File: ir_emitter.cpp

package info (click to toggle)
pytorch 1.7.1-7
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 80,340 kB
  • sloc: cpp: 670,830; python: 343,991; ansic: 67,845; asm: 5,503; sh: 2,924; java: 2,888; xml: 266; makefile: 244; ruby: 148; yacc: 144; objc: 51; lex: 44
file content (4149 lines) | stat: -rw-r--r-- 152,634 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
#include <torch/csrc/jit/frontend/ir_emitter.h>
#include <c10/util/Exception.h>
#include <c10/util/StringUtil.h>
#include <torch/csrc/jit/api/function_impl.h>
#include <torch/csrc/jit/frontend/canonicalize_modified_loop.h>
#include <torch/csrc/jit/frontend/convert_to_ssa.h>
#include <torch/csrc/jit/frontend/parser.h>
#include <torch/csrc/jit/frontend/schema_matching.h>
#include <torch/csrc/jit/frontend/script_type_parser.h>
#include <torch/csrc/jit/ir/ir.h>
#include <torch/csrc/jit/passes/canonicalize.h>
#include <torch/csrc/jit/passes/constant_pooling.h>
#include <torch/csrc/jit/passes/constant_propagation.h>
#include <torch/csrc/jit/passes/dead_code_elimination.h>
#include <torch/csrc/jit/passes/inline_forked_closures.h>
#include <torch/csrc/jit/passes/inliner.h>
#include <torch/csrc/jit/passes/lift_closures.h>
#include <torch/csrc/jit/passes/lower_tuples.h>
#include <torch/csrc/jit/passes/normalize_ops.h>
#include <torch/csrc/jit/runtime/interpreter.h>
#include <torch/csrc/jit/runtime/operator.h>
#include <torch/csrc/jit/testing/hooks_for_testing.h>

#include <torch/csrc/jit/ir/constants.h>

#include <c10/util/Optional.h>

#include <atomic>
#include <climits>
#include <set>
#include <stack>

namespace torch {
namespace jit {

using FunctionTable = std::unordered_map<std::string, Function&>;
using ValueTable = std::unordered_map<std::string, SugaredValuePtr>;
using TypeTable = std::unordered_map<std::string, TypePtr>;
using AttributeMap = std::unordered_map<std::string, Const>;
using ListAttributeMap = std::unordered_map<std::string, std::vector<Const>>;

struct Refinement {
  Refinement(std::string identifier, TypePtr type)
      : identifier_(std::move(identifier)), type_(type) {}
  const std::string& identifier() const {
    return identifier_;
  }
  TypePtr type() const {
    return type_;
  }

 private:
  std::string identifier_;
  TypePtr type_;
};

struct RefinementSet {
  // When a comparison like x is None is made, we associate type refinements
  // with its true value and its false value. If a boolean that has refinements
  // associated with it is used in a conditional of an if statement, the true
  // and false refinements are inserted into the corresponding blocks
  using Refinements = std::vector<Refinement>;

  RefinementSet(Refinements true_refinements, Refinements false_refinements)
      : true_refinements_(std::move(true_refinements)),
        false_refinements_(std::move(false_refinements)) {}
  RefinementSet(Refinement single) : RefinementSet({std::move(single)}, {}) {}
  RefinementSet(Refinement single_true, Refinement single_false)
      : RefinementSet(
            Refinements({std::move(single_true)}),
            Refinements({std::move(single_false)})) {}
  RefinementSet() {} // empty
  RefinementSet And(const RefinementSet& rhs) const {
    // if the result of an AND is true, both a & b had to be true,
    // so we take the union of a.true_refinements and b.true_refinements.
    // if the result is false, either a or b could have been false,
    // so we take their intersection.
    return RefinementSet(
        unionSet(true_refinements_, rhs.true_refinements_),
        intersectSet(false_refinements_, rhs.false_refinements_));
  }
  RefinementSet Or(const RefinementSet& rhs) const {
    // if the result of an OR is true, either a & b could have been true,
    // so we take the intersection of a.true_refinements & b.true_refinements.
    // if the result is false, both a and b had to be false,
    // so we take their union.
    return RefinementSet(
        intersectSet(true_refinements_, rhs.true_refinements_),
        unionSet(false_refinements_, rhs.false_refinements_));
  }

  RefinementSet Not() const {
    return RefinementSet(false_refinements_, true_refinements_);
  }
  const std::vector<Refinement> activeRefinements() const {
    return true_refinements_;
  }

 private:
  static bool sameVar(const Refinement& a, const Refinement& b) {
    return a.identifier() == b.identifier();
  }
  static Refinements unionSet(const Refinements& a, const Refinements& b) {
    Refinements result = a;
    for (const Refinement& r : b) {
      auto it =
          std::find_if(result.begin(), result.end(), [&](const Refinement& e) {
            return e.identifier() == r.identifier();
          });
      if (it == result.end()) {
        result.push_back(r);
      } else if (*it->type() != *r.type()) {
        // we only keep refinements when they exactly match one
        // refinement type, for instance, we do not attempt to refine:
        // isinstance(x, float) and isinstance(x, int)
        result.erase(it);
      }
    }
    return result;
  }
  static Refinements intersectSet(const Refinements& a, const Refinements& b) {
    Refinements result;
    for (const Refinement& r : a) {
      auto it = std::find_if(b.begin(), b.end(), [&](const Refinement& e) {
        return e.identifier() == r.identifier();
      });
      if (it != b.end() && r.type() == it->type()) {
        result.push_back(r);
      }
    }
    return result;
  }

  Refinements true_refinements_;
  Refinements false_refinements_;
};

struct CondValue {
  CondValue(
      Value* value,
      RefinementSet refinements,
      c10::optional<bool> static_if)
      : value_(value),
        refinements_(std::move(refinements)),
        static_if_(static_if) {}
  CondValue(
      Graph& g,
      const SourceRange& loc,
      bool static_value,
      RefinementSet refinements)
      : value_(g.insertConstant(static_value, loc)),
        refinements_(std::move(refinements)),
        static_if_(static_value) {}
  Value* value() const {
    return value_;
  }
  const RefinementSet& refinements() const {
    return refinements_;
  }
  c10::optional<bool> staticIf() const {
    return static_if_;
  }

 private:
  Value* value_;
  RefinementSet refinements_;
  c10::optional<bool>
      static_if_; // certain expression cause us to emit a static if statement
                  // this value is present if this is the case.
                  // this is not equivalent to value_ being a constant
                  // it is possible for value_ to be constant but for
                  // the expression that produced it to not trigger the
                  // static if behavior. e.g. use of a variable assigned
                  // to a constant
};

enum NoneStatus { ALWAYS, MAYBE, NEVER };
NoneStatus canBeNone(Value* v) {
  if (v->node()->mustBeNone()) {
    return ALWAYS;
  }
  if (v->type()->kind() == OptionalType::Kind) {
    return MAYBE;
  }
  return NEVER;
}

static Value* asSimple(const SugaredValuePtr& value) {
  if (SimpleValue* sv = dynamic_cast<SimpleValue*>(value.get())) {
    return sv->getValue();
  }
  return nullptr;
}

static std::shared_ptr<MagicMethod> makeMagic(
    const std::string& name,
    SugaredValuePtr base) {
  return std::make_shared<MagicMethod>(name, base);
}

// Auxiliary data structure for desugaring variable binding into our always
// explicitly scoped language as we descend down nested control structures in
// the frontend (which themselves don't introduce scopes)
//
// The Environment keeps track of two tables, one for values which are not first
// class and a type table for values which are. When a first class value
// is set in the environment, we emit a prim::Store which sets the
// name of the variable to appropriate type, and when a first-class value is
// referenced we emit a prim::Load that generates a value of the appropriate
// type.
//
// a = 1
// print(a)
// becomes:
// = prim::Store[name="a"](%a.1)
// %a : int = prim::Load[name="a"]()
// prim::Print(%a)

struct Environment {
  Environment(
      Function& method,
      ResolverPtr resolver,
      Block* b,
      std::shared_ptr<Environment> next = nullptr)
      : method(method),
        resolver(std::move(resolver)),
        b(b),
        next(std::move(next)) {}

  Function& method;
  ResolverPtr resolver;
  std::unordered_map<std::string, std::function<std::string()>> error_messages;
  Block* b;

  std::shared_ptr<Environment> next;

  // set type error in the lowest environment. if the variable is used after an
  // error has been set, then we will use the more informative error message
  void setVariableTypeError(
      const std::string& name,
      std::function<std::string()> msg) {
    auto runner = this;
    while (runner->next) {
      runner = runner->next.get();
    }
    runner->error_messages[name] = msg;
  }

  // see if type error has been set for a variable
  c10::optional<std::string> findVariableTypeError(const std::string& name) {
    auto runner = this;
    while (runner->next) {
      runner = runner->next.get();
    }
    auto msg = runner->error_messages.find(name);
    if (msg != runner->error_messages.end()) {
      return msg->second();
    } else {
      return c10::nullopt;
    }
  }

  SugaredValuePtr insertLoad(const std::string& name, const TypePtr& type) {
    auto g = b->owningGraph();
    auto load = g->insertNode(g->createLoad(name, type));
    if (meaningfulName(name)) {
      load->output()->setDebugName(name);
    }
    return std::make_shared<SimpleValue>(load->output());
  }

  // note: type is not always the same as v->type(), e.g.
  // type: Optional[Tensor]
  // v->type(): Tensor
  void insertStore(
      const std::string& name,
      const SourceRange& loc,
      Value* v,
      TypePtr type) {
    auto g = b->owningGraph();
    g->insertNode(g->createStore(name, v))->setSourceRange(loc);
    type_table[name] = type;
  }

  SugaredValuePtr findInThisFrame(const std::string& name) {
    auto it = value_table.find(name);
    if (it != value_table.end()) {
      return it->second;
    }
    auto it2 = type_table.find(name);
    if (it2 != type_table.end()) {
      return insertLoad(name, it2->second);
    }
    return nullptr;
  }

  SugaredValuePtr findInParentFrame(const std::string& name) {
    return next ? next->findInAnyFrame(name) : nullptr;
  }

  void setType(const std::string& name, TypePtr type) {
    type_table[name] = std::move(type);
  }

  SugaredValuePtr findInAnyFrame(const std::string& name) {
    for (auto runner = this; runner; runner = runner->next.get()) {
      if (auto r = runner->findInThisFrame(name)) {
        return r;
      }
    }
    return nullptr;
  }

  Block* block() {
    return b;
  }

  void setVar(const SourceRange& loc, const std::string& name, Value* value) {
    setSugaredVar(
        loc,
        name,
        std::make_shared<SimpleValue>(value),
        /*annotated_type=*/nullptr);
  }

  void setSugaredVar(
      const SourceRange& loc,
      const std::string& name,
      SugaredValuePtr value,
      TypePtr annotated_type) {
    Value* as_simple_value = asSimple(value);
    if (as_simple_value && !as_simple_value->hasDebugName() &&
        meaningfulName(name) &&
        // note: if the value wasn't defined in this block, we might be giving a
        // name only used inside this block to a value outside of this. this is
        // not normally helpful for debugging and causes import/export jitter.
        as_simple_value->node()->owningBlock() == block()) {
      as_simple_value->setDebugName(name);
    }
    // prevent re-assignment involving any sugared values
    // any reassignment like:
    // a = ...
    // while ...
    //   a = ..
    // requires 'a' to be first-class in the graph since its value depends on
    // control flow
    if (auto parent = findInParentFrame(name)) {
      if (annotated_type) {
        throw ErrorReport(loc)
            << "Attempting to declare and annotate the type of variable '"
            << name << "' but it is already defined in an outer block";
      }
      if (!as_simple_value) {
        throw ErrorReport(loc)
            << "Cannot re-assign '" << name << "' to a value of type "
            << value->kind() << " because " << name
            << " is not a first-class value.  Only reassignments to first-class values are allowed";
      }
      Value* simple_parent = asSimple(parent);
      if (!simple_parent) {
        throw ErrorReport(loc)
            << "Cannot re-assign '" << name << "' because it has type "
            << value->kind() << " and " << name
            << " is not a first-class value.  Only reassignments to first-class values are allowed";
      }

      auto parent_type = unshapedType(simple_parent->type());
      as_simple_value = tryConvertToType(
          loc,
          *b->owningGraph(),
          parent_type,
          as_simple_value,
          /*allow_conversions=*/true);
      std::stringstream why_not;
      if (!as_simple_value->type()->isSubtypeOfExt(parent_type, &why_not)) {
        auto error = ErrorReport(loc);
        error << "Variable '" << name << "' previously has type "
              << simple_parent->type()->repr_str()
              << " but is now being assigned to a value of type "
              << as_simple_value->type()->repr_str();

        // Special-cased error msg if we're trying to assign to a tensor list.
        if (simple_parent->type()->kind() == TypeKind::ListType &&
            as_simple_value->type()->kind() == TypeKind::ListType) {
          error << "\nEmpty lists default to List[Tensor]. Add a variable "
                   "annotation to the assignment to create an empty list "
                   "of another type (torch.jit.annotate(List[T, []]) where T "
                   "is the type of elements in the list for Python 2)";
        }
        error << "\n" << why_not.str();
        throw error;
      }
    }
    if (as_simple_value) {
      if (!annotated_type) {
        annotated_type = as_simple_value->type();
      }
      if (!as_simple_value->type()->isSubtypeOf(annotated_type)) {
        throw ErrorReport(loc)
            << "Variable '" << name << "' is annotated with type "
            << annotated_type->repr_str()
            << " but is being assigned to a value of type "
            << as_simple_value->type()->repr_str();
      }
      insertStore(name, loc, std::move(as_simple_value), annotated_type);
    } else {
      value_table[name] = std::move(value);
    }
  }

