? aten::fmod_ : aten::fmod;
default:
throw ErrorReport(stmt)
<< "Unknown augmented assignment: " << kindToString(stmt.aug_op());
}
}
// Get a pair of <in place magic method name, out of place magic method name>
// since the out of place method is called if the in place method is not
// present
std::pair<std::string, std::string> getAugMagicMethod(const AugAssign& stmt) {
switch (stmt.aug_op()) {
case '+':
return std::make_pair(std::string("__iadd__"), std::string("__add__"));
case '-':
return std::make_pair(std::string("__isub__"), std::string("__sub__"));
case '/':
return std::make_pair(
std::string("__itruediv__"), std::string("__truediv__"));
case '*':
return std::make_pair(std::string("__imul__"), std::string("__mul__"));
case '%':
return std::make_pair(std::string("__imod__"), std::string("__mod__"));
default:
throw ErrorReport(stmt)
<< "Unknown augmented assignment: " << kindToString(stmt.aug_op());
}
}
// Emit nodes for augmented assignments like `+=`
void emitAugAssignment(const AugAssign& stmt) {
switch (stmt.lhs().kind()) {
case TK_VAR: {
emitAugAssignmentToVar(stmt);
} break;
case '.': {
emitAugAssignmentToSelectVar(stmt);
} break;
case TK_SUBSCRIPT: {
emitAugAssignmentToSubscript(stmt);
} break;
default:
throw ErrorReport(stmt.lhs())
<< "unexpected expression on "
<< "left-hand side of augmented assignment";
}
}
// This will be called when there is a class param or module buffer
// mutation which make the LHS of the expr be a select expression
//
// Example like:
// class A(Module):
// def __init__():
// self.register_buffer("running_var", torch.zeros(1))
//
// def forward():
// self.num_batches += 1
void emitAugAssignmentToSelectVar(const AugAssign& stmt) {
const auto lhs = Select(stmt.lhs());
auto lhsSugaredVar = emitSugaredExpr(lhs.value(), 1);
const auto lhsValue =
lhsSugaredVar->attr(lhs.range(), method, lhs.selector().name())
->asValue(lhs.range(), method);
auto result = emitAugAssignmentHelper(stmt, lhsValue);
lhsSugaredVar->setAttr(stmt.range(), method, lhs.selector().name(), result);
}
void emitAugAssignmentToVar(const AugAssign& stmt) {
const auto lhs = Var(stmt.lhs());
auto lhsValue = emitExpr(lhs);
auto result = emitAugAssignmentHelper(stmt, lhsValue);
environment_stack->setVar(lhs.range(), lhs.name().name(), result);
}
Value* emitAugAssignmentHelper(const AugAssign& stmt, Value* lhs) {
if (lhs->type()->kind() == TypeKind::ClassType) {
// Call `__iadd__` so updates happen in place on class types
// https://docs.python.org/3/reference/datamodel.html#object.__iadd__
std::string in_place_method_name;
std::string out_of_place_method_name;
std::tie(in_place_method_name, out_of_place_method_name) =
getAugMagicMethod(stmt);
const auto rhs = emitExpr(stmt.rhs());
// Determine whether to use __iadd__ or __add__ (use __add__ only if
// __iadd__ is not present)
auto type = lhs->type()->expect<ClassType>();
std::string magic_method_name;
if (type->findMethod(in_place_method_name)) {
magic_method_name = in_place_method_name;
} else if (type->findMethod(out_of_place_method_name)) {
magic_method_name = out_of_place_method_name;
} else {
throw ErrorReport(stmt.range())
<< "Cannot emit inplace op on " << type->repr_str()
<< " since it does not define an " << in_place_method_name << " or "
<< out_of_place_method_name << " method";
}
// x += y is equivalent to x = x.__iadd__(y) or x = x.__add__(y) if
// __iadd__ is not present
return MethodValue(lhs, magic_method_name)
.call(stmt.range(), method, {rhs}, {}, 0)
->asValue(stmt.range(), method);
} else {
const auto rhs = NamedValue(stmt.rhs().range(), emitExpr(stmt.rhs()))
.value(*method.graph());
return emitBuiltinCall(
stmt.range(),
*method.graph(),
getAugOp(stmt, lhs->type()),
/*inputs=*/{lhs, rhs},
/*attributes=*/{},
/*self=*/c10::nullopt);
}
}
void emitAugAssignmentGeneric(
const AugAssign& stmt,
const Subscript& lhs,
Value* sliceable) {
// Get the idx to augment
const auto subscriptExprs = lhs.subscript_exprs();
const TypePtr type = sliceable->type();
if (subscriptExprs.size() != 1) {
throw ErrorReport(subscriptExprs)
<< "Sliced expression not yet supported for " << type->repr_str()
<< " augmented assignment. "
<< "File a bug if you want this";
}
TypePtr elemType = nullptr;
if (const ListTypePtr listType = type->cast<ListType>()) {
elemType = listType->getElementType();
} else if (const DictTypePtr dictType = type->cast<DictType>()) {
elemType = dictType->getKeyType();
}
if (elemType == nullptr) {
throw ErrorReport(lhs)
<< type->repr_str() << " does not support augmented assignment.";
}
const auto idxValue = emitExpr(subscriptExprs[0]);
const auto containerArg =
NamedValue(lhs.value().range(), type->str(), sliceable);
const auto idxArg = NamedValue(subscriptExprs.range(), "idx", idxValue);
const auto valueArg =
NamedValue(stmt.rhs().range(), "value", emitExpr(stmt.rhs()));
const auto getItem = graph->insert(
aten::__getitem__, {containerArg, idxArg}, {}, stmt.range());
const auto augmentedItem = graph->insert(
getAugOp(stmt, elemType), {getItem, valueArg}, {}, stmt.range());
graph->insert(
aten::_set_item,
{containerArg, idxArg, augmentedItem},
{},
stmt.range());
}
void emitAugAssignmentToSubscript(const AugAssign& stmt) {
// Process the base list value
const auto lhs = Subscript(stmt.lhs());
const auto sliceable = emitExpr(lhs.value());
if (sliceable->type()->isSubtypeOf(TensorType::get())) {
// If it's a tensor, just fully evaluate the subscript operation and emit
// an in-place assignment
std::vector<Value*> tensorIndices;
Value* sliced;
std::tie(sliced, tensorIndices) = emitIntAndSliceIndexing(
lhs.range(), sliceable, lhs.subscript_exprs());
const auto slicedArg = NamedValue(stmt.lhs().range(), "self", sliced);
const auto rhs = NamedValue(stmt.rhs().range(), emitExpr(stmt.rhs()));
if (tensorIndices.size() == 0) {
// Common case: we only tried to index with int and slices. Emit the
// correct augmented assignment op to the sliced value
emitBuiltinCall(
stmt.range(),
*method.graph(),
getAugOp(stmt, sliceable->type()),
{rhs},
{},
slicedArg);
} else {
// Special case: we tried to do "advanced indexing". Lower this expr
// into `index` and `index_put_` ops with tensordices of Tensor?[]
const auto indices = graph
->insertNode(graph->createList(
OptionalType::ofTensor(), tensorIndices))
->output();
const auto indexed =
graph->insert(aten::index, {slicedArg, indices}, {}, stmt.range());
const auto augmented = emitBuiltinCall(
stmt.range(),
*method.graph(),
getAugOp(stmt, sliceable->type()),
{rhs},
{},
indexed);
graph->insert(
aten::index_put_,
{slicedArg, indices, augmented},
{},
stmt.range());
}
} else {
emitAugAssignmentGeneric(stmt, lhs, sliceable);
}
}
NamedValue emitValueToTensor(
const NamedValue& value,
const NamedValue& matchTypeOf) {
// Add implicit conversion of int/float/bool/number types to tensors
// Used in emitSubscriptAssign to convert:
// `tensor(...)[x] = 99` to `tensor(...)[x] = tensor(99)`
// Mirrors the `valueToTensor` behavior in python_variable_indexing.cpp
const auto kind = value.type()->kind();
if (kind == c10::TypeKind::NumberType || kind == c10::TypeKind::IntType ||
kind == c10::TypeKind::BoolType || kind == c10::TypeKind::FloatType) {
auto dtype = graph->insert(prim::dtype, {matchTypeOf}, {});
auto device = graph->insert(prim::device, {matchTypeOf}, {});
auto converted = graph->insert(
aten::tensor,
{value},
{NamedValue("dtype", dtype), NamedValue("device", device)});
return NamedValue(value.loc(), converted);
}
return value;
}
// Emit mutating assignments like `foo[0] = bar`
void emitSubscriptAssign(
const SourceRange& stmtRange,
const Subscript& lhs,
const Expr& rhs) {
emitSubscriptAssign(stmtRange, lhs, NamedValue(rhs.range(), emitExpr(rhs)));
}
void emitSubscriptAssign(
const SourceRange& stmtRange,
const Subscript& lhs,
const NamedValue& rhs) {
// First check the base value.
auto sliceable = emitExpr(lhs.value());
// If it's a tensor, copy the RHS data into it
if (sliceable->type()->isSubtypeOf(TensorType::get())) {
std::vector<Value*> tensorIndices;
Value* sliced;
// Handle multi-dimensional slicing: first emit int/slice indexing
// TODO: the Python equivalent code has special-cased copy_to
// broadcasting to match NumPy semantics (see PR#4853). We can't
// replicate that without knowing the size of the Tensor; so really that
// code should be moved into the aten function
std::tie(sliced, tensorIndices) = emitIntAndSliceIndexing(
lhs.range(), sliceable, lhs.subscript_exprs());
const auto slicedArg = NamedValue(lhs.range(), sliced);
// rhs must be a tensor, implicitly convert int/float/bool
const auto convertedRhs = emitValueToTensor(rhs, slicedArg);
if (tensorIndices.size() == 0) {
// Common case: we only tried to index with int and slices. Copy the
// RHS into the resulting tensor.
graph->insert(aten::copy_, {slicedArg, convertedRhs}, {}, stmtRange);
} else {
// Special case: we tried to do "advanced indexing" with a tensor.