  SugaredValuePtr getSugaredVar(const Ident& ident, bool required = true) {
    return getSugaredVar(ident.name(), ident.range());
  }
  Value* getVar(const Ident& ident) {
    return getSugaredVar(ident)->asValue(ident.range(), method);
  }

  void throwVarNotFoundError(
      const std::string& ident,
      const SourceRange& range) {
    // check if this value was not emitted in an if statement because of a
    // type mismatch. if it was, then we print a more informative error msg
    if (auto msg = findVariableTypeError(ident)) {
      throw ErrorReport(range) << *msg << "and was used here";
    }
    throw ErrorReport(range) << "undefined value " << ident;
  }

  SugaredValuePtr getSugaredVar(
      const std::string& ident,
      const SourceRange& range,
      bool required = true) {
    auto retval = findInAnyFrame(ident);

    if (!retval) {
      static std::unordered_map<std::string, SugaredValuePtr> globals = {
          {"print", std::make_shared<PrintValue>()},
          {"tuple", SpecialFormValue::create(prim::TupleConstruct)},
          {"float",
           makeMagic(
               "__float__",
               std::make_shared<CastValue>(FloatType::get(), aten::Float))},
          {"int",
           makeMagic(
               "__int__",
               std::make_shared<CastValue>(IntType::get(), aten::Int))},
          {"bool",
           makeMagic(
               "__bool__",
               std::make_shared<CastValue>(BoolType::get(), aten::Bool))},
          {"str",
           makeMagic(
               "__str__",
               std::make_shared<CastValue>(StringType::get(), aten::str))},
          {"getattr", SpecialFormValue::create(prim::GetAttr)},
          {"hasattr", SpecialFormValue::create(prim::HasAttr)},
          {"isinstance", SpecialFormValue::create(prim::isinstance)},
          // todo(zach): remove when we can correctly export torch.full via ONNX
          // or we have implicit conversion that can convert numbers to tensors
          {"_to_tensor",
           std::make_shared<CastValue>(TensorType::get(), prim::NumToTensor)},
          {"len",
           makeMagic(
               "__len__",
               std::make_shared<BuiltinFunction>(aten::len, at::nullopt))},
          {"hex",
           makeMagic(
               "__hex__",
               std::make_shared<BuiltinFunction>(aten::hex, at::nullopt))},
          {"oct",
           makeMagic(
               "__oct__",
               std::make_shared<BuiltinFunction>(aten::oct, at::nullopt))},
          {"round",
           makeMagic(
               "__round__",
               std::make_shared<BuiltinFunction>(aten::round, at::nullopt))},
          {"hash", std::make_shared<BuiltinFunction>(aten::hash, at::nullopt)},
          {"id", std::make_shared<BuiltinFunction>(prim::id, at::nullopt)},
          {"min", std::make_shared<BuiltinFunction>(prim::min, at::nullopt)},
          {"max", std::make_shared<BuiltinFunction>(prim::max, at::nullopt)},
          {"abs", std::make_shared<BuiltinFunction>(prim::abs, at::nullopt)},
          {"all", std::make_shared<BuiltinFunction>(aten::all, at::nullopt)},
          {"divmod",
           std::make_shared<BuiltinFunction>(aten::divmod, at::nullopt)},
          {"list", std::make_shared<BuiltinFunction>(aten::list, at::nullopt)},
          {"ord", std::make_shared<BuiltinFunction>(aten::ord, at::nullopt)},
          {"chr", std::make_shared<BuiltinFunction>(aten::chr, at::nullopt)},
          {"bin", std::make_shared<BuiltinFunction>(aten::bin, at::nullopt)},
          {"range", SpecialFormValue::create(prim::range)},
          {"zip", SpecialFormValue::create(prim::zip)},
          {"enumerate", SpecialFormValue::create(prim::enumerate)},
          {"rangelist",
           std::make_shared<BuiltinFunction>(prim::rangelist, at::nullopt)},
          {"sorted",
           std::make_shared<BuiltinFunction>(aten::sorted, at::nullopt)},
          // Only AssertionError is bound so that we can use it from emitAssert,
          // all other exceptions should be resolved at the Python level
          {"AssertionError",
           std::make_shared<ExceptionValue>("AssertionError")},
      };
      auto it = globals.find(ident);
      if (it != globals.end()) {
        retval = it->second;
      }
    }

    if (!retval) {
      if (auto type = resolver->resolveType(ident, range)) {
        if (auto tuple_type = type->cast<TupleType>()) {
          retval = std::make_shared<NamedTupleConstructor>(tuple_type);
        }
      }
    }

    if (!retval) {
      retval = resolver->resolveValue(ident, method, range);
    }

    if (!retval) {
      if (auto type = resolver->resolveType(ident, range)) {
        if (auto class_type = type->cast<ClassType>()) {
          retval = std::make_shared<ClassValue>(class_type);
        }
      }
    }

    if (!retval && required) {
      throwVarNotFoundError(ident, range);
    }
    return retval;
  }

  Value* getVar(const std::string& ident, const SourceRange& range) {
    return getSugaredVar(ident, range)->asValue(range, method);
  }

  void removeVar(const Ident& ident, bool check_if_removed = false) {
    bool removed = false;

    for (auto runner = this; runner; runner = runner->next.get()) {
      auto a = runner->value_table.erase(ident.name());
      auto b = runner->type_table.erase(ident.name());
      removed = a || b;
    }

    if (check_if_removed && !removed) {
      throwVarNotFoundError(ident.name(), ident.range());
    }
  }

  std::vector<std::string> definedVariables() {
    std::vector<std::string> result;
    for (auto& kv : type_table) {
      result.push_back(kv.first);
    }
    return result;
  }

 private:
  TypeTable type_table;
  ValueTable value_table;
};

template <class T>
static Value* materializeConstant(
    T val,
    Graph& graph,
    const SourceRange& r,
    std::unordered_map<T, Value*>& map) {
  auto existing_constant = map.find(val);
  if (existing_constant != map.end()) {
    return existing_constant->second;
  }

  WithInsertPoint guard(graph.block()->nodes().front());
  auto new_constant = graph.insertConstant(val, r);
  map[val] = new_constant;

  return new_constant;
}

inline bool isSupportedListElementType(const TypePtr& type) {
  return type->isSubtypeOf(TensorType::get()) ||
      type->isSubtypeOf(NumberType::get());
}

// Information for each def being emitted.
// Defs can be nested to support closures so we need a stack of this information
// Currently records information about the functions return type.
struct DefContext {
  TypePtr declared_return_type_; // nullptr if not annotated
  TypePtr merged_return_type_; // nullptr if a Return has not been seen yet
};

enum class LoopStatus { NOT_IN_LOOP, IN_LOOP, IN_UNROLLED_LOOP };

struct WithLoopStatus {
  WithLoopStatus(LoopStatus* prev, LoopStatus new_status) {
    prev_value_ = *prev;
    prev_ptr_ = prev;
    *prev = new_status;
  }
  ~WithLoopStatus() {
    *prev_ptr_ = prev_value_;
  }

 private:
  LoopStatus* prev_ptr_;
  LoopStatus prev_value_;
};

struct to_ir {
  to_ir(
      const Def& def,
      ResolverPtr resolver_,
      const Self* self,
      Function& method) // method being constructed
      : method(method),
        graph(method.graph()),
        resolver(std::move(resolver_)),
        typeParser_(resolver),
        environment_stack(nullptr) {
    AT_ASSERT(resolver);
    pushFrame(graph->block(), /*starts_def=*/true);

    // Type annotations exclude explicitly typing the "self" parameter, so in
    // the case that this is a method with self we expect one fewer parameter
    // annotation than the number of parameters this Def takes.
    if (self && def.decl().params().size() == 0) {
      throw ErrorReport(def.decl().params().range())
          << "methods must have a self argument";
    }
    method.setSchema(emitDef(def, self, graph->block()));

    // NB ORDERING: SSA conversion has to occur before
    // lifting of closures and forks, this way closures are converted
    // to SSA while part of their original graph, and closures are ready to
    // be inlined into forked closures
    ConvertToSSA(graph);
    // convert loops with an iter and body condition specified to
    // python-recognize while loops. we do this so they can be exported,
    // and run the pass early to avoid jitter. Like conversion to SSA,
    // it only needs to run once.
    CanonicalizeModifiedLoops(graph);

    // Convert Ops to a Normalized Form
    NormalizeOps(graph);

    runCleanupPasses(graph);
  }

 private:
  Function& method;
  std::shared_ptr<Graph> graph;
  ResolverPtr resolver;
  std::unordered_map<int64_t, Value*> integral_constants;
  std::unordered_map<double, Value*> fp_constants;
  std::unordered_set<Block*> exit_blocks;
  ScriptTypeParser typeParser_;
  LoopStatus loop_status_ = LoopStatus::NOT_IN_LOOP;

  // Singly-linked list of environments. This top element contains a member
  // `next` that points to the most immediate enclosing scope's value.
  std::shared_ptr<Environment> environment_stack;
  std::vector<DefContext> def_stack_;
  size_t temp_name_count_ = 0;
  std::string createTempName(const std::string& prefix) {
    return prefix + c10::to_string(temp_name_count_++);
  }

  void pushFrame(Block* b, bool starts_def = false) {
    if (starts_def) {
      def_stack_.emplace_back();
    }
    environment_stack =
        std::make_shared<Environment>(method, resolver, b, environment_stack);
  }
  std::shared_ptr<Environment> popFrame(bool ends_def = false) {
    auto old_frame = environment_stack;
    environment_stack = environment_stack->next;
    if (ends_def) {
      def_stack_.pop_back();
    }
    return old_frame;
  }

  // If the graph might not return, add an implicit None return at the end
  void handleMaybeNoReturn(const Def& def, Block* block) {
    auto decl_ret = def_stack_.back().declared_return_type_;
    if (exit_blocks.count(block) == 0) {
      auto decl_ret = def_stack_.back().declared_return_type_;
      if (decl_ret && decl_ret != NoneType::get()) {
        throw ErrorReport(def.range())
            << "Function was not annotated as having type None, but does not "
            << "return along all paths";
      }
      WithInsertPoint b(*block->nodes().end());
      emitReturn(Return::create(
          def.range(), Expr(Compound::create(TK_NONE, def.range(), {}))));
    } else {
      // if we haven't seen any return statements, but the graph block exits
      // (the function always throws) then we accept the declared return type if
      // it exists or set it to none
      if (def_stack_.back().merged_return_type_ == nullptr) {
        def_stack_.back().merged_return_type_ =
            decl_ret != nullptr ? decl_ret : NoneType::get();
      }
    }
  }

  FunctionSchema emitDef(const Def& def, const Self* self, Block* block) {
    auto schema = typeParser_.parseSchemaFromDef(def, bool(self));
    // TODO need guards on init returning none
    if (schema.returns().size() == 1) {
      def_stack_.back().declared_return_type_ = schema.returns().at(0).type();
    }
    std::vector<Argument> arguments =
        emitFormalArguments(def, self, schema, block);

    // body
    auto stmts_list = def.statements();
    emitStatements(stmts_list.begin(), stmts_list.end());
    handleMaybeNoReturn(def, block);
    std::vector<Argument> returns = {emitOutput(def.range(), schema, block)};
    return {def.name().name(), "", std::move(arguments), std::move(returns)};
  }

  // see [setstate type]
  static TypePtr getTypeForSetStateArg(const Def& def, const Self* self) {
    TORCH_CHECK(self, "Expected __setstate__ to have a `self` argument");
    auto getstate = self->getClassType()->findMethod("__getstate__");
    if (!getstate) {
      throw ErrorReport(def.range())
          << "`__setstate__` defined but not `__getstate__`. "
          << "You must have both defined on a ScriptModule "
          << "to customize serialization.\n"
          << "Did you forget to use `@torch.jit.export`?";
    }
    getstate->ensure_defined();
    return self->getClassType()
        ->getMethod("__getstate__")
        .getSchema()
        .returns()
        .at(0)
        .type();
  }

  // see [setstate type]
  static bool shouldDeriveSetStateType(
      const Def& def,
      const FunctionSchema& schema) {
    const bool noTypeAnnotations = std::all_of(
        schema.arguments().begin(),
        schema.arguments().end(),
        [](const Argument& arg) { return arg.is_inferred_type(); });

    bool shouldInfer = def.name().name() == "__setstate__" && noTypeAnnotations;
    if (!shouldInfer) {
      return false;
    }

    // Do some additional basic validation that the __setstate__ func is
    // well-formed
    TORCH_INTERNAL_ASSERT(def.name().name() == "__setstate__");
    const auto numDeclParams = def.decl().params().size();
    if (numDeclParams != 2) {
      throw ErrorReport(def.range())
          << "Expected 2 arguments for `__setstate__`, got: " << numDeclParams;
    }
    return true;
  }

  std::vector<Argument> emitFormalArguments(
      const Def& def,
      const Self* self,
      const FunctionSchema& schema,
      Block* block) {
    std::vector<Argument> arguments; // for schema
    // inputs
    auto it = def.decl().params().begin();
    auto end = def.decl().params().end();
    auto expected_annotation_size = def.decl().params().size();
    if (self) {
      expected_annotation_size--;
    }
    if (schema.arguments().size() != expected_annotation_size) {
      throw ErrorReport(def.decl().params().range())
          << "Number of type annotations for"
          << " function parameters (" << schema.arguments().size() << ")"
          << " does not match the number of parameters on the function ("
          << expected_annotation_size << ")!";
    }

    if (self) {
      AT_ASSERT(it != end);
      const auto& name = (*it).ident().name();
      Value* new_input = block->addInput()->setDebugName(name);
      environment_stack->setSugaredVar(
          (*it).ident().range(),
          name,
          self->makeSugared(new_input),
          /*annotated_type=*/nullptr);
      arguments.emplace_back(name, new_input->type());
      ++it;
    }

    // [setstate type]
    // __setstate__ is special, because if the user leaves it un-annotated we
    // will derive the type for `state` from the output type of __getstate__.
    // This is necessary so that we can allow submodules to appear in `state`.
    bool shouldDeriveType = shouldDeriveSetStateType(def, schema);
    size_t arg_annotation_idx = 0;
    for (; it != end; ++it) {
      auto& name = (*it).ident().name();
      // Add the input to the graph
      Value* new_input = block->addInput();
      if (meaningfulName(name)) {
        new_input->setDebugName(name);
      }
      // Record the type for the schema and set the Type on the Value*
      auto arg = schema.arguments().at(arg_annotation_idx++);
      if (shouldDeriveType) {
        TORCH_INTERNAL_ASSERT(schema.arguments().size() == 1);
        const auto& inferredStateType = getTypeForSetStateArg(def, self);
        arg = arg.cloneWithType(inferredStateType);
      }

      arguments.push_back(arg);
      new_input->setType(arguments.back().type());

      // NB: set type of new_input before setVar call so the Store is
      // typed appropriately
      environment_stack->setVar((*it).ident().range(), name, new_input);
    }
    return arguments;
  }

  Argument emitOutput(
      const SourceRange& range,
      const FunctionSchema& schema,
      Block* block) {
    // handleMaybeNoReturn ensures that merged_return_type_ is always set
    auto ret_type = def_stack_.back().merged_return_type_;
    TORCH_INTERNAL_ASSERT(ret_type);

    // in the ConvertToSSA pass, prim::ReturnStmts are lowered so that the
    // correct return value is set. Until then, we have a correctly-typed
    // placeholder return value. This is needed so that closures & graphs
    // are correctly typed.
    auto placeholder_return =
        graph->insertNode(graph->createUninitialized(ret_type))->output();
    block->registerOutput(placeholder_return);
    return Argument("", def_stack_.back().merged_return_type_);
  }

  void emitStatements(const List<Stmt>& statements) {
    return emitStatements(statements.begin(), statements.end());
  }

  // XXX - right now closures are used _only_ for defining gradients internally
  // There are several unfinished aspects that make them unusable generally
  // 1. We do not have a type, ivalue, operator to represent prim::Function, so
  // closure_node has type None
  // 2. There is no export logic for it yet, so it cannot be
  // exported/python_printed
  // 3. There is nothing preventing the assignment of already existing variables
  // inside the closures
  //    the changes to those variables will just get forgotten.
  // 4. There is no parsing support in frontend.py, this is intentional since it
  //    prevents people from accidentally using this feature.
  std::shared_ptr<ClosureValue> emitClosure(
      const std::function<void(Block*)>& emit_body) {
    Node* closure_node = graph->insertNode(graph->create(prim::Function, 1));
    // it is not a real thing yet, so just say the type is None
    closure_node->output()->setType(NoneType::get());
    Block* block = closure_node->addBlock();
    WithLoopStatus loop_guard(&loop_status_, LoopStatus::NOT_IN_LOOP);
    {
      WithInsertPoint guard(block);
      pushFrame(block, /*starts_def=*/true);
      emit_body(block);
      popFrame(/*ends_def=*/true);
    }
    return std::make_shared<ClosureValue>(closure_node->output());
  }

  void emitClosure(const Def& def) {
    // invoked once the closure block is set as the environment
    auto emit_body = [&](Block* closure_block) {
      emitDef(
          def,
          nullptr,
          closure_block); // ignore schema return, we just wont use it for now
                          // since we never create a Method for the closure
    };
    auto closure_value = emitClosure(emit_body);
    environment_stack->setSugaredVar(
        def.name().range(),
        def.name().name(),
        closure_value,
        /*annotated_type=*/nullptr);
  }

  void checkBreakContinue(
      const SourceRange& loc,
      const std::string& stmt_name) {
    if (loop_status_ == LoopStatus::NOT_IN_LOOP) {
      throw ErrorReport(loc) << "SyntaxError: '" << stmt_name << "'"
                             << " outside loop";
    } else if (loop_status_ == LoopStatus::IN_UNROLLED_LOOP) {
      throw ErrorReport(loc)
          << "Because we emit iteration over modulelists or tuples as "
             "unrolled loops, we do not support break or continue inside the body of these loops";
    }
  }

  void emitBreak(const Break& stmt) {
    checkBreakContinue(stmt.range(), "break");
    auto break_node =
        graph->create(prim::BreakStmt, {}, 0)->setSourceRange(stmt.range());
    graph->insertNode(break_node);
  }

  void emitContinue(const Continue& stmt) {
    checkBreakContinue(stmt.range(), "continue");
    auto continue_node =
        graph->create(prim::ContinueStmt, {}, 0)->setSourceRange(stmt.range());
    graph->insertNode(continue_node);
  }

  void emitDelete(const Delete& stmt) {
    if (stmt.expr().kind() == TK_SUBSCRIPT) {
      Subscript subscript(stmt.expr());
      const List<Expr>& subscript_exprs = subscript.subscript_exprs();
      if (subscript_exprs[0].kind() == TK_SLICE_EXPR) {
        throw ErrorReport(stmt.range())
            << "del statements only support deletion at a single index, "
               "slicing is not supported"
               " (see https://github.com/pytorch/pytorch/issues/31430)";
      }
      const SugaredValuePtr sv = emitSugaredExpr(subscript.value(), 1);
      const SourceRange& val_range = subscript.value().range();
      Value* idx = emitExpr(subscript_exprs[0]);
      Value* val = sv->asValue(val_range, method);

      // If val is a class instance, this is a method call to a type-specific
      // implementation of del defined in a __delitem__ method.
      if (auto cls = val->type()->cast<ClassType>()) {
        if (!cls->findMethod("__delitem__")) {
          throw ErrorReport(stmt.range())
              << "Class does not define __delitem__";
        }

        // Use MethodValue to call the method to handle recursion.
        MethodValue(val, "__delitem__")
            .call(stmt.range(), method, {idx}, {}, 0);
      } else {
        auto node = graph->create(aten::Delete, {val, idx}, 0)
                        ->setSourceRange(stmt.range());
        graph->insertNode(node);
      }
    } else if (stmt.expr().kind() == TK_VAR) {
      Var var(stmt.expr());
      environment_stack->removeVar(var.name(), /*check_if_removed=*/true);
    } else {
      throw ErrorReport(stmt.range())
          << "del statements are only supported for deleting"
             " list and dict items and variables";
    }
  }

  void emitReturn(const Return& stmt) {
    Value* result = emitExpr(stmt.expr());
    TypePtr result_type = def_stack_.back().declared_return_type_;
    // result type is annotated, every return must convert to that type
    if (result_type) {
      // this guard skips implicit conversion from None -> Tensor for the return
      // type. otherwise forgetting a return a function returning a tensor will
      // cause a None to be converted to a tensor.
      if (!(result_type->isSubtypeOf(TensorType::get()) &&
            result->type()->isSubtypeOf(NoneType::get()))) {
        result = tryConvertToType(
            stmt.range(),
            *graph,
            result_type,
            result,
            /*allow_conversions=*/true);
      }

      if (!result->type()->isSubtypeOf(result_type)) {
        throw ErrorReport(stmt.range())
            << "Return value was annotated as having type "
            << result_type->repr_str() << " but is actually of type "
            << result->type()->repr_str();
      }
    } else {
      result_type = def_stack_.back().merged_return_type_;
      if (!result_type) {
        result_type = result->type();
      }
      auto merged_result_type = unifyTypes(result_type, result->type());
      if (!merged_result_type) {
        throw ErrorReport(stmt.range())
            << "Previous return statement returned a value of type "
            << result_type->repr_str()
            << " but this return statement returns a value of type "
            << result->type()->repr_str();
      }
      result_type = merged_result_type.value();
    }
    AT_ASSERT(result_type);

    def_stack_.back().merged_return_type_ = result_type;

    // If the annotated return type is Any and the result type is not Any,
    // cast the result to Any to facilitate type unification between return
    // statements on different code paths (e.g. different branches of an if,
    // body and containing scope of a loop).
    if (result_type == AnyType::get() && result->type() != AnyType::get()) {
      result = graph->insertUncheckedCast(result, result_type);
    }

    graph->insertNode(graph->create(prim::ReturnStmt, {result}, 0));
    exit_blocks.insert(environment_stack->block());
  }

  void emitStatements(
      List<Stmt>::const_iterator begin,
      List<Stmt>::const_iterator end) {
    for (; begin != end; ++begin) {
      auto stmt = *begin;
      ErrorReport::CallStack::update_pending_range(stmt.range());
      switch (stmt.kind()) {
        case TK_IF:
          emitIf(If(stmt));
          break;
        case TK_WHILE:
          emitWhile(While(stmt));
          break;
        case TK_FOR:
          emitFor(For(stmt));
          break;
        case TK_ASSIGN:
          emitAssignment(Assign(stmt));
          break;
        case TK_AUG_ASSIGN:
          emitAugAssignment(AugAssign(stmt));
          break;
        case TK_EXPR_STMT: {
          auto expr = ExprStmt(stmt).expr();
          emitSugaredExpr(expr, 0);
        } break;
        case TK_RAISE:
          emitRaise(Raise(stmt));
          break;
        case TK_ASSERT:
          emitAssert(Assert(stmt));
          break;
        case TK_RETURN: {
          emitReturn(Return(stmt));
        } break;
        case TK_CONTINUE: {
          emitContinue(Continue(stmt));
        } break;
        case TK_BREAK: {
          emitBreak(Break(stmt));
        } break;
        case TK_PASS:
          // Emit nothing for pass
          break;
        case TK_DEF:
          emitClosure(Def(stmt));
          break;
        case TK_DELETE:
          emitDelete(Delete(stmt));
          break;
        case TK_WITH:
          emitWith(With(stmt));
          break;
        default:
          throw ErrorReport(stmt)
              << "Unrecognized statement kind " << kindToString(stmt.kind());
      }
      // Found an exit statement in this block. The remaining statements aren't
      // reachable so we don't emit them.
      if (exit_blocks.count(environment_stack->block()))
        return;
    }
  }

  RefinementSet findIsNoneRefinements(
      Expr lhs,
      Value* lhs_value,
      Expr rhs,
      Value* rhs_value,
      int tok) {
    if (rhs.kind() != TK_NONE && lhs.kind() == TK_NONE) {
      // make 'None is var' into 'var is None'
      return findIsNoneRefinements(rhs, rhs_value, lhs, lhs_value, tok);
    }
    if (rhs.kind() != TK_NONE || lhs.kind() != TK_VAR) {
      return {};
    }
    // statement must be var {is, is not} None
    auto name = Var(lhs).name().name();
    // XXX - while it should in theory be possible to specialize
    // the `x is None` to know x has type NoneType, we have previously not
    // done this. Unfortunately, doing this will make the type None
    // propagate further in all loaded models. The handling of
    // unwrap_optional will fail in these cases since export did
    // not expect that the input would be none and an unannotated None.
    // cannot be passed to unwrapoptional To enable this,
    // we need to (1) implement a real casting operator
    // annotated(T, X) that stays in the graph and does the cast
    // and (2) only enable this OPTIONAL_NONE when loading newer
    // graphs because it is incompatible with older graphs.
    // Refinement none(name, RefinementKind::OPTIONAL_NONE);
    if (auto optional_type = lhs_value->type()->cast<OptionalType>()) {
      Refinement present(name, optional_type->getElementType());
      if (tok == TK_IS) {
        return RefinementSet({}, {present});
      } else { // TK_ISNOT
        return RefinementSet({present}, {});
      }
    }
    return RefinementSet();
  }

  CondValue emitCondExpr(const Expr& expr) {
    switch (expr.kind()) {
      case TK_AND:
      case TK_OR: {
        auto binop = BinOp(expr);
        return emitShortCircuitLogical(
            binop.range(), binop.lhs(), binop.rhs(), expr.kind() == TK_OR);
      }
      case TK_NOT: {
        CondValue v = emitCondExpr(Expr(expr.tree()->trees()[0]));
        Value* result = emitBuiltinCall(
            expr.range(), *graph, aten::__not__, {v.value()}, {});
        c10::optional<bool> static_if;
        if (v.staticIf()) {
          static_if = !*v.staticIf();
        }
        return CondValue(result, v.refinements().Not(), static_if);
      } break;
      case TK_IS:
      case TK_ISNOT: {
        // meta programming on AST for is/is not cases and emit branches base on
        auto cond_op = BinOp(expr);
        Value* lhs_val = emitExpr(cond_op.lhs());
        Value* rhs_val = emitExpr(cond_op.rhs());

        auto lhs_none = canBeNone(lhs_val);
        auto rhs_none = canBeNone(rhs_val);