// Dispatch to `aten::index_put_` with tensorindices of Tensor?[]
const auto indices = graph
->insertNode(graph->createList(
OptionalType::ofTensor(), tensorIndices))
->output();
graph->insert(
aten::index_put_,
{slicedArg, indices, convertedRhs},
{},
stmtRange);
}
// Otherwise, this is a list or a classtype.
// Dispatch to aten::_set_item to both select and assign
} else {
const auto subscript = lhs.subscript_exprs();
if (subscript.size() != 1 || subscript[0].kind() == TK_SLICE_EXPR) {
throw ErrorReport(subscript)
<< "Sliced expression not yet supported for"
<< " subscripted assignment. "
<< "File a bug if you want this";
}
if (sliceable->type()->isSubtypeOf(AnyTupleType::get())) {
throw ErrorReport(lhs) << sliceable->type()->repr_str()
<< " does not support subscripted assignment";
}
std::vector<NamedValue> args;
args.emplace_back(lhs.value().range(), "self", sliceable);
args.emplace_back(
lhs.subscript_exprs().range(), "idx", emitExpr(subscript[0]));
args.push_back(rhs);
makeMagic(
"__setitem__",
std::make_shared<BuiltinFunction>(aten::_set_item, at::nullopt))
->call(stmtRange, method, args, {}, 0);
}
}
void emitTupleAssign(const TupleLiteral& tl, const Expr& rhs) {
size_t n_binders = tl.inputs().size();
bool starred_unpack = validateAssignLhsExpr(tl.inputs(), tl.range());
if (starred_unpack)
n_binders--;
auto output = emitSugaredExpr(rhs, n_binders);
emitTupleAssign(tl, output, rhs.range(), n_binders, starred_unpack);
}
void emitTupleAssign(
const TupleLiteral& tl,
const SugaredValuePtr& rhs_output,
const SourceRange& rhs_loc,
size_t n_binders,
bool starred_unpack) {
auto outputs = rhs_output->asTuple(
rhs_loc,
method,
starred_unpack ? c10::nullopt : c10::optional<size_t>{n_binders});
if (outputs.size() < n_binders) {
throw ErrorReport(tl)
<< "need " << (starred_unpack ? "at least " : "") << n_binders
<< " values to unpack but found only " << outputs.size();
}
if (outputs.size() > n_binders && !starred_unpack) {
throw ErrorReport(tl) << "too many values to unpack: need " << n_binders
<< " but found " << outputs.size();
}
emitExprsAssign(tl.inputs(), outputs, rhs_loc, n_binders);
}
void emitExprsAssign(
const List<Expr>& lhs_exprs,
const at::ArrayRef<SugaredValuePtr> outputs,
const SourceRange& rhs_loc,
size_t n_binders) {
int i = 0;
for (auto assignee : lhs_exprs) {
switch (assignee.kind()) {
case TK_SUBSCRIPT:
emitSubscriptAssign(
rhs_loc,
Subscript(assignee),
NamedValue(rhs_loc, outputs.at(i)->asValue(rhs_loc, method)));
i++;
break;
case TK_VAR:
environment_stack->setSugaredVar(
assignee.range(),
Var(assignee).name().name(),
outputs.at(i),
/*annotated_type=*/nullptr);
i++;
break;
case TK_STARRED: {
auto var = Starred(assignee).expr();
if (var.kind() != TK_VAR) {
throw ErrorReport(var) << "Cannot pack a tuple into a non-variable";
}
size_t n_matched = outputs.size() - n_binders;
ArrayRef<std::shared_ptr<SugaredValue>> outputs_ref = outputs;
auto values = fmap(
outputs_ref.slice(i, n_matched),
[&](const std::shared_ptr<SugaredValue>& v) {
return v->asValue(assignee.range(), method);
});
auto tup = graph->insertNode(graph->createTuple(values))->output();
environment_stack->setVar(var.range(), Var(var).name().name(), tup);
i += n_matched;
} break;
case TK_TUPLE_LITERAL: {
// recursively emit tuple assignments on tuple literal input
TupleLiteral sub_tl = TupleLiteral(assignee);
size_t sub_n_binders = sub_tl.inputs().size();
bool sub_starred_unpack =
validateAssignLhsExpr(sub_tl.inputs(), sub_tl.range());
if (sub_starred_unpack)
sub_n_binders--;
emitTupleAssign(
sub_tl,
outputs.at(i),
rhs_loc,
sub_n_binders,
sub_starred_unpack);
i++;
} break;
default:
throw ErrorReport(assignee)
<< "unexpected expression on the left-hand side";
}
}
}
void emitAssignment(const Assign& stmt) {
if (stmt.lhs_list().size() == 1) {
return emitSingleAssignment(stmt);
}
// multiple assign & annotated type not supported in python
TORCH_INTERNAL_ASSERT(stmt.lhs_list().size() > 1 && !stmt.type().present());
// a = b = expr()
// the semantics of multiple assignment is that expr() is emitted once, then
// from left to right the assignments are made
const auto tmp_name = createTempName("$tmp_assign_");
environment_stack->setSugaredVar(
stmt.rhs().range(),
tmp_name,
emitSugaredExpr(stmt.rhs().get(), 1),
/*annotated_type=*/nullptr);
auto ident = Var::create(
stmt.rhs().range(), Ident::create(stmt.rhs().range(), tmp_name));
for (auto expr : stmt.lhs_list()) {
emitSingleAssignment(Assign::create(
stmt.range(),
List<Expr>::create(expr.range(), {expr}),
Maybe<Expr>::create(stmt.rhs().range(), ident),
Maybe<Expr>::create(stmt.range())));
}
}
void emitSingleAssignment(const Assign& stmt) {
if (!stmt.rhs().present()) {
throw ErrorReport(stmt.range())
<< "For an assignment, expected an expression on the right-hand side";
}
const Expr& rhs = stmt.rhs().get();
switch (stmt.lhs().kind()) {
case TK_VAR: {
auto v = Var(stmt.lhs());
TypePtr type = nullptr;
if (stmt.type().present()) {
type = typeParser_.parseTypeFromExpr(stmt.type().get());
}
auto rhs_sugared_val = emitSugaredExpr(rhs, 1, type);
// START BC HACK
//
// For old serialized quantized RNN modules, switch
// quantized::linear_prepack to quantized::linear_prepack_legacy. We
// changed linear_prepack to return a TorchBind class and not a
// cpp_custom_type_hack tensor anymore, but the old serialized models
// are tightly coupled with the type_hack version. If we still create a
// Tensor here, then the quantized_lstm.legacy overload can kick in in
// forward_impl(), and the module will still run correctly.