        // Dispatch logic (A: ALWAYS, N: NEVER, M: MAYBE):
        //
        // AA, -> statically IS always holds, IS_NOT never holds
        // AN , NA-> statically IS_NOT always holds, IS never holds
        // MA, MM, MN, NM, NN, AM -> cannot prove anything statically
        bool its_is = expr.kind() == TK_IS;
        if (lhs_none == ALWAYS && rhs_none == ALWAYS) {
          return CondValue(*graph, expr.range(), its_is, {});
        } else if (
            (lhs_none == ALWAYS && rhs_none == NEVER) ||
            (lhs_none == NEVER && rhs_none == ALWAYS)) {
          // lhs_val/rhs_val with A/M: only emit never_none_branch
          return CondValue(*graph, expr.range(), !its_is, {});
        } else {
          auto kind = getNodeKind(expr.kind(), expr.get()->trees().size());
          Value* cond_value = emitBuiltinCall(
              expr.get()->range(),
              *method.graph(),
              kind,
              {lhs_val, rhs_val},
              {});
          auto refinements = RefinementSet(findIsNoneRefinements(
              cond_op.lhs(), lhs_val, cond_op.rhs(), rhs_val, expr.kind()));
          return CondValue(cond_value, refinements, c10::nullopt);
        }
      } break;
      default: {
        if (expr.kind() == TK_APPLY) {
          auto apply = Apply(expr);
          auto callee = Apply(expr).callee();
          if (callee.kind() == TK_VAR) {
            if (Var(callee).name().name() == "isinstance") {
              checkApplyNumInputs(apply, 2);
              return emitIsInstance(apply.inputs()[0], apply.inputs()[1]);
            }
            if (Var(callee).name().name() == "hasattr") {
              checkApplyNumInputs(apply, 2);
              return emitHasAttr(apply.inputs()[0], apply.inputs()[1]);
            }
          }
        }
        auto expr_out = emitToBool(expr.range(), emitExpr(expr));
        c10::optional<bool> static_if = c10::nullopt;
        if (expr_out->node()->kind() == aten::is_scripting) {
          static_if = true;
        }
        return CondValue(expr_out, RefinementSet({}), static_if);
      } break;
    }
  }

  std::shared_ptr<Environment> emitSingleIfBranch(
      Block* b,
      const List<Stmt>& branch,
      const RefinementSet& refinements) {
    pushFrame(b);
    WithInsertPoint guard(b);
    insertRefinements(branch.range(), refinements);
    emitStatements(branch);
    return popFrame();
  }

  Node* create(Symbol kind, const SourceRange& loc, size_t n_outputs) {
    return graph->create(kind, n_outputs)->setSourceRange(loc);
  }

  Value* emitTernaryIf(const TernaryIf& expr) {
    CondValue cond_value = emitCondExpr(expr.cond());
    auto true_expr = [&] { return emitExpr(expr.true_expr()); };
    auto false_expr = [&] { return emitExpr(expr.false_expr()); };
    return emitIfExpr(expr.range(), cond_value, true_expr, false_expr);
  }

  Value* emitListComprehension(const ListComp& lc, const TypePtr& type_hint) {
    const auto loc = lc.range();
    const auto targets_list = List<Expr>::create(lc.range(), {lc.target()});
    const auto itrs = List<Expr>::create(lc.range(), {lc.iter()});

    // If there is no type hint, and this is emitted over an iterable that is
    // unrolled and of length 0, then we emit a List of tensors
    Value* list_value = graph->insertNode(graph->create(prim::ListConstruct, 1))
                            ->output()
                            ->setType(ListType::ofTensors());
    bool type_set = false;
    if (type_hint) {
      if (!type_hint->cast<ListType>()) {
        throw ErrorReport(loc)
            << "Expected list type annotation for list comprehension"
               ", found "
            << type_hint->repr_str();
      }
      list_value->setType(type_hint);
      type_set = true;
    }

    // comprehension introduces it's own scope. no variable assigned
    // leaks into the rest of the graph
    Node* n =
        graph->insertNode(create(prim::LocalVariableScope, lc.range(), 0));
    auto* comprehension_block = n->addBlock();
    pushFrame(comprehension_block);
    WithInsertPoint guard(comprehension_block);
    auto emit_body = [&]() {
      auto comprehension_out = emitExpr(lc.elt());
      if (!type_set) {
        list_value->setType(ListType::create(comprehension_out->type()));
        type_set = true;
      }
      NamedValue self = NamedValue(loc, "self", list_value);
      NamedValue input = NamedValue(loc, "", comprehension_out);
      emitBuiltinCall(loc, *graph, aten::append, {input}, {}, self);
    };
    emitFor(targets_list, itrs, loc, emit_body);
    popFrame();
    return list_value;
  }

  // Insert subtyping refinements
  void insertRefinements(const SourceRange& loc, const RefinementSet& ref) {
    for (const Refinement& r : ref.activeRefinements()) {
      Value* v = environment_stack->getVar(r.identifier(), loc);
      Value* new_v = graph->insertUncheckedCast(v, r.type());
      environment_stack->setVar(loc, r.identifier(), new_v);
    }
  }

  CondValue emitShortCircuitLogical(
      const SourceRange& loc,
      const Expr& first_expr,
      const Expr& second_expr,
      bool is_or) {
    CondValue lhs = emitCondExpr(first_expr);
    // if the continue expr in the short circuit is not evaluated,
    // than the const expression is False if the short circuit
    // is an `and` and True if the short circuit is an `or`.
    // `False and expr` -> False, `True or expr` -> True
    //
    // inserting it as a constant makes optimization easier

    // if it's an OR the first expr is emitted in the true branch
    // and the second expr in the false branch, if it's an AND the opposite
    auto get_const_expr = [&] { return graph->insertConstant(is_or, loc); };

    c10::optional<CondValue> rhs;
    auto get_continue_expr = [&] {
      rhs = emitCondExpr(second_expr);
      return rhs->value();
    };

    // if this is an OR, eval second expression if first expr is False
    // If this is an AND, eval second expression if first expr is True
    Value* new_result;
    c10::optional<RefinementSet> refinements;
    c10::optional<bool> static_if;
    if (is_or) {
      new_result = emitIfExpr(loc, lhs, get_const_expr, get_continue_expr);
      refinements = lhs.refinements().Or(rhs->refinements());
      if ((lhs.staticIf() && *lhs.staticIf()) ||
          (rhs->staticIf() && *rhs->staticIf())) {
        static_if = true;
      } else if (lhs.staticIf() && rhs->staticIf()) {
        static_if = *lhs.staticIf() || *rhs->staticIf();
      }
    } else {
      new_result = emitIfExpr(loc, lhs, get_continue_expr, get_const_expr);
      refinements = lhs.refinements().And(rhs->refinements());
      if (((lhs.staticIf() && !*lhs.staticIf()) ||
           (rhs->staticIf() && !*rhs->staticIf()))) {
        static_if = false;
      } else if (lhs.staticIf() && rhs->staticIf()) {
        static_if = *lhs.staticIf() && *rhs->staticIf();
      }
    }
    return CondValue(new_result, std::move(*refinements), static_if);
  }

  Value* emitIfExpr(
      const SourceRange& range,
      const CondValue& cond_value,
      std::function<Value*()> true_expr,
      std::function<Value*()> false_expr) {
    Node* n = graph->insertNode(create(prim::If, range, 0));
    n->addInput(cond_value.value());
    auto* true_block = n->addBlock();
    auto* false_block = n->addBlock();

    auto emit_if_expr = [this, &range](
                            Block* b,
                            const RefinementSet& refinements,
                            std::function<Value*()> expr_value) {
      pushFrame(b);
      WithInsertPoint guard(b);
      insertRefinements(range, refinements);
      Value* out_val = expr_value();
      b->registerOutput(out_val);
      popFrame();
    };

    emit_if_expr(true_block, cond_value.refinements(), std::move(true_expr));
    emit_if_expr(
        false_block, cond_value.refinements().Not(), std::move(false_expr));

    auto true_type = true_block->outputs().at(0)->type();
    auto false_type = false_block->outputs().at(0)->type();
    auto unified = unifyTypes(true_type, false_type);
    if (!unified) {
      throw ErrorReport(range)
          << "if-expression's true branch has type " << true_type->repr_str()
          << " but false branch has type " << false_type->repr_str();
    }

    // Add op outputs
    auto expr_value = n->addOutput()->setType(*unified); // Resulting value

    return expr_value;
  }
  Value* emitToBool(const SourceRange& loc, Value* v) {
    Value* out;
    try {
      auto bool_cast = environment_stack->getSugaredVar("bool", loc);
      out = asSimple(bool_cast->call(loc, method, {v}, {}, 0));
    } catch (...) {
      throw ErrorReport(loc) << "Could not cast value of type "
                             << v->type()->repr_str() << " to bool";
    }
    // cast value not response for checking output type
    if (!out->type()->isSubtypeOf(BoolType::get())) {
      throw ErrorReport(loc)
          << "expected a bool expression for condition but found "
          << out->type()->repr_str();
    }
    return out;
  }

  void emitIfElseBlocks(
      const SourceRange& loc,
      const CondValue& cond_value,
      const List<Stmt>& trueBranch,
      const List<Stmt>& falseBranch) {
    // this is a static if statement: that is, it contains a subset
    // of operators where we are willing to specialize the if statement
    // to be only the true or false branch when the condition is statically
    // known. This is used to meta-program modules, for instance, when a
    // submodule is absent, an is None check can be used to ensure the
    // accesses to the None check, which would error, are not compiled.
    if (cond_value.staticIf()) {
      if (*cond_value.staticIf()) {
        insertRefinements(loc, cond_value.refinements());
        emitStatements(trueBranch);
      } else {
        insertRefinements(loc, cond_value.refinements().Not());
        emitStatements(falseBranch);
      }
      return;
    }

    Node* n = graph->insertNode(create(prim::If, loc, 0));
    n->addInput(cond_value.value());
    auto* true_block = n->addBlock();
    auto* false_block = n->addBlock();

    // Emit both blocks once to get the union of all mutated values
    auto save_true =
        emitSingleIfBranch(true_block, trueBranch, cond_value.refinements());
    auto save_false = emitSingleIfBranch(
        false_block, falseBranch, cond_value.refinements().Not());

    bool true_exits = exit_blocks.count(true_block);
    bool false_exits = exit_blocks.count(false_block);
    if (true_exits && false_exits) {
      exit_blocks.insert(n->owningBlock());
    }

    // In python, every variable assigned in an if statement escapes
    // the scope of the if statement (all variables are scoped to the function).
    // Script is a subset of python: we consider variables to be in scope
    // as long as there is a definition of the variable along all paths
    // through the if statement
    // ----
    // if ...:
    //   a =
    // else:
    //   ...
    // ... = a  # error, a is not defined along all paths
    // ----
    // if ...:
    //   a =
    // else:
    //   a =
    // ... = a # OK, a is defined along all paths
    // ----
    // a = ...
    // if ...:
    //   a =
    // ... = a # OK, a is defined along all paths
    // if ...:
    //   a =
    // else:
    //   return
    // ... = a # OK, a is always defined

    // ordered set, because we want deterministic graph output
    std::set<std::string> mutated_variables;

    // When we access either the true or false environment,
    // we need to set the insertion point so the prim::Load is inserted
    // into the right block.
    // if var is only defined in one branch save error in case it's used later
    for (auto& v : save_true->definedVariables()) {
      {
        WithInsertPoint insert(false_block);
        if (save_false->findInAnyFrame(v) || false_exits) {
          mutated_variables.insert(v);
        } else {
          ErrorReport error(loc);
          environment_stack->setVariableTypeError(v, [=]() -> std::string {
            error << v << " is not defined in the false branch";
            return error.what();
          });
        }
      }
    }
    for (auto& v : save_false->definedVariables()) {
      {
        WithInsertPoint insert(true_block);
        if (save_true->findInAnyFrame(v) || true_exits) {
          mutated_variables.insert(v);
        } else {
          ErrorReport error(loc);
          environment_stack->setVariableTypeError(v, [=]() -> std::string {
            error << v << " is not defined in the true branch";
            return error.what();
          });
        }
      }
    }

    // Register outputs in each block
    for (const auto& x : mutated_variables) {
      Value* tv;
      Value* fv;

      {
        WithInsertPoint insert(true_block);
        if (!true_exits) {
          tv = save_true->getVar(x, loc);
        }
      }
      {
        WithInsertPoint insert(false_block);
        if (!false_exits) {
          fv = save_false->getVar(x, loc);
        }
      }

      // if both branches exit don't emit any variables
      // if one branch exits then we allow the all variables in the other branch
      // to escape scope since they are well-defined
      if (true_exits && false_exits) {
        continue;
      } else if (true_exits) {
        tv = graph->createUninitialized(fv->type())
                 ->insertBefore(true_block->return_node())
                 ->output();
        graph->createStore(x, tv)->insertBefore(true_block->return_node());
      } else if (false_exits) {
        fv = graph->createUninitialized(tv->type())
                 ->insertBefore(false_block->return_node())
                 ->output();
        graph->createStore(x, fv)->insertBefore(false_block->return_node());
      }

      auto unified = unifyTypes(tv->type(), fv->type());

      // attempt to unify the types. we allow variables to be set to different
      // types in each branch as long as that variable is not already in scope,
      // or if that variable does not get used later. here, we save the error
      // so that the error message will be more informative in the case that is
      // used later. When a is accessed in (a + 1), the error will get printed
      // if cond:
      //    a = 1
      // else:
      //    a = tensor
      // b = a + 1
      //
      if (!unified) {
        ErrorReport error(loc);
        error << "Type mismatch: " << x << " is set to type "
              << tv->type()->repr_str() << " in the true branch"
              << " and type " << fv->type()->repr_str()
              << " in the false branch";
        if (save_true->findInParentFrame(x) ||
            save_false->findInParentFrame(x)) {
          throw error;
        } else {
          environment_stack->setVariableTypeError(
              x, [=]() -> std::string { return error.what(); });
          continue;
        }
      }
      environment_stack->setType(x, *unified);
    }
  }

  CondValue emitHasAttr(const Expr& objExpr, const Expr& attrExpr) {
    auto obj = emitSugaredExpr(objExpr, 1);
    if (attrExpr.kind() != TK_STRINGLITERAL) {
      throw ErrorReport(attrExpr)
          << "hasattr's second argument must be a string literal";
    }
    const std::string& name = StringLiteral(attrExpr).text();
    const bool hasAttr = obj->hasAttr(objExpr.range(), method, name);
    return CondValue(*graph, objExpr.range(), hasAttr, {});
  }