if (method.qualname() ==
"__torch__.torch.nn.quantized.dynamic.modules.rnn.PackedParameter.__setstate__") {
if (auto sv =
std::dynamic_pointer_cast<SimpleValue>(rhs_sugared_val)) {
Node* rhs_node = sv->getValue()->node();
if (rhs_node->kind() ==
Symbol::fromQualString("quantized::linear_prepack")) {
std::vector<NamedValue> inputs;
for (Value* i : rhs_node->inputs()) {
inputs.emplace_back(i);
}
Value* new_val = rhs_node->owningGraph()->insert(
Symbol::fromQualString("quantized::linear_prepack_legacy"),
inputs,
{},
rhs_node->sourceRange());
rhs_sugared_val = std::make_shared<SimpleValue>(new_val);
}
}
}
// END BC HACK
environment_stack->setSugaredVar(
v.range(),
v.name().name(),
std::move(rhs_sugared_val),
/*annotated_type=*/type);
} break;
case TK_TUPLE_LITERAL:
emitTupleAssign(TupleLiteral(stmt.lhs()), rhs);
break;
case '.':
emitSelectAssign(stmt);
break;
case TK_SUBSCRIPT:
emitSubscriptAssign(stmt.range(), Subscript(stmt.lhs()), rhs);
break;
default:
throw ErrorReport(stmt.lhs())
<< "unexpected expression on left-hand side of assignment";
}
}
void emitSelectAssign(const Assign& stmt) {
if (!stmt.rhs().present()) {
throw ErrorReport(stmt.range()) << "Expected RHS for assignment";
}
TypePtr type_hint = nullptr;
if (stmt.type().present()) {
type_hint = typeParser_.parseTypeFromExpr(stmt.type().get());
}
const auto lhs = Select(stmt.lhs());
auto lhsObject = emitSugaredExpr(lhs.value(), 1);
const auto rhsValue = emitSugaredExpr(stmt.rhs().get(), 1, type_hint)
->asValue(stmt.rhs().range(), method);
lhsObject->setAttr(stmt.range(), method, lhs.selector().name(), rhsValue);
}
NodeKind getNodeKind(int kind, int ninputs) {
switch (kind) {
case '+':
return aten::add;
case '-':
return aten::sub;
case TK_UNARY_MINUS:
return aten::neg;
case '*':
return aten::mul;
case TK_POW:
return aten::pow;
case '@':
return aten::matmul;
case TK_STARRED:
return prim::Starred;
case '/':
return aten::div;
case '%':
return aten::remainder;
case TK_NE:
return aten::ne;
case TK_EQ:
return aten::eq;
case '<':
return aten::lt;
case '>':
return aten::gt;
case TK_LE:
return aten::le;
case TK_GE:
return aten::ge;
case TK_AND:
return aten::__and__;
case TK_OR:
return aten::__or__;
case TK_IS:
return aten::__is__;
case TK_ISNOT:
return aten::__isnot__;
case TK_NOT:
return aten::__not__;
case TK_FLOOR_DIV:
return aten::floordiv;
case TK_LSHIFT:
return aten::__lshift__;
case TK_RSHIFT:
return aten::__rshift__;
case '&':
return aten::__and__;
case '|':
return aten::__or__;
case '^':
return aten::__xor__;
case TK_IN:
return aten::__contains__;
default:
throw std::runtime_error("unknown kind " + c10::to_string(kind));
}
}
std::string getOperatorOverload(int kind, int ninputs) {
switch (kind) {
case '+':
return "__add__";
case '-':
return "__sub__";
case TK_UNARY_MINUS:
return "__neg__";
case '~':
return "__invert__";
case '*':
return "__mul__";
case TK_POW:
return "__pow__";
case '/':
return "__truediv__";
case '%':
return "__mod__";
case TK_NE:
return "__ne__";
case TK_EQ:
return "__eq__";
case '<':
return "__lt__";
case '>':
return "__gt__";
case TK_LE:
return "__le__";
case TK_GE:
return "__ge__";
case '&':
return "__and__";
case '|':
return "__or__";
case '^':
return "__xor__";
case TK_IN:
return "__contains__";
case TK_LSHIFT:
return "__lshift__";
case TK_RSHIFT:
return "__rshift__";
default:
throw std::runtime_error("unknown kind " + c10::to_string(kind));
}
}
std::vector<NamedValue> getNamedValues(
const TreeList& trees,
bool maybe_unpack) {
std::vector<NamedValue> values;
for (const auto& tree : trees) {
if (maybe_unpack && tree->kind() == TK_STARRED) {
auto starred = Starred(tree);
auto entries = emitSugaredExpr(starred.expr(), 1)
->asTuple(starred.range(), method);
for (const auto& entry : entries) {
values.emplace_back(
tree->range(), entry->asValue(starred.range(), method));
}
} else {
values.emplace_back(tree->range(), emitExpr(Expr(tree)));
}
}
return values;
}
std::vector<NamedValue> getNamedValues(
const List<Expr>& trees,
bool maybe_unpack) {
return getNamedValues(trees.tree()->trees(), maybe_unpack);
}
std::vector<Value*> getValues(const TreeList& trees, bool maybe_unpack) {
return toValues(*graph, getNamedValues(trees, maybe_unpack));
}
std::vector<Value*> getValues(const List<Expr>& trees, bool maybe_unpack) {
return getValues(trees.tree()->trees(), maybe_unpack);
}
std::vector<NamedValue> emitAttributes(const List<Attribute>& attributes) {
return fmap(attributes, [&](const Attribute& attr) {
return NamedValue(
attr.range(), attr.name().name(), emitExpr(attr.value()));
});
}
void checkApplyNumInputs(Apply& apply, size_t expected_inputs) {
const SourceRange& loc = apply.range();
if (apply.inputs().size() != expected_inputs) {
throw ErrorReport(loc)
<< Var(apply.callee()).name().name() << " expected exactly "
<< expected_inputs << " arguments but found "
<< apply.inputs().size();
}
if (apply.attributes().size() > 0) {
throw ErrorReport(loc)
<< Var(apply.callee()).name().name() << " takes no keyword arguments";
}
}
std::shared_ptr<SugaredValue> emitApplyExpr(
Apply& apply,
size_t n_binders,
const TypePtr& type_hint = nullptr) {
auto sv = emitSugaredExpr(apply.callee(), 1);
auto loc = apply.callee().range();
if (auto special_form = dynamic_cast<SpecialFormValue*>(sv.get())) {
return emitApplySpecialForm(special_form->form(), apply, type_hint);
}
auto inputs = getNamedValues(apply.inputs(), true);
auto attributes = emitAttributes(apply.attributes());
return sv->call(loc, method, inputs, attributes, n_binders);
}
// this function handles expressions that look like apply statements
// but have special evaluation rules for the arguments.
// when adding a new case, only add a special form if it cannot be expressed
// using the standard SugaredValue::call function, which enforces normal
// evaluation order.
std::shared_ptr<SugaredValue> emitApplySpecialForm(
Symbol form,
Apply& apply,
const TypePtr& type_hint = nullptr) {
switch (form) {
case prim::fork: {
auto& trees = apply.inputs().tree()->trees();
if (trees.size() < 1) {
throw ErrorReport(apply)
<< "Expected at least one argument to fork()";
}
auto forked = emitSugaredExpr(Expr(trees[0]), 1);
TreeList sliced_trees(trees.begin() + 1, trees.end());
auto inputs = getNamedValues(sliced_trees, true);
auto attributes = emitAttributes(apply.attributes());
return emitForkExpr(apply.range(), forked, inputs, attributes);
}
case prim::annotate: {
checkApplyNumInputs(apply, 2);
TypePtr type = typeParser_.parseTypeFromExpr(apply.inputs()[0]);
Value* expr = tryConvertToType(
apply.range(),
*graph,
type,
emitExpr(apply.inputs()[1], type),
/*allow_conversions=*/true);
std::stringstream why_not;
if (!expr->type()->isSubtypeOfExt(type, &why_not)) {
throw ErrorReport(apply.inputs())
<< "expected an expression of type " << type->repr_str()
<< " but found " << expr->type()->repr_str() << "\n"
<< why_not.str();
}
// None is a subtype of Optional[T], but we want to remember what T is,
// after annotation so that variables assigned to this None will still
// get the right type. To do this, we make a None constant that
// has the type Optional[T]
if (type->kind() == OptionalType::Kind &&
expr->type()->isSubtypeOf(NoneType::get())) {
Node* none = graph->createNone();
none->output()->setType(type);
graph->insertNode(none);
expr = none->output();
}
return std::make_shared<SimpleValue>(expr);
}
case prim::rpc_async:
case prim::rpc_sync:
case prim::rpc_remote: {
return emitRpcExpr(apply, form);
}
case prim::unchecked_cast: {
checkApplyNumInputs(apply, 2);
TypePtr type = typeParser_.parseTypeFromExpr(apply.inputs()[0]);
Value* v = emitExpr(apply.inputs()[1]);
// avoid generating nested unchecked_casts because they are already
// inserted during serialization
if (v->node()->kind() != prim::unchecked_cast || *v->type() != *type) {
v = graph->insertUncheckedCast(v, type);
}
return std::make_shared<SimpleValue>(v);
} break;
case prim::GetAttr: {
checkApplyNumInputs(apply, 2);
auto obj = emitSugaredExpr(apply.inputs()[0], 1);
auto selector = apply.inputs()[1];
if (selector.kind() != TK_STRINGLITERAL) {
throw ErrorReport(apply)
<< "getattr's second argument must be a string literal";
}
const std::string& name = StringLiteral(selector).text();
return obj->attr(apply.range(), method, name);
}
case prim::Uninitialized: {
checkApplyNumInputs(apply, 1);
TypePtr type = typeParser_.parseTypeFromExpr(apply.inputs()[0]);
auto out = graph->insertNode(graph->createUninitialized(type))
->setSourceRange(apply.range());
return std::make_shared<SimpleValue>(out->output());
}
case prim::TupleConstruct: {
checkApplyNumInputs(apply, 1);
auto arg = emitSugaredExpr(apply.inputs()[0], 1);
auto inputs = arg->asTuple(apply.range(), method);
auto inp_values = fmap(inputs, [&](const SugaredValuePtr& sv) {
return sv->asValue(apply.range(), method);
});
return std::make_shared<SimpleValue>(
graph->insertNode(graph->createTuple(inp_values))->output());
}
case prim::isinstance: {
checkApplyNumInputs(apply, 2);
auto result = emitIsInstance(apply.inputs()[0], apply.inputs()[1]);
return std::make_shared<SimpleValue>(result.value());
}
case prim::tolist: {
auto select = Select(apply.callee());
auto value = select.value();
auto operand = emitSugaredExpr(value, 1);
if (!type_hint) {
throw ErrorReport(apply)
<< "Expected type hint for result of tolist()";
}
return std::make_shared<SimpleValue>(graph->insertToList(
operand->asValue(value.range(), method), type_hint));
}
case prim::HasAttr: {
checkApplyNumInputs(apply, 2);
const auto result = emitHasAttr(apply.inputs()[0], apply.inputs()[1]);
return std::make_shared<SimpleValue>(result.value());
} break;
// This represents the "__new__" method on classes
// because it takes a ClassValue as input.
// So if we see:
// Foo.__new__(Foo)
// Foo is a ClassValue, calling `attr("__new__")` will return a
// CreateObject special form.
case prim::CreateObject: {
if (apply.inputs().size() != 1) {
throw ErrorReport(apply) << "Only one argument to __new__ allowed";
}
auto arg = emitSugaredExpr(apply.inputs()[0], 1);
auto class_arg = dynamic_cast<ClassValue*>(arg.get());
if (!class_arg) {
throw ErrorReport(apply)
<< "Expected class value as argument to __new__, got "
<< arg->kind() << " instead";
}
auto createNode =
graph->insertNode(graph->createObject(class_arg->type_));
return std::make_shared<SimpleValue>(createNode->output());
}
// We construct the iterable tree here using the IterableTree
// SugaredValue, The tree consists of SimpleValue, RangeValue or
// IterableTree: For SimpleValues(List, Dict, etc) or RangeValue. We will
// make them as tree leaves since we could get the loop information from
// len() and get_item(). For IterableTree like zip(), enumerate(), we can
// model them as a combination of leaves, and we emit a IterableTree value
// to record the tree information
case prim::range: {
std::vector<Value*> input_vals =
getValues(apply.inputs(), /*maybe_unpack=*/true);
return std::make_shared<RangeValue>(apply.range(), method, input_vals);
}
case prim::enumerate: {
const SourceRange& loc = apply.range();
auto inputs = apply.inputs();
auto input_size = apply.inputs().size();
// enumerate(x) can be rewrite as subtrees:
// IterableTree(RangeValue(0, math.inf), SimpleValue(x))
Value* start_index = nullptr;
if (input_size == 0) {
throw ErrorReport(loc)
<< "enumerate expected at least 1 arguments, got 0";
}
if (input_size == 2) {
start_index = emitSugaredExpr(inputs[1], 1)->asValue(loc, method);
}
if (input_size > 2) {
throw ErrorReport(loc)
<< "enumerate expected at most 2 arguments, got " << input_size;
}
std::vector<Value*> range_inputs;
if (start_index != nullptr) {
range_inputs.emplace_back(start_index);
}
Value* end = materializeConstant(
std::numeric_limits<int64_t>::max(),
*graph,
loc,
integral_constants);
range_inputs.emplace_back(end);
SugaredValuePtr expr_sv = emitSugaredExpr(inputs[0], 1);
auto iterable_value = expr_sv->iter(loc, method);
// range should have the same static length as the other iterable
c10::optional<int64_t> iter_static_len = iterable_value->staticLen();
SugaredValuePtr range_sv = std::make_shared<RangeValue>(
loc, method, range_inputs, iter_static_len);
auto tree = std::make_shared<IterableTree>();
tree->addChild(loc, method, range_sv);
tree->addChild(loc, method, iterable_value);
return tree;
}
case prim::zip: {
// zip(x, y) can be rewrite as subtrees:
// IterableTree(IterableTree(x), IterableTree(y))
auto inputs = apply.inputs();
if (inputs.size() == 0) {
throw ErrorReport(apply)
<< "zip expected at least 1 arguments, got 0";
}
auto iterable_tree = std::make_shared<IterableTree>();
for (Expr expr : inputs) {
auto iterable = emitSugaredExpr(expr, 1)->iter(apply.range(), method);
iterable_tree->addChild(apply.range(), method, iterable);
}
return iterable_tree;
}
default:
TORCH_INTERNAL_ASSERT(false, "unknown special form: ", form);
}
}
Value* emitExpr(const Expr& tree, const TypePtr& type_hint = nullptr) {
// Push the source range of a call in case compiling this function
// triggers an error
ErrorReport::CallStack::update_pending_range(tree.range());
return emitSugaredExpr(tree, 1, type_hint)->asValue(tree.range(), method);
}
NodeKind reverseComparision(NodeKind kind) {
if (kind == aten::lt) {
return aten::gt;
} else if (kind == aten::le) {
return aten::ge;
} else if (kind == aten::gt) {
return aten::lt;
} else if (kind == aten::ge) {
return aten::le;
}
throw std::runtime_error(
"reverseComparision: unsupported NodeKind. File a bug");
}
// any expression that can produce a SugaredValue is handled here
// expressions that only return a single Value* are handled in emitSimpleExpr
// type_hint is set if there is a type that this value is expected to be
// e.g. a : List[int] = []
// or a = torch.jit.annotate(List[int], [])
// the caller is responsible for checking that the result matches type_hint
// emitSugaredExpr is free to ignore it.
std::shared_ptr<SugaredValue> emitSugaredExpr(
const Expr& tree,
size_t n_binders,
const TypePtr& type_hint = nullptr) {
switch (tree.kind()) {
case TK_VAR:
return environment_stack->getSugaredVar(Var(tree).name());
case '.': {
auto select = Select(tree);
auto sv = emitSugaredExpr(select.value(), 1);
return sv->attr(select.range(), method, select.selector().name());
}
case TK_APPLY: {
auto apply = Apply(tree);
return emitApplyExpr(apply, n_binders, type_hint);
} break;
case TK_SUBSCRIPT: {
return emitSubscript(Subscript(tree));
} break;
default:
return std::make_shared<SimpleValue>(emitSimpleExpr(tree, type_hint));
}
}
Value* emitUnaryOp(
const TreeRef& tree,
const std::string& magicMethod,
const c10::Symbol& opSymbol) {
const auto& inputs = tree->trees();
auto named_values = getNamedValues(inputs, /*maybe_unpack=*/false);
auto val =
asSimple(makeMagic(
magicMethod,
std::make_shared<BuiltinFunction>(opSymbol, at::nullopt))
->call(tree->range(), method, named_values, {}, 0));
// if we emitted the unary op and not some other overloaded function,
// then try to constantfold
if (val->node()->kind() != opSymbol) {
return val;
}
auto maybe_out_stack = runNodeIfInputsAreConstant(val->node());
if (!maybe_out_stack) {
return val;
}
TORCH_INTERNAL_ASSERT(maybe_out_stack->size() == 1);
return graph->insertConstant(maybe_out_stack->at(0), tree->range());
}
std::shared_ptr<SugaredValue> emitForkExpr(
SourceRange loc,
const std::shared_ptr<SugaredValue>& forked,
at::ArrayRef<NamedValue> inputs,
at::ArrayRef<NamedValue> attributes) {
auto g = method.graph();
Node* fork_node;
TypePtr out_type;
fork_node = g->insertNode(method.graph()->create(prim::forkClosure, 1))
->setSourceRange(loc);
// We create a fork by emitting a closure and setting the closure output
// into the fork input. If a closure doesn't already exist, we create one.
{
WithInsertPoint insert(fork_node);
if (ClosureValue* sv = dynamic_cast<ClosureValue*>(forked.get())) {
Value* closure_output = sv->asValue(loc, method);
Block* closure_block = closure_output->node()->blocks().at(0);
TORCH_INTERNAL_ASSERT(closure_block->outputs().size() == 1);
out_type = closure_block->outputs().at(0)->type();
fork_node->addInput(closure_output);
} else {
auto emit_closure_body = [&](Block* closure_block) {
auto fn_sugared_output =
forked->call(loc, method, inputs, attributes, 1);
auto fn_simple_output = fn_sugared_output->asValue(loc, method);
closure_block->registerOutput(fn_simple_output);
out_type = fn_simple_output->type();
};
auto closure_value = emitClosure(emit_closure_body);
fork_node->addInput(closure_value->asValue(loc, method));
}
}
Value* node_output =
fork_node->output()->setType(FutureType::create(out_type));
return std::make_shared<SimpleValue>(node_output);
}
std::shared_ptr<SugaredValue> emitRpcExpr(const Apply& apply, Symbol rpc_op) {
// TODO: This is a temporary apporoach to enable calling user fucntion
// through RPC in TorchScript,
// Ideally, function value in JIT IR is first-class citizen and
// The RPC C++ entry API can take c10::Function directly.
auto rpcMinInputs = 2;
auto rpcMaxInputs = 5; // NOLINT
std::string op_name = rpc_op.toUnqualString();
if (apply.inputs().size() < rpcMinInputs ||
apply.inputs().size() > rpcMaxInputs) {
throw ErrorReport(apply)
<< "Possible forms of call to " << op_name << "(..) are\n"
<< op_name
<< "(dst_worker_name, user_callable, args, kwargs, timeout)\n"
<< op_name << "(dst_worker_name, user_callable, args, kwargs)\n"
<< op_name << "(dst_worker_name, user_callable, args)\n"
<< op_name << "(dst_worker_name, user_callable)\n"
<< "Now the number of arguments is " << apply.inputs().size();
}
if (apply.attributes().size() != 0) {
throw ErrorReport(apply)
<< op_name << "(dst_worker_name, user_callable, args, kwargs)"
<< "does not support kwargs yet";
}
// TODO: Make rpc_op(..) support taking kwargs,
// like rpc_async(to="worker1", func=my_func, args=(), kwargs={})
auto& input_trees = apply.inputs().tree()->trees();
Value* dst_worker_name_value = emitExpr(Expr(input_trees[0]));
std::shared_ptr<SugaredValue> user_callable_sugared_value =
emitSugaredExpr(Expr(input_trees[1]), 1);
TORCH_CHECK(
user_callable_sugared_value->kind() == "function",
"user_callable should be a FunctionValue, it's now a ",
user_callable_sugared_value->kind())
// NB: This should be done using `std::dynamic_pointer_cast`
// and assert `user_callable_function_value != nullptr`. But somehow on
// macos std::dynamic_pointer_cast always returns
// `user_callable_function_value` as a `nullptr`, even if
// `user_callable_sugared_value->kind() == "function"`.
std::shared_ptr<FunctionValue> user_callable_function_value =
std::static_pointer_cast<FunctionValue>(user_callable_sugared_value);
// If `kwargs` is an empty dict, users are allowed to not pass `kwargs`.