  CondValue emitIsInstance(const Expr& obj, const Expr& classinfo) {
    // turn (float, (int, tuple)) into a flat list of types and type kind
    // category checks: tuple_check = true, types = {float, int}
    struct GatheredTypes {
      GatheredTypes(ScriptTypeParser parser) : typeParser_(std::move(parser)) {}
      void gather(Expr classinfo) {
        if (classinfo.kind() == TK_TUPLE_LITERAL) {
          for (Expr e : TupleLiteral(classinfo).inputs()) {
            gather(e);
          }
          return;
        }
        TypePtr type = typeParser_.parseTypeFromExpr(classinfo);
        types.emplace_back(type);
      }
      bool staticallyTrue(const TypePtr& actual_type) {
        // is this isinstance check statically true?
        for (const TypePtr& typ : types) {
          if (actual_type->isSubtypeOf(typ)) {
            return true;
          }
        }
        return false;
      }
      bool maybeOfKind(TypeKind kind, const TypePtr& actual_type) {
        if (actual_type->kind() == AnyType::Kind) {
          return true;
        }
        if (auto op = actual_type->cast<OptionalType>()) {
          return op->getElementType()->kind() == kind;
        }
        return false;
      }
      bool staticallyFalse(const TypePtr& actual_type) {
        for (const TypePtr& typ : types) {
          if (typ->isSubtypeOf(actual_type)) {
            return false;
          }
          if ((typ->isSubtypeOf(AnyListType::get()) &&
               maybeOfKind(ListType::Kind, actual_type)) ||
              (typ->isSubtypeOf(AnyTupleType::get()) &&
               maybeOfKind(TupleType::Kind, actual_type))) {
            return false;
          }
        }
        return true;
      }
      ScriptTypeParser typeParser_;
      std::vector<TypePtr> types;
    };
    GatheredTypes gathered(typeParser_);
    gathered.gather(classinfo);
    auto val = emitExpr(obj);
    RefinementSet refinement;
    if (gathered.types.size() == 1 &&
        gathered.types.at(0)->isSubtypeOf(val->type()) &&
        obj.kind() == TK_VAR) {
      std::string ident = Var(obj).name().name();
      Refinement isinstance(std::move(ident), gathered.types.at(0));
      refinement = RefinementSet({isinstance}, {});
    }

    if (gathered.staticallyTrue(val->type())) {
      return CondValue(*graph, obj.range(), true, std::move(refinement));
    }
    if (gathered.staticallyFalse(val->type())) {
      return CondValue(*graph, obj.range(), false, std::move(refinement));
    }
    // check maybe true/false at runtime, need an actual op
    Value* result =
        graph->insertNode(graph->createIsInstance(val, gathered.types))
            ->output();
    return CondValue(result, std::move(refinement), c10::nullopt);
  }

  void emitIf(const If& stmt) {
    Expr cond = stmt.cond();
    CondValue cond_value = emitCondExpr(cond);
    emitIfElseBlocks(
        stmt.range(), cond_value, stmt.trueBranch(), stmt.falseBranch());
  }

  // *********************** Loop Operators ************************************
  // Emits a loop operator with the form:
  // Loop(max_trip_count)
  // block0(loop_counter) {
  //   <body>
  // }
  // block1 {
  //   <loop condition>
  //   -> (condition)
  // }
  // For loops will have an empty loop condition block with condition set to
  // true. In the convert to ssa pass, the loop condition will correctly
  // inlined. and inputs and outputs added so that the loop conforms to the
  // semantics specified at
  // https://github.com/onnx/onnx/blob/master/docs/Operators.md#Loop
  void emitLoopCommon(
      SourceRange range,
      const std::function<void()>& emit_body,
      const SugaredValuePtr& iter_val,
      c10::optional<List<Expr>> targets,
      c10::optional<Expr> cond) {
    Value* max_trip_count_val = nullptr;
    if (iter_val != nullptr) {
      max_trip_count_val = iter_val->len(range, method);
    } else {
      max_trip_count_val = materializeConstant(
          std::numeric_limits<int64_t>::max(),
          *graph,
          range,
          integral_constants);
    }

    Node* n = graph->insertNode(create(prim::Loop, range, 0));
    auto* body_block = n->addBlock();
    {
      Block* condition_block = n->addBlock();
      pushFrame(condition_block);
      Value* out;
      if (cond) {
        WithInsertPoint insert(condition_block);
        out = emitToBool(cond.value().range(), emitExpr(cond.value()));
      } else {
        WithInsertPoint insert(n);
        out = graph->insertConstant(true, range);
      }
      condition_block->registerOutput(out);
      popFrame();
    }
    n->addInput(max_trip_count_val);

    WithLoopStatus loop_guard(&loop_status_, LoopStatus::IN_LOOP);
    Value* trip_count =
        body_block->addInput()->setType(IntType::get()); // Iteration num
    {
      pushFrame(body_block);
      WithInsertPoint guard(body_block);

      // if the FOR iters and targets are present, emit FOR target assignments
      if (iter_val != nullptr && targets) {
        Value* cur_elem = iter_val->getitem(range, method, trip_count)
                              ->asValue(range, method);
        SugaredValuePtr sv = std::make_shared<SimpleValue>(cur_elem);
        List<Expr> target_exprs = targets.value();
        validateAssignLhsExpr(target_exprs, range);

        // if target exprs are more than 1, it means iteration unpacking on LHS
        // we create Tuple literal to wrap those target exprs for assignments
        if (target_exprs.size() > 1) {
          Expr tl = TupleLiteral::create(range, target_exprs);
          target_exprs = List<Expr>::create(range, {tl});
        }
        emitExprsAssign(target_exprs, {sv}, range, /*n_binders=*/1);
      }
      emit_body();
      popFrame();
    }
  }

  void emitUnrolledLoop(
      const SourceRange& loc,
      const std::function<void()>& emit_body,
      SugaredValuePtr iterable,
      const List<Expr>& targets) {
    auto static_len = iterable->staticLen();
    TORCH_INTERNAL_ASSERT(
        static_len, "Unrolled loop iter should have static length");
    int64_t len = *static_len;
    WithLoopStatus loop_guard(&loop_status_, LoopStatus::IN_UNROLLED_LOOP);
    // In order to support ModuleLists which return different types,
    // as with an nn.Sequential which has a module that returns a Dict and then
    // a module which returns a Tensor,
    // we do not push a new environment frame because if we did all intermediary
    // values would have to subtype the input type.
    for (int64_t i = 0; i < len; ++i) {
      auto index =
          materializeConstant(i, *method.graph(), loc, integral_constants);
      auto sugared_value = iterable->getitem(loc, method, index);
      emitExprsAssign(
          targets, {sugared_value}, targets.range(), /*n_binders=*/1);
      emit_body();
    }
  }

  void emitFor(
      const List<Expr>& targets,
      const List<Expr>& itrs,
      const SourceRange& loc,
      const std::function<void()>& emit_body) {
    if (itrs.size() != 1) {
      throw ErrorReport(loc) << "List of iterables is not supported currently";
    }

    // Emit loop information for builtinFunction values like range(), zip(),
    // enumerate() or SimpleValue like List, Tensor, Dict, etc.
    SugaredValuePtr sv = emitSugaredExpr(itrs[0], 1);
    SugaredValuePtr iterable = sv->iter(loc, method);

    // We unroll the loop for iterables that contain ModuleLists so that we can
    // compile Heterogenous module lists.
    if (!iterable->shouldEmitUnrolled()) {
      emitLoopCommon(loc, emit_body, iterable, targets, {});
    } else {
      emitUnrolledLoop(loc, emit_body, iterable, targets);
    }
  }

  void emitFor(const For& stmt) {
    auto emit_body = [&]() { emitStatements(stmt.body()); };
    emitFor(stmt.targets(), stmt.itrs(), stmt.range(), emit_body);
  }

  void emitWhile(const While& stmt) {
    auto cond = stmt.cond();
    auto emit_body = [&]() { emitStatements(stmt.body()); };
    emitLoopCommon(stmt.range(), emit_body, nullptr, {}, cond);
  }

  void emitWith(const With& stmt) {
    auto targets = stmt.targets();
    // Keep a stack of entered objects so they can be exited
    // in the right order.
    std::stack<Value*> entered;

    for (const auto& target : targets) {
      Expr e = target.target();

      auto* rhs = emitExpr(e);
      auto* n = graph->insertNode(graph->create(prim::Enter, {rhs}));
      entered.push(rhs);
      auto rhsClass = rhs->type()->expect<ClassType>();

      if (!rhsClass) {
        throw ErrorReport(e.range())
            << "With item expression does not return a class type";
      }

      auto* enterMethod = rhsClass->findMethod("__enter__");
      auto* exitMethod = rhsClass->findMethod("__exit__");

      if (!enterMethod || !exitMethod) {
        throw ErrorReport(e.range())
            << "Object returned by with item expression does not define __enter__ and __exit__ methods";
      }

      // Check the schema of __enter__.
      auto& enterSchema = enterMethod->getSchema();
      if (enterSchema.arguments().size() != 1) {
        throw ErrorReport(e.range())
            << "__enter__ must have only one argument and one return value";
      }

      // Check the schema of __exit__.
      auto& exitSchema = exitMethod->getSchema();
      if (exitSchema.arguments().size() != 4) {
        throw ErrorReport(e.range())
            << "__exit__ must have four arguments and no return value";
      } else {
        if (exitSchema.returns().at(0).type() != NoneType::get()) {
          throw ErrorReport(e.range()) << "__exit__ must have no return value";
        }

        for (unsigned i = 1; i < 4; ++i) {
          if (exitSchema.arguments().at(i).type() != AnyType::get()) {
            throw ErrorReport(e.range())
                << "argument " << i
                << " of __exit__ must have Any type; TorchScript does not currently support passing exception type, value, or traceback to the __exit__ function.";
          }
        }
      }

      // Set the output of the enter node to be the return type of __enter__.
      n->output(0)->setType(enterSchema.returns().at(0).type());

      // Set i = e.__enter__() so that references to i in the body of the with
      // will resolve correctly.
      if (target.var().present()) {
        Var i = target.var().get();
        environment_stack->setVar(i.range(), i.name().name(), n->output(0));
      }
    }

    emitStatements(stmt.body());

    // Insert all the corresponding prim::Exit nodes.
    while (!entered.empty()) {
      auto* input = entered.top();
      entered.pop();
      auto* n = graph->create(prim::Exit);
      graph->insertNode(n);
      n->addInput(input);
    }
  }

  // Currently we do not support assigning exceptions to variables,
  // a = Exception("hi")
  // raise a
  //
  // We ignore the expression following raise
  void emitRaise(const Raise& raise) {
    auto sv = emitSugaredExpr(raise.expr(), 1);
    Value* error_message = nullptr;

    if (auto exception_instance =
            std::dynamic_pointer_cast<ExceptionMessageValue>(sv)) {
      // The typical case, an instance of the exception class was thrown:
      //    raise RuntimeError("error")
      error_message = exception_instance->getValue();
    } else if (
        auto exception_class = std::dynamic_pointer_cast<ExceptionValue>(sv)) {
      // A bare exception was thrown so add an empty message. e.g.
      //    raise RuntimeError
      error_message = insertConstant(*graph, "", raise.range());
    } else {
      // The raise was not followed by an exception (i.e. it was something like
      // `raise "error"` instead of `raise RuntimeError("error")`)
      throw ErrorReport(raise.range())
          << "exceptions must derive from BaseException";
    }

    if (!error_message->type()->isSubtypeOf(StringType::get())) {
      error_message = graph->insert(aten::str, {error_message});
    }

    graph->insert(prim::RaiseException, {error_message}, {}, raise.range());
    exit_blocks.insert(environment_stack->block());
  }

  // emit assserions as an if branch so that assertions will reuse the
  void emitAssert(const Assert& stmt) {
    CondValue cond_value = emitCondExpr(stmt.test());
    List<Stmt> true_branch = List<Stmt>::create(stmt.range(), {});
    // Create an `AssertionError("the_message")` call
    auto message = (stmt.msg().present())
        ? stmt.msg().get()
        : StringLiteral::create(stmt.range(), "");
    auto callee = Var::create(
        stmt.range(), Ident::create(stmt.range(), "AssertionError"));
    auto apply = Apply::create(
        stmt.range(),
        callee,
        List<Expr>::create(stmt.range(), {message}),
        List<Attribute>::create(stmt.range(), {}));

    List<Stmt> false_branch =
        List<Stmt>::create(stmt.range(), {Raise::create(stmt.range(), apply)});
    emitIfElseBlocks(stmt.range(), cond_value, true_branch, false_branch);
  }