// If `args` and `kwargs` are an empty tuple and an empty dict,
// respectively, users are allowed to not pass `args` and `kwargs`.
TreeList args_kwargs_timeout_trees(
input_trees.begin() + 2, input_trees.end());
// Get user callable.
const auto& callablePtrs = user_callable_function_value->callees();
TORCH_INTERNAL_ASSERT(
callablePtrs.size() == 1,
"User-provided callable size should be 1. Now it's",
callablePtrs.size())
Function* callablePtr = callablePtrs.at(0);
const auto& functionSchema = callablePtr->getSchema();
const SourceRange& loc = apply.range();
auto graphPtr = method.graph();
// Match FunctionSchema.
std::vector<NamedValue> args;
std::vector<NamedValue> kwargs;
// Get args and kwargs as `NamedValue`s.
// Similar to getNamedValues(..) and emitAttributes(..).
if (args_kwargs_timeout_trees.size() >= 1) {
// Unroll args from a Var that is known to be a Tuple.
auto& args_tree = args_kwargs_timeout_trees[0];
auto entry_sugared_values = emitSugaredExpr(Expr(args_tree), 1)
->asTuple(args_tree->range(), method);
args.reserve(entry_sugared_values.size());
for (const auto& entrie_sugared_value : entry_sugared_values) {
args.emplace_back(
args_tree->range(),
entrie_sugared_value->asValue(args_tree->range(), method));
}
// NB: Can't do schema check on kwargs, given the RPC API is
// rpc_op(to, user_callable, args, kwargs),
// users can construct kwargs = {"first" + "_arg" : 1}.
// Notice the key is determined at run time.
// We can do it at compile time, unless one day the RPC API is
// rpc_op(to, user_callable, arg_0, arg_1, kwarg_0="foo",
// kwarg_1="bar")
}
matchSchema(functionSchema, loc, *graphPtr, args, kwargs);
// Graph insert the QualifiedName as an constant input IR Value.
const auto& qualname = callablePtr->qualname();
IValue userCallableQualNameIValue(qualname.qualifiedName());
Value* userCallableQualNameValue =
graphPtr->insertConstant(userCallableQualNameIValue, loc);
// Graph insert the corresponding RPC node to the graph.
Node* rpc_node =
graphPtr->insertNode(graphPtr->create(rpc_op, 1))->setSourceRange(loc);
{
WithInsertPoint insert(rpc_node);
rpc_node->addInput(dst_worker_name_value);
rpc_node->addInput(userCallableQualNameValue);
for (const auto& tree : args_kwargs_timeout_trees) {
rpc_node->addInput(emitExpr(Expr(tree)));
}
}
Value* rpc_node_output = rpc_node->output();
// Set output type from FunctionSchema and corresponding rpc_op.
const std::vector<Argument>& returns = functionSchema.returns();
TORCH_INTERNAL_ASSERT(returns.size() == 1);
TypePtr output_type = nullptr;
if (rpc_op == prim::rpc_async) {
// rpc_async returns FutureType of the functionSchema's return type
output_type = FutureType::create(returns[0].type());
} else if (rpc_op == prim::rpc_sync) {
// rpc_sync returns the functionSchema's return type
output_type = returns[0].type();
} else if (rpc_op == prim::rpc_remote) {
// rpc_remote returns RRefType of the functionSchema's return type
output_type = RRefType::create(returns[0].type());
} else {
throw ErrorReport(apply)
<< rpc_op.toDisplayString() << " is not supported in TorchScript!'";
}
rpc_node_output->setType(output_type);
return std::make_shared<SimpleValue>(rpc_node_output);
}
Value* emitSimpleExpr(
const TreeRef& tree,
const TypePtr& type_hint = nullptr) {
switch (tree->kind()) {
case TK_FLOOR_DIV:
case '@': {
const auto& inputs = tree->trees();
auto kind = getNodeKind(tree->kind(), inputs.size());
auto named_values = getNamedValues(inputs, /*maybe_unpack=*/false);
return emitBuiltinCall(
tree->range(), *method.graph(), kind, named_values, {});
}
case TK_IN:
case TK_POW:
case TK_NE:
case TK_EQ:
case '<':
case '>':
case TK_LE:
case TK_GE:
case '*':
case '/':
case '+':
case '-':
case '%':
case '&':
case '|':
case '^':
case TK_LSHIFT:
case TK_RSHIFT: {
const auto& inputs = tree->trees();
auto kind = getNodeKind(tree->kind(), inputs.size());
auto overload = getOperatorOverload(tree->kind(), inputs.size());
auto named_values = getNamedValues(inputs, /*maybe_unpack=*/false);
if (tree->kind() == TK_IN) {
// For `in` the arguments are in reverse order (the object being
// checked is second)
std::iter_swap(named_values.begin() + 0, named_values.begin() + 1);
}
return asSimple(
makeMagic(
overload, std::make_shared<BuiltinFunction>(kind, at::nullopt))
->call(tree->range(), method, named_values, {}, 0));
}
case TK_IS:
case TK_ISNOT:
case TK_AND:
case TK_OR:
case TK_NOT: {
return emitCondExpr(Expr(tree)).value();
}
case TK_UNARY_MINUS: {
return emitUnaryOp(tree, "__neg__", aten::neg);
}
case '~': {
return emitUnaryOp(tree, "__invert__", aten::bitwise_not);
}
case TK_STARRED: {
throw ErrorReport(tree)
<< "Unexpected starred expansion. File a bug report";
}
case TK_CONST: {
return emitConst(Const(tree));
} break;
case TK_TRUE: {
return graph->insertConstant(true, tree->range());
} break;
case TK_FALSE: {
return graph->insertConstant(false, tree->range());
} break;
case TK_NONE: {
return graph->insertConstant(IValue(), tree->range());
} break;
case TK_IF_EXPR: {
return emitTernaryIf(TernaryIf(tree));
} break;
case TK_STRINGLITERAL: {
return emitStringLiteral(StringLiteral(tree));
} break;
case TK_LIST_LITERAL: {
auto ll = ListLiteral(tree);
auto values = getValues(ll.inputs(), /*maybe_unpack=*/true);
// determine the element type of the list
// if we have a type hint of List[T], use T
// if the list is non-empty use type_of(list[0])
// otherwise assume it is List[Tensor]
TypePtr elem_type = TensorType::get();
if (type_hint) {
if (type_hint->kind() == TypeKind::ListType) {
elem_type = type_hint->expect<ListType>()->getElementType();
} else {
// If the type hint was not a List[T] throw an error
throw ErrorReport(tree)
<< "Expected a List type hint but instead got "
<< type_hint->repr_str();
}
} else if (!values.empty()) {
std::stringstream ss;
auto types = fmap(values, [](const Value* v) { return v->type(); });
auto maybe_elem_type = unifyTypeList(types, ss);
if (!maybe_elem_type) {
throw ErrorReport(tree) << "Lists must contain only a single type\n"
<< ss.str();
}
elem_type = maybe_elem_type.value();
}
for (auto v : values) {
std::stringstream ss;
if (!v->type()->isSubtypeOfExt(elem_type, &ss)) {
throw ErrorReport(tree)
<< "Lists must contain only a single type, expected: "
<< elem_type->repr_str() << " but found "
<< v->type()->repr_str() << " instead.\n"
<< ss.str();
}
}
Value* result =
graph->insertNode(graph->createList(elem_type, values))->output();
return result;
} break;
case TK_TUPLE_LITERAL: {
auto ll = TupleLiteral(tree);
auto values = getValues(ll.inputs(), /*maybe_unpack=*/true);
return graph->insertNode(graph->createTuple(values))->output();
} break;
case TK_DICT_LITERAL: {
auto dl = DictLiteral(tree);
auto key_trees = dl.key_inputs().tree()->trees();
auto value_trees = dl.value_inputs().tree()->trees();
AT_ASSERT(key_trees.size() == value_trees.size());
std::vector<Value*> keys, values;
for (size_t i = 0; i < key_trees.size(); ++i) {
keys.push_back(emitExpr(Expr(key_trees[i])));
values.push_back(emitExpr(Expr(value_trees[i])));
}
TypePtr key_type = nullptr;
TypePtr value_type = nullptr;
if (type_hint && type_hint->kind() == TypeKind::DictType) {
auto dict_type = type_hint->expect<DictType>();
key_type = dict_type->getKeyType();
value_type = dict_type->getValueType();
} else if (keys.empty()) {
key_type = StringType::get();
value_type = TensorType::get();
} else {
key_type = keys.at(0)->type();
value_type = values.at(0)->type();
}
AT_ASSERT(key_type != nullptr && value_type != nullptr);
auto checkTypeOfValues = [](const TypePtr& type,
const char* what,
const std::vector<Value*>& values,
TreeList trees) {
for (size_t i = 0, N = values.size(); i < N; ++i) {
std::stringstream ss;
if (!values[i]->type()->isSubtypeOfExt(type, &ss)) {
throw ErrorReport(trees[i])
<< "Dict " << what
<< " must contain only a single type, expected: "
<< type->repr_str() << " but found "
<< values[i]->type()->repr_str() << " instead.\n"
<< ss.str();
}
}
};
checkTypeOfValues(key_type, "keys", keys, key_trees);
checkTypeOfValues(value_type, "values", values, value_trees);
return graph
->insertNode(graph->createDict(key_type, value_type, keys, values))
->output();
} break;
case TK_LIST_COMP: {
auto lc = ListComp(tree);
return emitListComprehension(lc, type_hint);
} break;
default:
throw ErrorReport(tree) << "Cannot emit expr for: " << tree;
}
}
Value* emitConst(const Const& c) {
if (c.isFloatingPoint())
return materializeConstant(
c.asFloatingPoint(), *graph, c.range(), fp_constants);
else
return materializeConstant(
c.asIntegral(), *graph, c.range(), integral_constants);
}
Value* emitStringLiteral(const StringLiteral& c) {
return insertConstant(*graph, c.text(), c.range());
}
// Desugars select indexing: tensor[i] -> tensor.select(dim, i)
Value* emitSelect(
const SourceRange& loc,
Value* input,
Value* dim,
Value* index) {
return emitBuiltinCall(loc, *graph, aten::select, {input, dim, index}, {});
}
Value* emitSliceOp(
const SourceRange& loc,
Value* sliceable,
Value* dim,
Value* start,
Value* end,
Value* step) {
std::vector<NamedValue> args;
args.reserve(4);
args.emplace_back(loc, "self", sliceable);
// XXX: If list slicing becomes more complicated or stops using
// aten::slice, we should separate it from this function.
if (dim) {
AT_ASSERT(sliceable->type()->isSubtypeOf(TensorType::get()));
args.emplace_back(dim);
} else {
AT_ASSERT(!sliceable->type()->isSubtypeOf(TensorType::get()));
}
// Default value for start is 0.
if (!start) {
start = graph->insertConstant(0, loc);
}
args.emplace_back(loc, "start", start);
if (end) {
args.emplace_back(loc, "end", end);
}
if (sliceable->type()->cast<TupleType>()) {
if (step) {
// TODO: add support for slicing tuples with a step
throw ErrorReport(loc)
<< "Unsupported operation: slicing tuples with a step isn't supported";
}
if (end) {
return emitTupleSlice(loc, args[0], args[1], /*end*/ args[2]);
} else {
return emitTupleSlice(loc, args[0], args[1], c10::nullopt);
}
}
if (!step) {
step = graph->insertConstant(1, loc);
}
NamedValue step_nv = NamedValue(loc, "step", step);
return emitBuiltinCall(loc, *graph, aten::slice, args, {step_nv});
}
// Desugars slice indexing: tensor[begin:end] -> tensor.slice(dim, begin, end,
// 1)
Value* emitSlice(
const SourceRange& loc,
Value* input,
Value* dim, // Only used for tensor slicing
const SliceExpr& slice) {
Value* start = nullptr;
Value* end = nullptr;
Value* step = nullptr;
if (slice.start().present()) {
start = emitExpr(Expr(slice.start().get()));
}
if (slice.end().present()) {
end = emitExpr(Expr(slice.end().get()));
}
if (slice.step().present()) {
step = emitExpr(Expr(slice.step().get()));
}
return emitSliceOp(loc, input, dim, start, end, step);
}
Value* emitUnsqueeze(const SourceRange& loc, Value* input, Value* dim_val) {
return emitBuiltinCall(loc, *graph, aten::unsqueeze, {input, dim_val}, {});
}
Value* emitIndex(
const SourceRange& loc,
Value* input,
at::ArrayRef<Value*> indices) {
// NB: the index of aten::index should be a type of List[Optional[Tensor]],
// this is to support the case like t[:, :, 1] where : here indicates a
// None/undefined tensor(optional tensor)
auto* index =
graph->insertNode(graph->createList(OptionalType::ofTensor(), indices))
->output();
return emitBuiltinCall(loc, *graph, aten::index, {input, index}, {});
}
// Emits multidimensional slicing with int and slice indices.
// Returns:
// - Value*: the input after it has been indexed by int and slice indices.
// - vector<Value*>: A list of tensor Value* indices that have not been
// applied yet.
// Should be NULL at indices where sliceable (post-slicing) isn't indexed by
// a tensor.
std::pair<Value*, std::vector<Value*>> emitIntAndSliceIndexing(
const SourceRange& loc,
Value* sliceable,
const List<Expr>& subscript_exprs) {
// Overall, to handle indexing (other than Tensors), we need to handle a
// couple different things. For example, for x[1:3, None, 4], each of these
// different index types (slice, None, and integer) result in different
// number of dimensions. Slicing doesn't change the number of dimensions,
// None adds a dimension, and integer removes a dimension. As these indexing
// operations are applied left to right, the actual index that it's being
// applied to depends on the previous operations. Ellipses indexing throws
// another wrinkle. Ellipses selects any remaining unspecified dimensions.
// Thus, for indexes following an ellipses, the actual index an indexing
// operation is being applied to depends on the operations to the right.
// Thus, we do two passes, one from left to right up until the ellipses, and
// one from right to left.
std::vector<Value*> tensor_indices;
auto insert_value_for_dim = [&](int64_t dim) {
return graph->insertConstant(dim, loc);
};
std::vector<int64_t> dims(subscript_exprs.size());
std::vector<c10::optional<Value*>> exprs(
subscript_exprs.size(), c10::nullopt);
auto handle_indexing = [&](const Expr& subscript_expr,
int expr_idx,
int64_t dim,
bool is_reverse = false) {
dims[expr_idx] = dim;
// Slice expression case, does not represent a single index.
if (subscript_expr.kind() == TK_SLICE_EXPR) {
if (is_reverse) {
return dim - 1;
} else {
return dim + 1;
}
}
// Slice object case, does not represent a single index.
auto subscript_sv = emitSugaredExpr(subscript_expr, 1);
if (dynamic_cast<SliceValue*>(subscript_sv.get())) {
if (is_reverse) {
return dim - 1;
} else {
return dim + 1;
}
}
TypePtr type_hint;
if (subscript_expr.kind() == TK_NONE) {
type_hint = NoneType::get();
}
auto index = emitExpr(subscript_expr, type_hint);
// Accept list as subscript but convert it to a Tensor
// since it's equivalent to indexing with Tensor.
// The list can be a list literal or list variable.
// Advanced indexing using list:
// @torch.jit.script
// def f(x):
// return x[[0, 1, 5]] # or
// return x[[0, 1], [0, 1]] # or
// return x[[[0, 1], [0, 1]], [[0, 1], [0, 1]]] # or
// ls = [0, 1]
// return x[ls]
// Statements above are equivalent to advanced indexing using Tensor:
// @torch.jit.script
// def f(x):
// return x[torch.tensor([0, 1, 5])] # or
// return x[torch.tensor([0, 1]), torch.tensor([0, 1])] # or
// return x[torch.tensor([[0, 1], [0, 1]]),
// torch.tensor([[0, 1], [0, 1]])] # or
// ls = [0, 1]
// return x[torch.tensor(ls)]
if (index->type()->kind() == c10::TypeKind::ListType) {
// Always create index tensor as LongTensor.
// This is to match Pytorch eager frontend behavior which accepts
// indexing with float list.
index = graph->insert(
aten::tensor, {index}, {NamedValue("dtype", c10::kLong)});
}
exprs[expr_idx] = index;
if (index->type()->isSubtypeOf(NoneType::get())) {
if (is_reverse) {
return dim;
} else {
return dim + 1;
}
} else if (index->type() == IntType::get()) {
if (is_reverse) {
return dim - 1;
} else {
return dim;
}
} else if (index->type()->isSubtypeOf(OptionalType::ofTensor())) {
if (is_reverse) {
throw ErrorReport(loc)
<< "Ellipses followed by tensor indexing is currently not supported";
} else {
return dim + 1;
}
} else {
throw ErrorReport(loc)
<< "Unsupported operation: indexing tensor with unsupported index type '"
<< index->type()->repr_str()
<< "'. Only ints, slices, lists and tensors are supported";
}
};
size_t idx = 0;
int64_t dim = 0;
for (; idx < subscript_exprs.size(); idx++) {
auto subscript_expr = subscript_exprs[idx];
if (subscript_expr.kind() == TK_DOTS) {
break;
}
dim = handle_indexing(subscript_expr, idx, dim, /*is_reverse=*/false);
}
int64_t rdim = -1;
for (size_t rev_idx = subscript_exprs.size() - 1; rev_idx > idx;
rev_idx--) {
auto subscript_expr = subscript_exprs[rev_idx];
if (subscript_expr.kind() == TK_DOTS) {
throw ErrorReport(loc)
<< "An index can only have a single ellipsis ('...')";
}
rdim =
handle_indexing(subscript_expr, rev_idx, rdim, /*is_reverse=*/true);
}
for (size_t i = 0; i < exprs.size(); i++) {
if (!exprs[i].has_value()) {
if (subscript_exprs[i].kind() == TK_SLICE_EXPR) {
sliceable = emitSlice(
loc,
sliceable,
insert_value_for_dim(dims[i]),
SliceExpr(subscript_exprs[i]));
continue;
}
if (subscript_exprs[i].kind() == TK_DOTS) {
continue;
}
auto subscript_sv = emitSugaredExpr(subscript_exprs[i], 1);
if (const auto slice_value =
dynamic_cast<SliceValue*>(subscript_sv.get())) {
sliceable = emitSliceOp(
loc,
sliceable,
insert_value_for_dim(dims[i]),
slice_value->start(),
slice_value->stop(),
slice_value->step());
}
continue;
}
auto expr = exprs[i].value();
if (expr->type()->isSubtypeOf(NoneType::get())) {
sliceable =
emitUnsqueeze(loc, sliceable, insert_value_for_dim(dims[i]));
} else if (expr->type() == IntType::get()) {
sliceable =
emitSelect(loc, sliceable, insert_value_for_dim(dims[i]), expr);
} else if (expr->type()->isSubtypeOf(OptionalType::ofTensor())) {
tensor_indices.resize(dims[i] + 1);
tensor_indices[dims[i]] = expr;
} else {
TORCH_INTERNAL_ASSERT(
false, "Trying to process index type that we don't support.");
}
}
// at::index takes in a List[Optional[Tensor]] where some dims can be None.