  // Validate that the `lhs` Expr's in an assignment statement are valid. That
  // is:
  //
  // 1) All lhs Expr's are either Var, Tuple or Starred nodes
  // 2) There is at most one Starred node in the lhs Expr
  // 3) A Starred node can only appear when there is another non-Starred lhs
  //    Expr. Concretely this means that `*abc = func()` is illegal. Unpacking
  //    all outputs into a tuple is covered by `abc = func()`.
  bool validateAssignLhsExpr(const List<Expr>& lhs, const SourceRange& r) {
    size_t num_normal_assign = 0;
    size_t num_starred = 0;
    for (const auto& assignee : lhs) {
      if (assignee.kind() == TK_VAR || assignee.kind() == TK_SUBSCRIPT ||
          assignee.kind() == TK_TUPLE_LITERAL) {
        num_normal_assign++;
      } else if (assignee.kind() == TK_STARRED) {
        num_starred++;
      } else {
        throw ErrorReport(assignee) << "lhs of assignment must be a variable, "
                                    << "subscript, or starred expression";
      }
    }

    if (num_starred > 1) {
      throw ErrorReport(r)
          << "Only one starred expression is allowed on the lhs";
    }

    if (num_starred > 0 && num_normal_assign == 0) {
      throw ErrorReport(r) << "A Starred expression may only appear on the "
                           << "lhs within the presence of another non-starred"
                           << " expression";
    }

    return num_starred;
  }

  // Get the appropriate builtin op for this augmented assignment
  // If the RHS is a tensor, return the corresponding ATen in-place op
  // If it's a list of scalars, then return the corresponding list augment op
  Symbol getAugOp(const AugAssign& stmt, const TypePtr& type) {
    bool use_inplace_op = type->isSubtypeOf(TensorType::get()) ||
        type->kind() == TypeKind::ListType;
    switch (stmt.aug_op()) {
      case '+':
        return use_inplace_op ? aten::add_ : aten::add;
      case '-':
        return use_inplace_op ? aten::sub_ : aten::sub;
      case '/':
        return use_inplace_op ? aten::div_ : aten::div;
      case '*':
        return use_inplace_op ? aten::mul_ : aten::mul;
      case '%':
        return use_inplace_op ? aten::fmod_ : aten::fmod;
      default:
        throw ErrorReport(stmt)
            << "Unknown augmented assignment: " << kindToString(stmt.aug_op());
    }
  }

  // Get a pair of <in place magic method name, out of place magic method name>
  // since the out of place method is called if the in place method is not
  // present
  std::pair<std::string, std::string> getAugMagicMethod(const AugAssign& stmt) {
    switch (stmt.aug_op()) {
      case '+':
        return std::make_pair(std::string("__iadd__"), std::string("__add__"));
      case '-':
        return std::make_pair(std::string("__isub__"), std::string("__sub__"));
      case '/':
        return std::make_pair(
            std::string("__itruediv__"), std::string("__truediv__"));
      case '*':
        return std::make_pair(std::string("__imul__"), std::string("__mul__"));
      case '%':
        return std::make_pair(std::string("__imod__"), std::string("__mod__"));
      default:
        throw ErrorReport(stmt)
            << "Unknown augmented assignment: " << kindToString(stmt.aug_op());
    }
  }

  // Emit nodes for augmented assignments like `+=`
  void emitAugAssignment(const AugAssign& stmt) {
    switch (stmt.lhs().kind()) {
      case TK_VAR: {
        emitAugAssignmentToVar(stmt);
      } break;
      case '.': {
        emitAugAssignmentToSelectVar(stmt);
      } break;
      case TK_SUBSCRIPT: {
        emitAugAssignmentToSubscript(stmt);
      } break;
      default:
        throw ErrorReport(stmt.lhs())
            << "unexpected expression on "
            << "left-hand side of augmented assignment";
    }
  }

  // This will be called when there is a class param or module buffer
  // mutation which make the LHS of the expr be a select expression
  //
  // Example like:
  // class A(Module):
  //  def __init__():
  //    self.register_buffer("running_var", torch.zeros(1))
  //
  //  def forward():
  //    self.num_batches += 1
  void emitAugAssignmentToSelectVar(const AugAssign& stmt) {
    const auto lhs = Select(stmt.lhs());
    auto lhsSugaredVar = emitSugaredExpr(lhs.value(), 1);
    const auto lhsValue =
        lhsSugaredVar->attr(lhs.range(), method, lhs.selector().name())
            ->asValue(lhs.range(), method);
    auto result = emitAugAssignmentHelper(stmt, lhsValue);
    lhsSugaredVar->setAttr(stmt.range(), method, lhs.selector().name(), result);
  }

  void emitAugAssignmentToVar(const AugAssign& stmt) {
    const auto lhs = Var(stmt.lhs());
    auto lhsValue = emitExpr(lhs);
    auto result = emitAugAssignmentHelper(stmt, lhsValue);
    environment_stack->setVar(lhs.range(), lhs.name().name(), result);
  }

  Value* emitAugAssignmentHelper(const AugAssign& stmt, Value* lhs) {
    if (lhs->type()->kind() == TypeKind::ClassType) {
      // Call `__iadd__` so updates happen in place on class types
      // https://docs.python.org/3/reference/datamodel.html#object.__iadd__
      std::string in_place_method_name;
      std::string out_of_place_method_name;
      std::tie(in_place_method_name, out_of_place_method_name) =
          getAugMagicMethod(stmt);
      const auto rhs = emitExpr(stmt.rhs());

      // Determine whether to use __iadd__ or __add__ (use __add__ only if
      // __iadd__ is not present)
      auto type = lhs->type()->expect<ClassType>();
      std::string magic_method_name;
      if (type->findMethod(in_place_method_name)) {
        magic_method_name = in_place_method_name;
      } else if (type->findMethod(out_of_place_method_name)) {
        magic_method_name = out_of_place_method_name;
      } else {
        throw ErrorReport(stmt.range())
            << "Cannot emit inplace op on " << type->repr_str()
            << " since it does not define an " << in_place_method_name << " or "
            << out_of_place_method_name << " method";
      }

      // x += y is equivalent to x = x.__iadd__(y) or x = x.__add__(y) if
      // __iadd__ is not present
      return MethodValue(lhs, magic_method_name)
          .call(stmt.range(), method, {rhs}, {}, 0)
          ->asValue(stmt.range(), method);
    } else {
      const auto rhs = NamedValue(stmt.rhs().range(), emitExpr(stmt.rhs()))
                           .value(*method.graph());
      return emitBuiltinCall(
          stmt.range(),
          *method.graph(),
          getAugOp(stmt, lhs->type()),
          /*inputs=*/{lhs, rhs},
          /*attributes=*/{},
          /*self=*/c10::nullopt);
    }
  }

  void emitAugAssignmentGeneric(
      const AugAssign& stmt,
      const Subscript& lhs,
      Value* sliceable) {
    // Get the idx to augment
    const auto subscriptExprs = lhs.subscript_exprs();
    const TypePtr type = sliceable->type();
    if (subscriptExprs.size() != 1) {
      throw ErrorReport(subscriptExprs)
          << "Sliced expression not yet supported for " << type->repr_str()
          << " augmented assignment. "
          << "File a bug if you want this";
    }

    TypePtr elemType = nullptr;
    if (const ListTypePtr listType = type->cast<ListType>()) {
      elemType = listType->getElementType();
    } else if (const DictTypePtr dictType = type->cast<DictType>()) {
      elemType = dictType->getKeyType();
    }

    if (elemType == nullptr) {
      throw ErrorReport(lhs)
          << type->repr_str() << " does not support augmented assignment.";
    }
    const auto idxValue = emitExpr(subscriptExprs[0]);
    const auto containerArg =
        NamedValue(lhs.value().range(), type->str(), sliceable);
    const auto idxArg = NamedValue(subscriptExprs.range(), "idx", idxValue);
    const auto valueArg =
        NamedValue(stmt.rhs().range(), "value", emitExpr(stmt.rhs()));

    const auto getItem = graph->insert(
        aten::__getitem__, {containerArg, idxArg}, {}, stmt.range());
    const auto augmentedItem = graph->insert(
        getAugOp(stmt, elemType), {getItem, valueArg}, {}, stmt.range());
    graph->insert(
        aten::_set_item,
        {containerArg, idxArg, augmentedItem},
        {},
        stmt.range());
  }

  void emitAugAssignmentToSubscript(const AugAssign& stmt) {
    // Process the base list value
    const auto lhs = Subscript(stmt.lhs());
    const auto sliceable = emitExpr(lhs.value());

    if (sliceable->type()->isSubtypeOf(TensorType::get())) {
      // If it's a tensor, just fully evaluate the subscript operation and emit
      // an in-place assignment
      std::vector<Value*> tensorIndices;
      Value* sliced;
      std::tie(sliced, tensorIndices) = emitIntAndSliceIndexing(
          lhs.range(), sliceable, lhs.subscript_exprs());

      const auto slicedArg = NamedValue(stmt.lhs().range(), "self", sliced);
      const auto rhs = NamedValue(stmt.rhs().range(), emitExpr(stmt.rhs()));
      if (tensorIndices.size() == 0) {
        // Common case: we only tried to index with int and slices. Emit the
        // correct augmented assignment op to the sliced value
        emitBuiltinCall(
            stmt.range(),
            *method.graph(),
            getAugOp(stmt, sliceable->type()),
            {rhs},
            {},
            slicedArg);
      } else {
        // Special case: we tried to do "advanced indexing". Lower this expr
        // into `index` and `index_put_` ops with tensordices of Tensor?[]
        const auto indices = graph
                                 ->insertNode(graph->createList(
                                     OptionalType::ofTensor(), tensorIndices))
                                 ->output();
        const auto indexed =
            graph->insert(aten::index, {slicedArg, indices}, {}, stmt.range());
        const auto augmented = emitBuiltinCall(
            stmt.range(),
            *method.graph(),
            getAugOp(stmt, sliceable->type()),
            {rhs},
            {},
            indexed);
        graph->insert(
            aten::index_put_,
            {slicedArg, indices, augmented},
            {},
            stmt.range());
      }
    } else {
      emitAugAssignmentGeneric(stmt, lhs, sliceable);
    }
  }

  NamedValue emitValueToTensor(
      const NamedValue& value,
      const NamedValue& matchTypeOf) {
    // Add implicit conversion of int/float/bool/number types to tensors
    // Used in emitSubscriptAssign to convert:
    //   `tensor(...)[x] = 99` to `tensor(...)[x] = tensor(99)`
    // Mirrors the `valueToTensor` behavior in python_variable_indexing.cpp
    const auto kind = value.type()->kind();
    if (kind == c10::TypeKind::NumberType || kind == c10::TypeKind::IntType ||
        kind == c10::TypeKind::BoolType || kind == c10::TypeKind::FloatType) {
      auto dtype = graph->insert(prim::dtype, {matchTypeOf}, {});
      auto device = graph->insert(prim::device, {matchTypeOf}, {});
      auto converted = graph->insert(
          aten::tensor,
          {value},
          {NamedValue("dtype", dtype), NamedValue("device", device)});
      return NamedValue(value.loc(), converted);
    }

    return value;
  }

  // Emit mutating assignments like `foo[0] = bar`
  void emitSubscriptAssign(
      const SourceRange& stmtRange,
      const Subscript& lhs,
      const Expr& rhs) {
    emitSubscriptAssign(stmtRange, lhs, NamedValue(rhs.range(), emitExpr(rhs)));
  }

  void emitSubscriptAssign(
      const SourceRange& stmtRange,
      const Subscript& lhs,
      const NamedValue& rhs) {
    // First check the base value.
    auto sliceable = emitExpr(lhs.value());

    // If it's a tensor, copy the RHS data into it
    if (sliceable->type()->isSubtypeOf(TensorType::get())) {
      std::vector<Value*> tensorIndices;
      Value* sliced;
      // Handle multi-dimensional slicing: first emit int/slice indexing
      // TODO: the Python equivalent code has special-cased copy_to
      // broadcasting to match NumPy semantics (see PR#4853). We can't
      // replicate that without knowing the size of the Tensor; so really that
      // code should be moved into the aten function
      std::tie(sliced, tensorIndices) = emitIntAndSliceIndexing(
          lhs.range(), sliceable, lhs.subscript_exprs());

      const auto slicedArg = NamedValue(lhs.range(), sliced);

      // rhs must be a tensor, implicitly convert int/float/bool
      const auto convertedRhs = emitValueToTensor(rhs, slicedArg);

      if (tensorIndices.size() == 0) {
        // Common case: we only tried to index with int and slices. Copy the
        // RHS into the resulting tensor.
        graph->insert(aten::copy_, {slicedArg, convertedRhs}, {}, stmtRange);
      } else {
        // Special case: we tried to do "advanced indexing" with a tensor.
        // Dispatch to `aten::index_put_` with tensorindices of Tensor?[]
        const auto indices = graph
                                 ->insertNode(graph->createList(
                                     OptionalType::ofTensor(), tensorIndices))
                                 ->output();

        graph->insert(
            aten::index_put_,
            {slicedArg, indices, convertedRhs},
            {},
            stmtRange);
      }
      // Otherwise, this is a list or a classtype.
      // Dispatch to aten::_set_item to both select and assign
    } else {
      const auto subscript = lhs.subscript_exprs();
      if (subscript.size() != 1 || subscript[0].kind() == TK_SLICE_EXPR) {
        throw ErrorReport(subscript)
            << "Sliced expression not yet supported for"
            << " subscripted assignment. "
            << "File a bug if you want this";
      }
      if (sliceable->type()->isSubtypeOf(AnyTupleType::get())) {
        throw ErrorReport(lhs) << sliceable->type()->repr_str()
                               << " does not support subscripted assignment";
      }

      std::vector<NamedValue> args;
      args.emplace_back(lhs.value().range(), "self", sliceable);
      args.emplace_back(
          lhs.subscript_exprs().range(), "idx", emitExpr(subscript[0]));
      args.push_back(rhs);
      makeMagic(
          "__setitem__",
          std::make_shared<BuiltinFunction>(aten::_set_item, at::nullopt))
          ->call(stmtRange, method, args, {}, 0);
    }
  }

  void emitTupleAssign(const TupleLiteral& tl, const Expr& rhs) {
    size_t n_binders = tl.inputs().size();
    bool starred_unpack = validateAssignLhsExpr(tl.inputs(), tl.range());
    if (starred_unpack)
      n_binders--;
    auto output = emitSugaredExpr(rhs, n_binders);
    emitTupleAssign(tl, output, rhs.range(), n_binders, starred_unpack);
  }

  void emitTupleAssign(
      const TupleLiteral& tl,
      const SugaredValuePtr& rhs_output,
      const SourceRange& rhs_loc,
      size_t n_binders,
      bool starred_unpack) {
    auto outputs = rhs_output->asTuple(
        rhs_loc,
        method,
        starred_unpack ? c10::nullopt : c10::optional<size_t>{n_binders});
    if (outputs.size() < n_binders) {
      throw ErrorReport(tl)
          << "need " << (starred_unpack ? "at least " : "") << n_binders
          << " values to unpack but found only " << outputs.size();
    }
    if (outputs.size() > n_binders && !starred_unpack) {
      throw ErrorReport(tl) << "too many values to unpack: need " << n_binders
                            << " but found " << outputs.size();
    }

    emitExprsAssign(tl.inputs(), outputs, rhs_loc, n_binders);
  }

  void emitExprsAssign(
      const List<Expr>& lhs_exprs,
      const at::ArrayRef<SugaredValuePtr> outputs,
      const SourceRange& rhs_loc,
      size_t n_binders) {
    int i = 0;
    for (auto assignee : lhs_exprs) {
      switch (assignee.kind()) {
        case TK_SUBSCRIPT:
          emitSubscriptAssign(
              rhs_loc,
              Subscript(assignee),
              NamedValue(rhs_loc, outputs.at(i)->asValue(rhs_loc, method)));
          i++;
          break;
        case TK_VAR:
          environment_stack->setSugaredVar(
              assignee.range(),
              Var(assignee).name().name(),
              outputs.at(i),
              /*annotated_type=*/nullptr);
          i++;
          break;
        case TK_STARRED: {
          auto var = Starred(assignee).expr();
          if (var.kind() != TK_VAR) {
            throw ErrorReport(var) << "Cannot pack a tuple into a non-variable";
          }
          size_t n_matched = outputs.size() - n_binders;
          ArrayRef<std::shared_ptr<SugaredValue>> outputs_ref = outputs;
          auto values = fmap(
              outputs_ref.slice(i, n_matched),
              [&](const std::shared_ptr<SugaredValue>& v) {
                return v->asValue(assignee.range(), method);
              });
          auto tup = graph->insertNode(graph->createTuple(values))->output();
          environment_stack->setVar(var.range(), Var(var).name().name(), tup);
          i += n_matched;
        } break;
        case TK_TUPLE_LITERAL: {
          // recursively emit tuple assignments on tuple literal input
          TupleLiteral sub_tl = TupleLiteral(assignee);
          size_t sub_n_binders = sub_tl.inputs().size();
          bool sub_starred_unpack =
              validateAssignLhsExpr(sub_tl.inputs(), sub_tl.range());
          if (sub_starred_unpack)
            sub_n_binders--;
          emitTupleAssign(
              sub_tl,
              outputs.at(i),
              rhs_loc,
              sub_n_binders,
              sub_starred_unpack);
          i++;
        } break;
        default:
          throw ErrorReport(assignee)
              << "unexpected expression on the left-hand side";
      }
    }
  }

  void emitAssignment(const Assign& stmt) {
    if (stmt.lhs_list().size() == 1) {
      return emitSingleAssignment(stmt);
    }
    // multiple assign & annotated type not supported in python
    TORCH_INTERNAL_ASSERT(stmt.lhs_list().size() > 1 && !stmt.type().present());
    // a = b = expr()
    // the semantics of multiple assignment is that expr() is emitted once, then
    // from left to right the assignments are made
    const auto tmp_name = createTempName("$tmp_assign_");
    environment_stack->setSugaredVar(
        stmt.rhs().range(),
        tmp_name,
        emitSugaredExpr(stmt.rhs().get(), 1),
        /*annotated_type=*/nullptr);
    auto ident = Var::create(
        stmt.rhs().range(), Ident::create(stmt.rhs().range(), tmp_name));
    for (auto expr : stmt.lhs_list()) {
      emitSingleAssignment(Assign::create(
          stmt.range(),
          List<Expr>::create(expr.range(), {expr}),
          Maybe<Expr>::create(stmt.rhs().range(), ident),
          Maybe<Expr>::create(stmt.range())));
    }
  }

  void emitSingleAssignment(const Assign& stmt) {
    if (!stmt.rhs().present()) {
      throw ErrorReport(stmt.range())
          << "For an assignment, expected an expression on the right-hand side";
    }
    const Expr& rhs = stmt.rhs().get();
    switch (stmt.lhs().kind()) {
      case TK_VAR: {
        auto v = Var(stmt.lhs());
        TypePtr type = nullptr;
        if (stmt.type().present()) {
          type = typeParser_.parseTypeFromExpr(stmt.type().get());
        }
        auto rhs_sugared_val = emitSugaredExpr(rhs, 1, type);
        // START BC HACK
        //
        // For old serialized quantized RNN modules, switch
        // quantized::linear_prepack to quantized::linear_prepack_legacy. We
        // changed linear_prepack to return a TorchBind class and not a
        // cpp_custom_type_hack tensor anymore, but the old serialized models
        // are tightly coupled with the type_hack version. If we still create a
        // Tensor here, then the quantized_lstm.legacy overload can kick in in
        // forward_impl(), and the module will still run correctly.
        if (method.qualname() ==
            "__torch__.torch.nn.quantized.dynamic.modules.rnn.PackedParameter.__setstate__") {
          if (auto sv =
                  std::dynamic_pointer_cast<SimpleValue>(rhs_sugared_val)) {
            Node* rhs_node = sv->getValue()->node();
            if (rhs_node->kind() ==
                Symbol::fromQualString("quantized::linear_prepack")) {
              std::vector<NamedValue> inputs;
              for (Value* i : rhs_node->inputs()) {
                inputs.emplace_back(i);
              }
              Value* new_val = rhs_node->owningGraph()->insert(
                  Symbol::fromQualString("quantized::linear_prepack_legacy"),
                  inputs,
                  {},
                  rhs_node->sourceRange());
              rhs_sugared_val = std::make_shared<SimpleValue>(new_val);
            }
          }
        }
        // END BC HACK
        environment_stack->setSugaredVar(
            v.range(),
            v.name().name(),
            std::move(rhs_sugared_val),
            /*annotated_type=*/type);
      } break;
      case TK_TUPLE_LITERAL:
        emitTupleAssign(TupleLiteral(stmt.lhs()), rhs);
        break;
      case '.':
        emitSelectAssign(stmt);
        break;
      case TK_SUBSCRIPT:
        emitSubscriptAssign(stmt.range(), Subscript(stmt.lhs()), rhs);
        break;
      default:
        throw ErrorReport(stmt.lhs())
            << "unexpected expression on left-hand side of assignment";
    }
  }

  void emitSelectAssign(const Assign& stmt) {
    if (!stmt.rhs().present()) {
      throw ErrorReport(stmt.range()) << "Expected RHS for assignment";
    }

    TypePtr type_hint = nullptr;
    if (stmt.type().present()) {
      type_hint = typeParser_.parseTypeFromExpr(stmt.type().get());
    }
    const auto lhs = Select(stmt.lhs());
    auto lhsObject = emitSugaredExpr(lhs.value(), 1);
    const auto rhsValue = emitSugaredExpr(stmt.rhs().get(), 1, type_hint)
                              ->asValue(stmt.rhs().range(), method);
    lhsObject->setAttr(stmt.range(), method, lhs.selector().name(), rhsValue);
  }

  NodeKind getNodeKind(int kind, int ninputs) {
    switch (kind) {
      case '+':
        return aten::add;
      case '-':
        return aten::sub;
      case TK_UNARY_MINUS:
        return aten::neg;
      case '*':
        return aten::mul;
      case TK_POW:
        return aten::pow;
      case '@':
        return aten::matmul;
      case TK_STARRED:
        return prim::Starred;
      case '/':
        return aten::div;
      case '%':
        return aten::remainder;
      case TK_NE:
        return aten::ne;
      case TK_EQ:
        return aten::eq;
      case '<':
        return aten::lt;
      case '>':
        return aten::gt;
      case TK_LE:
        return aten::le;
      case TK_GE:
        return aten::ge;
      case TK_AND:
        return aten::__and__;
      case TK_OR:
        return aten::__or__;
      case TK_IS:
        return aten::__is__;
      case TK_ISNOT:
        return aten::__isnot__;
      case TK_NOT:
        return aten::__not__;
      case TK_FLOOR_DIV:
        return aten::floordiv;
      case TK_LSHIFT:
        return aten::__lshift__;
      case TK_RSHIFT:
        return aten::__rshift__;
      case '&':
        return aten::__and__;
      case '|':
        return aten::__or__;
      case '^':
        return aten::__xor__;
      case TK_IN:
        return aten::__contains__;
      default:
        throw std::runtime_error("unknown kind " + c10::to_string(kind));
    }
  }

  std::string getOperatorOverload(int kind, int ninputs) {
    switch (kind) {
      case '+':
        return "__add__";
      case '-':
        return "__sub__";
      case TK_UNARY_MINUS:
        return "__neg__";
      case '~':
        return "__invert__";
      case '*':
        return "__mul__";
      case TK_POW:
        return "__pow__";
      case '/':
        return "__truediv__";
      case '%':
        return "__mod__";
      case TK_NE:
        return "__ne__";
      case TK_EQ:
        return "__eq__";
      case '<':
        return "__lt__";
      case '>':
        return "__gt__";
      case TK_LE:
        return "__le__";
      case TK_GE:
        return "__ge__";
      case '&':
        return "__and__";
      case '|':
        return "__or__";
      case '^':
        return "__xor__";
      case TK_IN:
        return "__contains__";
      case TK_LSHIFT:
        return "__lshift__";
      case TK_RSHIFT:
        return "__rshift__";
      default:
        throw std::runtime_error("unknown kind " + c10::to_string(kind));
    }
  }

  std::vector<NamedValue> getNamedValues(
      const TreeList& trees,
      bool maybe_unpack) {
    std::vector<NamedValue> values;
    for (const auto& tree : trees) {
      if (maybe_unpack && tree->kind() == TK_STARRED) {
        auto starred = Starred(tree);
        auto entries = emitSugaredExpr(starred.expr(), 1)
                           ->asTuple(starred.range(), method);
        for (const auto& entry : entries) {
          values.emplace_back(
              tree->range(), entry->asValue(starred.range(), method));
        }
      } else {
        values.emplace_back(tree->range(), emitExpr(Expr(tree)));
      }
    }
    return values;
  }
  std::vector<NamedValue> getNamedValues(
      const List<Expr>& trees,
      bool maybe_unpack) {
    return getNamedValues(trees.tree()->trees(), maybe_unpack);
  }

  std::vector<Value*> getValues(const TreeList& trees, bool maybe_unpack) {
    return toValues(*graph, getNamedValues(trees, maybe_unpack));
  }
  std::vector<Value*> getValues(const List<Expr>& trees, bool maybe_unpack) {
    return getValues(trees.tree()->trees(), maybe_unpack);
  }

  std::vector<NamedValue> emitAttributes(const List<Attribute>& attributes) {
    return fmap(attributes, [&](const Attribute& attr) {
      return NamedValue(
          attr.range(), attr.name().name(), emitExpr(attr.value()));
    });
  }

  void checkApplyNumInputs(Apply& apply, size_t expected_inputs) {
    const SourceRange& loc = apply.range();
    if (apply.inputs().size() != expected_inputs) {
      throw ErrorReport(loc)
          << Var(apply.callee()).name().name() << " expected exactly "
          << expected_inputs << " arguments but found "
          << apply.inputs().size();
    }
    if (apply.attributes().size() > 0) {
      throw ErrorReport(loc)
          << Var(apply.callee()).name().name() << " takes no keyword arguments";
    }
  }

  std::shared_ptr<SugaredValue> emitApplyExpr(
      Apply& apply,
      size_t n_binders,
      const TypePtr& type_hint = nullptr) {
    auto sv = emitSugaredExpr(apply.callee(), 1);
    auto loc = apply.callee().range();
    if (auto special_form = dynamic_cast<SpecialFormValue*>(sv.get())) {
      return emitApplySpecialForm(special_form->form(), apply, type_hint);
    }
    auto inputs = getNamedValues(apply.inputs(), true);
    auto attributes = emitAttributes(apply.attributes());
    return sv->call(loc, method, inputs, attributes, n_binders);
  }

  // this function handles expressions that look like apply statements
  // but have special evaluation rules for the arguments.
  // when adding a new case, only add a special form if it cannot be expressed
  // using the standard SugaredValue::call function, which enforces normal
  // evaluation order.
  std::shared_ptr<SugaredValue> emitApplySpecialForm(
      Symbol form,
      Apply& apply,
      const TypePtr& type_hint = nullptr) {
    switch (form) {
      case prim::fork: {
        auto& trees = apply.inputs().tree()->trees();
        if (trees.size() < 1) {
          throw ErrorReport(apply)
              << "Expected at least one argument to fork()";
        }
        auto forked = emitSugaredExpr(Expr(trees[0]), 1);
        TreeList sliced_trees(trees.begin() + 1, trees.end());
        auto inputs = getNamedValues(sliced_trees, true);
        auto attributes = emitAttributes(apply.attributes());
        return emitForkExpr(apply.range(), forked, inputs, attributes);
      }
      case prim::annotate: {
        checkApplyNumInputs(apply, 2);
        TypePtr type = typeParser_.parseTypeFromExpr(apply.inputs()[0]);
        Value* expr = tryConvertToType(
            apply.range(),
            *graph,
            type,
            emitExpr(apply.inputs()[1], type),
            /*allow_conversions=*/true);

        std::stringstream why_not;
        if (!expr->type()->isSubtypeOfExt(type, &why_not)) {
          throw ErrorReport(apply.inputs())
              << "expected an expression of type " << type->repr_str()
              << " but found " << expr->type()->repr_str() << "\n"
              << why_not.str();
        }