// create None node with optional tensor output type and pass to at::index.
for (auto& index : tensor_indices) {
if (index == nullptr) {
index = graph->insertNode(graph->createNone())->output();
}
}
return std::make_pair(sliceable, tensor_indices);
}
// Desugars multidim slicing into slice/select/index/unsqueeze calls.
//
// XXX: Errors in user code are not elegantly reported.
// Let's say someone were to do the following:
// @torch.jit.script
// def fn(x):
// return x[0, 1]
// fn(torch.randn(5))
// Because we desugar this into two aten::select ops, the error message
// complains about aten::select failing rather than there "not being
// enough dimensions to index".
//
// The strategy is to slice and select the tensor for int and slices first
// in one pass and then apply at::index on the result of the
// slicing/selecting. Call the tensor after we've applied slice / select the
// `sliced`. tensor_indices should have the same size as sliced.dim():
// - tensor_indices[i] = NULL if we should not index `sliced` at dim i
// - tensor_indices[i] = t if we should index `sliced` at dim i with tensor t.
Value* emitMultidimSlicing(
const SourceRange& loc,
Value* sliceable,
const List<Expr>& subscript_exprs) {
if (!sliceable->type()->isSubtypeOf(TensorType::get())) {
throw ErrorReport(loc)
<< "Unsupported operation: attempted to use multidimensional "
<< "indexing on a non-tensor type";
}
std::vector<Value*> tensor_indices;
std::tie(sliceable, tensor_indices) =
emitIntAndSliceIndexing(loc, sliceable, subscript_exprs);
if (tensor_indices.empty()) {
// XXX: Might need to at::alias this when we support mutability
return sliceable;
}
return emitIndex(loc, sliceable, tensor_indices);
}
// Desugars slice syntactic sugar tensor[begin:end] -> tensor.slice(begin,
// end).
Value* emitBasicSlice(
const SourceRange& loc,
Value* sliceable,
const List<Expr>& subscript_exprs) {
AT_ASSERT(subscript_exprs.size() == 1);
AT_ASSERT(subscript_exprs[0].kind() == TK_SLICE_EXPR);
auto slice_exp = SliceExpr(subscript_exprs[0]);
Value* maybe_dim = nullptr;
if (sliceable->type()->isSubtypeOf(TensorType::get())) {
// If the sliceable object is a tensor, specify a default dimension
maybe_dim = graph->insertConstant(0, loc);
}
return emitSlice(loc, sliceable, maybe_dim, slice_exp);
}
int64_t getAdjTupleIndex(
const SourceRange& loc,
const TupleTypePtr& tuple_type,
int64_t input_index,
bool allow_out_of_bounds) {
// set index to be positive to simplify logic in runtime
int64_t adj_index = input_index;
int64_t tuple_len = tuple_type->elements().size();
if (input_index < 0) {
adj_index = tuple_len + input_index;
}
if (!allow_out_of_bounds && (adj_index >= tuple_len || adj_index < 0)) {
throw ErrorReport(loc) << "Tuple index out of range. Tuple is length "
<< tuple_len << " and index is " << input_index;
}
return adj_index;
}
// When a list is marked const in a module, it gets converted to a tuple.
// The result is indexing into a Tuple which contains only one type
// is quite common. since indexing will likely be done in a for loop,
// we do not want to invoke the overhead of converting the tuple to a list
// each iter.
Value* emitTupleIndex(
const SourceRange& loc,
Value* tuple_val,
Value* idx_val) {
auto tuple_typ = tuple_val->type()->cast<TupleType>();
auto elems = tuple_typ->elements();
TypePtr output_type;
if (idx_val->type() != IntType::get()) {
throw ErrorReport(loc) << "tuple index must be an integer";
}
auto idx = toIValue(idx_val);
if (!idx) {
if (elems.size() == 0 ||
!convertibleToList(tuple_typ, ListType::create(elems[0]))) {
throw ErrorReport(loc)
<< "Cannot index into a " << tuple_typ->repr_str()
<< " with a non-integer literal because we cannot resolve the output type";
}
output_type = elems[0];
} else {
auto adj_index = getAdjTupleIndex(
loc, tuple_typ, idx->toInt(), /*allow_out_of_bounds*/ false);
output_type = elems[adj_index];
}
return graph
->insertNode(graph->createTupleIndex(tuple_val, idx_val, output_type))
->output();
}
int64_t getSliceInd(Value* idx_val, const SourceRange& loc) {
auto ivalue = toIValue(idx_val);
if (ivalue && ivalue->isInt()) {
return ivalue->to<int64_t>();
} else {
throw ErrorReport(loc) << "tuple slice indices must be integer constants";
}
}
Value* emitTupleSlice(
const SourceRange& loc,
const NamedValue& tuple_val,
const NamedValue& beg_val,
const at::optional<NamedValue>& end_val) {
auto tuple_type = tuple_val.value(*graph)->type()->expect<TupleType>();
int64_t beg = getAdjTupleIndex(
loc,
tuple_type,
getSliceInd(beg_val.value(*graph), loc),
/*allow_out_of_bounds*/ true);
int64_t end;
int64_t tuple_len = tuple_type->elements().size();
if (end_val) {
end = getAdjTupleIndex(
loc, tuple_type, getSliceInd(end_val->value(*graph), loc), true);
} else {
end = tuple_len;
}
// slicing does not throw out of bounds errors
end = std::min(std::max((int64_t)0, end), tuple_len);
beg = std::min(std::max((int64_t)0, beg), tuple_len);
return graph
->insertNode(graph->createTupleSlice(tuple_val.value(*graph), beg, end))
->output();
}
std::shared_ptr<SugaredValue> emitSubscript(const Subscript& subscript) {
const SugaredValuePtr sv = emitSugaredExpr(subscript.value(), 1);
const List<Expr>& subscript_exprs = subscript.subscript_exprs();
const SourceRange& range = subscript.range();
const SourceRange& val_range = subscript.value().range();
if (subscript_exprs.size() != 1) {
return std::make_shared<SimpleValue>(emitMultidimSlicing(
range, sv->asValue(val_range, method), subscript_exprs));
}
if (subscript_exprs[0].kind() == TK_SLICE_EXPR) {
// TODO @wconstab refactor using Symbol instead of string compare
if (sv->kind() == "module") {
// Slicing isn't currently implemented for Sequential/ModuleList,
// but is implemented for Tuples, so a quick workaround is to
// convert to a tuple of Modules for slicing support.
auto s_tuple_val =
sv->asTupleValue(val_range, method)->asValue(val_range, method);
const SliceExpr& slice = SliceExpr(subscript_exprs[0]);
auto begin =
NamedValue(val_range, "begin", emitExpr(Expr(slice.startOr(0))));
if (slice.end().present()) {
auto end =
NamedValue(val_range, "end", emitExpr(Expr(slice.end().get())));
auto tupleSliceValue =
emitTupleSlice(val_range, s_tuple_val, begin, end);
return std::make_shared<SimpleValue>(tupleSliceValue);
} else {
auto tupleSliceValue =
emitTupleSlice(val_range, s_tuple_val, begin, c10::nullopt);
return std::make_shared<SimpleValue>(tupleSliceValue);
}
} else {
return std::make_shared<SimpleValue>(emitBasicSlice(
range, sv->asValue(val_range, method), subscript_exprs));
}
} else {
AT_ASSERT(subscript_exprs.size() == 1);
Value* sliceable = sv->asValue(val_range, method);
// In case of subscript expression being a Python Slice object.
auto subscript_sv = emitSugaredExpr(subscript_exprs[0], 1);
if (const auto slice_value =
dynamic_cast<SliceValue*>(subscript_sv.get())) {
Value* dim = nullptr;
// aten::slice.tensor needs an additional `dim` input.
if (sliceable->type()->isSubtypeOf(TensorType::get())) {
dim = method.graph()->insertConstant(0, val_range);
}
Value* sliced = emitSliceOp(
val_range,
sliceable,
dim,
slice_value->start(),
slice_value->stop(),
slice_value->step());
return std::make_shared<SimpleValue>(sliced);
}
// subscript is not a slice object, then it must be convertible to
// a normal value.
// Desugars gather syntactic sugar foo[i]
Value* idx = subscript_sv->asValue(val_range, method);
if (sliceable->type()->cast<TupleType>()) {
return std::make_shared<SimpleValue>(
emitTupleIndex(range, sv->asValue(val_range, method), idx));
} else if (sliceable->type()->isSubtypeOf(TensorType::get())) {
return std::make_shared<SimpleValue>(
emitMultidimSlicing(range, sliceable, subscript_exprs));
} else {
return sv->getitem(range, method, idx);
}
}
}
};
struct FunctionResolver : public Resolver {
explicit FunctionResolver(
Resolver* otherResolver,
const std::unordered_map<std::string, Function*>& functionTable)
: otherResolver_(otherResolver), functionTable_(functionTable) {}
std::shared_ptr<SugaredValue> resolveValue(
const std::string& name,
Function& m,
const SourceRange& loc) override {
auto it = functionTable_.find(name);
if (it != functionTable_.end()) {
return std::make_shared<FunctionValue>(it->second);
}
return otherResolver_->resolveValue(name, m, loc);
}
TypePtr resolveType(const std::string& name, const SourceRange& loc)
override {
return otherResolver_->resolveType(name, loc);
}
private:
Resolver* otherResolver_;
const std::unordered_map<std::string, Function*>& functionTable_;
};
CompilationUnit::CompilationUnit(const std::string& source)
: CompilationUnit() {
// calles the define with native resolver to generate the graph for functions
define(c10::nullopt, source, nativeResolver(), nullptr);
}
// This pair represents a pair of functions (getter and setter) obtained from
// compiling a Property.
struct CompilationUnit::PropertyPair
: public std::pair<std::unique_ptr<Function>, std::unique_ptr<Function>> {
PropertyPair(
std::unique_ptr<Function> getter,
std::unique_ptr<Function> setter) {
TORCH_INTERNAL_ASSERT(getter, "Property pair must have defined getter")
this->first = std::move(getter);
this->second = std::move(setter);
}
std::unique_ptr<Function>& getGetter() {
return this->first;
}
std::unique_ptr<Function>& getSetter() {
return this->second;
}
};
CompilationUnit::PropertyPair CompilationUnit::define_property(
const c10::optional<c10::QualifiedName>& prefix,
const Property& prop,
const ResolverPtr& resolver,
const Self* self,
const std::unordered_map<std::string, Function*>& function_table,
bool shouldMangle) const {
// self must be defined because properties are features of classes and
// modules.
TORCH_INTERNAL_ASSERT(self);
// Compile the getter function.
std::unique_ptr<Function> getter_fn = define(
prefix, prop.getter(), resolver, self, function_table, shouldMangle);
// Compile the setter function if it exists.
std::unique_ptr<Function> setter_fn = nullptr;
if (prop.setter().present()) {
setter_fn = define(
prefix,
prop.setter().get(),
resolver,
self,
function_table,
shouldMangle);
}
// Add the property to the class type definition.
self->getClassType()->addProperty(
prop.name().name(), getter_fn.get(), setter_fn.get());
return PropertyPair(std::move(getter_fn), std::move(setter_fn));
}
std::unique_ptr<Function> CompilationUnit::define(
const c10::optional<QualifiedName>& prefix,
const Def& def,
const ResolverPtr& resolver,
const Self* self,
const std::unordered_map<std::string, Function*>& function_table,
bool shouldMangle) const {
TORCH_INTERNAL_ASSERT(resolver);
auto _resolver = resolver;
if (!self) {
// if self is defined, then these are methods and do not go into the
// global namespace otherwise, they get defined together so we add them to
// the function table so the methods can see each other
_resolver =
std::make_shared<FunctionResolver>(resolver.get(), function_table);
}
auto creator = [def, _resolver, self](Function& method) {
// Store the function name so that it can be referenced if there is an error
// while compiling this function
std::string call_name = method.qualname().name();
if (self) {
auto atoms = method.qualname().atoms();
// There should be at least a ClassName.method_name
TORCH_INTERNAL_ASSERT(atoms.size() >= 2);
call_name = atoms.at(atoms.size() - 2) + "." + atoms.at(atoms.size() - 1);
}
ErrorReport::CallStack call(call_name, def.range());
to_ir(def, _resolver, self, method);
};
auto name = prefix ? QualifiedName(*prefix, def.name().name())
: QualifiedName(def.name().name());
if (shouldMangle) {
// If `shouldMangle` is set, we should generate a unique name for this
// function if there is already an existing one.
if (auto fn = find_function(name)) {
name = mangle(name);
}
}
auto fn = torch::make_unique<GraphFunction>(
std::move(name), std::make_shared<Graph>(), creator);
if (self) {
// Register this as a method on `self`'s type
self->getClassType()->addMethod(fn.get());
}
return fn;
}
std::vector<Function*> CompilationUnit::define(
const c10::optional<c10::QualifiedName>& prefix,
const std::vector<Property>& properties,
const std::vector<ResolverPtr>& propResolvers,
const std::vector<Def>& definitions,
const std::vector<ResolverPtr>& defResolvers,
const Self* self,
bool shouldMangle) {
TORCH_INTERNAL_ASSERT(definitions.size() == defResolvers.size());
TORCH_INTERNAL_ASSERT(properties.size() == propResolvers.size());
std::vector<Function*> functions;
std::unordered_map<std::string, Function*> function_table;
// Records fn in function_table, functions and with register_function.
// This is done several times below, so this lambda helps avoid repeating
// code.
auto record_function = [&](std::unique_ptr<Function> fn) {
function_table[fn->name()] = fn.get();
functions.emplace_back(fn.get());
this->register_function(std::move(fn));
};
for (size_t i = 0; i < properties.size(); i++) {
PropertyPair property_fns = define_property(
prefix,
properties[i],
propResolvers[i],
self,
function_table,
shouldMangle);
auto& getter_fn = property_fns.getGetter();
auto& setter_fn = property_fns.getSetter();
record_function(std::move(getter_fn));
if (setter_fn) {
record_function(std::move(setter_fn));
}
}
for (size_t i = 0; i < definitions.size(); i++) {
auto fn = define(
prefix,
definitions[i],
defResolvers[i],
self,
function_table,
shouldMangle);
record_function(std::move(fn));
}
// We need to compile `__init__` first, since it can determine what attributes
// are available to other methods. So reorder the definitions accordingly.
for (auto& kv : function_table) {
if (kv.first == "__init__") {
kv.second->ensure_defined();
}
}
for (Function* function : functions) {
function->ensure_defined();
}
return functions;
}
std::vector<Function*> CompilationUnit::define(
const c10::optional<QualifiedName>& prefix,
const std::string& source,
const ResolverPtr& resolver,
const Self* self) {
Parser p(std::make_shared<Source>(source, "<string>", 1));
std::vector<Def> definitions;
std::vector<ResolverPtr> resolvers;
while (p.lexer().cur().kind != TK_EOF) {
auto def = Def(p.parseFunction(/*is_method=*/bool(self)));
definitions.push_back(def);
resolvers.push_back(resolver);
}
return define(
prefix,
/*properties=*/{},
/*propResolvers=*/{},
definitions,
resolvers,
self);
}
void runCleanupPasses(std::shared_ptr<Graph>& to_clean) {
liftClosures(to_clean);
inlineForkedClosures(to_clean);
if (getInlineEverythingMode()) {
Inline(*to_clean);
}
// remove any uses of tuples that we inserted that are not needed
LowerSimpleTuples(to_clean);
// full constant propagation runs ops with mutable inputs if it can
// prove that the inputs are not mutated anywhere in the graph.
// if a mutating node is removed in the graph (e.g. constant prop inlined a
// a constant if) then the next time constant prop is run it might be able
// to run nodes it was not able to previously, and the graph may change
// (jitter) So we run only constant prop w immutable types here bc
// successive runs of immutable constant prop does not change the graph
ConstantPropagationImmutableTypes(to_clean);
// Constant Pooling pass must be after ConstantPropogation, which can create
// new constants that needs to be pooled.
ConstantPooling(to_clean);
// For jitter
CanonicalizeOutputs(to_clean);
}
// we consider _N where N is a number, to be a non-meaningful name
// and do not record it as a unique name. This allows python printing to
// be able to export and import more consistently named graphs
bool meaningfulName(const std::string& name) {
if (name.size() == 0)
return false;
if (name[0] == '$')
return false;
if (name[0] != '_')
return true;
for (size_t i = 1; i < name.size(); ++i) {
if (!isdigit(name[i]))
return true;
}
return false;
}
void CompilationUnit::define_interface(
const c10::QualifiedName& qualifiedName,
const ClassDef& classDef,
ResolverPtr rcb,
bool is_module) {
ScriptTypeParser typeParser(std::move(rcb));
InterfaceTypePtr iface =
InterfaceType::create(c10::QualifiedName(qualifiedName), is_module);
for (const Stmt& stmt : classDef.body()) {
if (stmt.kind() != TK_DEF) {
throw ErrorReport(stmt)
<< "interface declartions can only contain method definitions";
}
auto method_def = Def(stmt);
if (!method_def.decl().return_type().present()) {
throw ErrorReport(method_def)
<< "interface declarations must have a return type annotated.";
}
FunctionSchema schema =
typeParser.parseSchemaFromDef(method_def, /* skip_self*/ true);
// need to add self as the first because we skipped it
std::vector<Argument> arguments;
arguments.emplace_back(
Argument(method_def.decl().params()[0].ident().name(), iface));
arguments.insert(
arguments.end(), schema.arguments().begin(), schema.arguments().end());
iface->addMethod(schema.cloneWithArguments(std::move(arguments)));
if (method_def.statements().size() != 1 ||
method_def.statements()[0].kind() != TK_PASS) {
throw ErrorReport(method_def.range())
<< "interfaces declarations should only contain a single 'pass' statement.";
}
}
this->register_type(iface);
}
} // namespace jit
} // namespace torch
|