        // None is a subtype of Optional[T], but we want to remember what T is,
        // after annotation so that variables assigned to this None will still
        // get the right type. To do this, we make a None constant that
        // has the type Optional[T]
        if (type->kind() == OptionalType::Kind &&
            expr->type()->isSubtypeOf(NoneType::get())) {
          Node* none = graph->createNone();
          none->output()->setType(type);
          graph->insertNode(none);
          expr = none->output();
        }

        return std::make_shared<SimpleValue>(expr);
      }
      case prim::rpc_async:
      case prim::rpc_sync:
      case prim::rpc_remote: {
        return emitRpcExpr(apply, form);
      }
      case prim::unchecked_cast: {
        checkApplyNumInputs(apply, 2);
        TypePtr type = typeParser_.parseTypeFromExpr(apply.inputs()[0]);
        Value* v = emitExpr(apply.inputs()[1]);
        // avoid generating nested unchecked_casts because they are already
        // inserted during serialization
        if (v->node()->kind() != prim::unchecked_cast || *v->type() != *type) {
          v = graph->insertUncheckedCast(v, type);
        }
        return std::make_shared<SimpleValue>(v);
      } break;
      case prim::GetAttr: {
        checkApplyNumInputs(apply, 2);
        auto obj = emitSugaredExpr(apply.inputs()[0], 1);
        auto selector = apply.inputs()[1];
        if (selector.kind() != TK_STRINGLITERAL) {
          throw ErrorReport(apply)
              << "getattr's second argument must be a string literal";
        }
        const std::string& name = StringLiteral(selector).text();
        return obj->attr(apply.range(), method, name);
      }
      case prim::Uninitialized: {
        checkApplyNumInputs(apply, 1);
        TypePtr type = typeParser_.parseTypeFromExpr(apply.inputs()[0]);
        auto out = graph->insertNode(graph->createUninitialized(type))
                       ->setSourceRange(apply.range());
        return std::make_shared<SimpleValue>(out->output());
      }
      case prim::TupleConstruct: {
        checkApplyNumInputs(apply, 1);
        auto arg = emitSugaredExpr(apply.inputs()[0], 1);
        auto inputs = arg->asTuple(apply.range(), method);
        auto inp_values = fmap(inputs, [&](const SugaredValuePtr& sv) {
          return sv->asValue(apply.range(), method);
        });
        return std::make_shared<SimpleValue>(
            graph->insertNode(graph->createTuple(inp_values))->output());
      }
      case prim::isinstance: {
        checkApplyNumInputs(apply, 2);
        auto result = emitIsInstance(apply.inputs()[0], apply.inputs()[1]);
        return std::make_shared<SimpleValue>(result.value());
      }
      case prim::tolist: {
        auto select = Select(apply.callee());
        auto value = select.value();
        auto operand = emitSugaredExpr(value, 1);

        if (!type_hint) {
          throw ErrorReport(apply)
              << "Expected type hint for result of tolist()";
        }

        return std::make_shared<SimpleValue>(graph->insertToList(
            operand->asValue(value.range(), method), type_hint));
      }
      case prim::HasAttr: {
        checkApplyNumInputs(apply, 2);
        const auto result = emitHasAttr(apply.inputs()[0], apply.inputs()[1]);
        return std::make_shared<SimpleValue>(result.value());
      } break;
      // This represents the "__new__" method on classes
      // because it takes a ClassValue as input.
      // So if we see:
      //   Foo.__new__(Foo)
      // Foo is a ClassValue, calling `attr("__new__")` will return a
      // CreateObject special form.
      case prim::CreateObject: {
        if (apply.inputs().size() != 1) {
          throw ErrorReport(apply) << "Only one argument to __new__ allowed";
        }
        auto arg = emitSugaredExpr(apply.inputs()[0], 1);
        auto class_arg = dynamic_cast<ClassValue*>(arg.get());
        if (!class_arg) {
          throw ErrorReport(apply)
              << "Expected class value as argument to __new__, got "
              << arg->kind() << " instead";
        }
        auto createNode =
            graph->insertNode(graph->createObject(class_arg->type_));
        return std::make_shared<SimpleValue>(createNode->output());
      }
      // We construct the iterable tree here using the IterableTree
      // SugaredValue, The tree consists of SimpleValue, RangeValue or
      // IterableTree: For SimpleValues(List, Dict, etc) or RangeValue. We will
      // make them as tree leaves since we could get the loop information from
      // len() and get_item(). For IterableTree like zip(), enumerate(), we can
      // model them as a combination of leaves, and we emit a IterableTree value
      // to record the tree information
      case prim::range: {
        std::vector<Value*> input_vals =
            getValues(apply.inputs(), /*maybe_unpack=*/true);
        return std::make_shared<RangeValue>(apply.range(), method, input_vals);
      }
      case prim::enumerate: {
        const SourceRange& loc = apply.range();
        auto inputs = apply.inputs();
        auto input_size = apply.inputs().size();
        // enumerate(x) can be rewrite as subtrees:
        // IterableTree(RangeValue(0, math.inf), SimpleValue(x))
        Value* start_index = nullptr;
        if (input_size == 0) {
          throw ErrorReport(loc)
              << "enumerate expected at least 1 arguments, got 0";
        }

        if (input_size == 2) {
          start_index = emitSugaredExpr(inputs[1], 1)->asValue(loc, method);
        }

        if (input_size > 2) {
          throw ErrorReport(loc)
              << "enumerate expected at most 2 arguments, got " << input_size;
        }
        std::vector<Value*> range_inputs;
        if (start_index != nullptr) {
          range_inputs.emplace_back(start_index);
        }
        Value* end = materializeConstant(
            std::numeric_limits<int64_t>::max(),
            *graph,
            loc,
            integral_constants);
        range_inputs.emplace_back(end);
        SugaredValuePtr expr_sv = emitSugaredExpr(inputs[0], 1);
        auto iterable_value = expr_sv->iter(loc, method);

        // range should have the same static length as the other iterable
        c10::optional<int64_t> iter_static_len = iterable_value->staticLen();
        SugaredValuePtr range_sv = std::make_shared<RangeValue>(
            loc, method, range_inputs, iter_static_len);

        auto tree = std::make_shared<IterableTree>();
        tree->addChild(loc, method, range_sv);
        tree->addChild(loc, method, iterable_value);
        return tree;
      }
      case prim::zip: {
        // zip(x, y) can be rewrite as subtrees:
        // IterableTree(IterableTree(x), IterableTree(y))
        auto inputs = apply.inputs();
        if (inputs.size() == 0) {
          throw ErrorReport(apply)
              << "zip expected at least 1 arguments, got 0";
        }
        auto iterable_tree = std::make_shared<IterableTree>();
        for (Expr expr : inputs) {
          auto iterable = emitSugaredExpr(expr, 1)->iter(apply.range(), method);
          iterable_tree->addChild(apply.range(), method, iterable);
        }
        return iterable_tree;
      }
      default:
        TORCH_INTERNAL_ASSERT(false, "unknown special form: ", form);
    }
  }

  Value* emitExpr(const Expr& tree, const TypePtr& type_hint = nullptr) {
    // Push the source range of a call in case compiling this function
    // triggers an error
    ErrorReport::CallStack::update_pending_range(tree.range());
    return emitSugaredExpr(tree, 1, type_hint)->asValue(tree.range(), method);
  }

  NodeKind reverseComparision(NodeKind kind) {
    if (kind == aten::lt) {
      return aten::gt;
    } else if (kind == aten::le) {
      return aten::ge;
    } else if (kind == aten::gt) {
      return aten::lt;
    } else if (kind == aten::ge) {
      return aten::le;
    }
    throw std::runtime_error(
        "reverseComparision: unsupported NodeKind. File a bug");
  }

  // any expression that can produce a SugaredValue is handled here
  // expressions that only return a single Value* are handled in emitSimpleExpr
  // type_hint is set if there is a type that this value is expected to be
  // e.g. a : List[int] = []
  // or a = torch.jit.annotate(List[int], [])
  // the caller is responsible for checking that the result matches type_hint
  // emitSugaredExpr is free to ignore it.
  std::shared_ptr<SugaredValue> emitSugaredExpr(
      const Expr& tree,
      size_t n_binders,
      const TypePtr& type_hint = nullptr) {
    switch (tree.kind()) {
      case TK_VAR:
        return environment_stack->getSugaredVar(Var(tree).name());
      case '.': {
        auto select = Select(tree);
        auto sv = emitSugaredExpr(select.value(), 1);
        return sv->attr(select.range(), method, select.selector().name());
      }
      case TK_APPLY: {
        auto apply = Apply(tree);
        return emitApplyExpr(apply, n_binders, type_hint);
      } break;
      case TK_SUBSCRIPT: {
        return emitSubscript(Subscript(tree));
      } break;
      default:
        return std::make_shared<SimpleValue>(emitSimpleExpr(tree, type_hint));
    }
  }

  Value* emitUnaryOp(
      const TreeRef& tree,
      const std::string& magicMethod,
      const c10::Symbol& opSymbol) {
    const auto& inputs = tree->trees();
    auto named_values = getNamedValues(inputs, /*maybe_unpack=*/false);
    auto val =
        asSimple(makeMagic(
                     magicMethod,
                     std::make_shared<BuiltinFunction>(opSymbol, at::nullopt))
                     ->call(tree->range(), method, named_values, {}, 0));

    // if we emitted the unary op and not some other overloaded function,
    // then try to constantfold
    if (val->node()->kind() != opSymbol) {
      return val;
    }

    auto maybe_out_stack = runNodeIfInputsAreConstant(val->node());
    if (!maybe_out_stack) {
      return val;
    }
    TORCH_INTERNAL_ASSERT(maybe_out_stack->size() == 1);
    return graph->insertConstant(maybe_out_stack->at(0), tree->range());
  }

  std::shared_ptr<SugaredValue> emitForkExpr(
      SourceRange loc,
      const std::shared_ptr<SugaredValue>& forked,
      at::ArrayRef<NamedValue> inputs,
      at::ArrayRef<NamedValue> attributes) {
    auto g = method.graph();
    Node* fork_node;
    TypePtr out_type;

    fork_node = g->insertNode(method.graph()->create(prim::forkClosure, 1))
                    ->setSourceRange(loc);

    // We create a fork by emitting a closure and setting the closure output
    // into the fork input. If a closure doesn't already exist, we create one.
    {
      WithInsertPoint insert(fork_node);
      if (ClosureValue* sv = dynamic_cast<ClosureValue*>(forked.get())) {
        Value* closure_output = sv->asValue(loc, method);
        Block* closure_block = closure_output->node()->blocks().at(0);
        TORCH_INTERNAL_ASSERT(closure_block->outputs().size() == 1);
        out_type = closure_block->outputs().at(0)->type();
        fork_node->addInput(closure_output);
      } else {
        auto emit_closure_body = [&](Block* closure_block) {
          auto fn_sugared_output =
              forked->call(loc, method, inputs, attributes, 1);
          auto fn_simple_output = fn_sugared_output->asValue(loc, method);
          closure_block->registerOutput(fn_simple_output);
          out_type = fn_simple_output->type();
        };
        auto closure_value = emitClosure(emit_closure_body);
        fork_node->addInput(closure_value->asValue(loc, method));
      }
    }
    Value* node_output =
        fork_node->output()->setType(FutureType::create(out_type));
    return std::make_shared<SimpleValue>(node_output);
  }

  std::shared_ptr<SugaredValue> emitRpcExpr(const Apply& apply, Symbol rpc_op) {
    // TODO: This is a temporary apporoach to enable calling user fucntion
    // through RPC in TorchScript,
    // Ideally, function value in JIT IR is first-class citizen and
    // The RPC C++ entry API can take c10::Function directly.
    auto rpcMinInputs = 2;
    auto rpcMaxInputs = 5; // NOLINT
    std::string op_name = rpc_op.toUnqualString();
    if (apply.inputs().size() < rpcMinInputs ||
        apply.inputs().size() > rpcMaxInputs) {
      throw ErrorReport(apply)
          << "Possible forms of call to " << op_name << "(..) are\n"
          << op_name
          << "(dst_worker_name, user_callable, args, kwargs, timeout)\n"
          << op_name << "(dst_worker_name, user_callable, args, kwargs)\n"
          << op_name << "(dst_worker_name, user_callable, args)\n"
          << op_name << "(dst_worker_name, user_callable)\n"
          << "Now the number of arguments is " << apply.inputs().size();
    }
    if (apply.attributes().size() != 0) {
      throw ErrorReport(apply)
          << op_name << "(dst_worker_name, user_callable, args, kwargs)"
          << "does not support kwargs yet";
    }
    // TODO: Make rpc_op(..) support taking kwargs,
    // like rpc_async(to="worker1", func=my_func, args=(), kwargs={})

    auto& input_trees = apply.inputs().tree()->trees();
    Value* dst_worker_name_value = emitExpr(Expr(input_trees[0]));
    std::shared_ptr<SugaredValue> user_callable_sugared_value =
        emitSugaredExpr(Expr(input_trees[1]), 1);
    TORCH_CHECK(
        user_callable_sugared_value->kind() == "function",
        "user_callable should be a FunctionValue, it's now a ",
        user_callable_sugared_value->kind())
    // NB: This should be done using `std::dynamic_pointer_cast`
    // and assert `user_callable_function_value != nullptr`. But somehow on
    // macos std::dynamic_pointer_cast always returns
    // `user_callable_function_value` as a `nullptr`, even if
    // `user_callable_sugared_value->kind() == "function"`.
    std::shared_ptr<FunctionValue> user_callable_function_value =
        std::static_pointer_cast<FunctionValue>(user_callable_sugared_value);
    // If `kwargs` is an empty dict, users are allowed to not pass `kwargs`.
    // If `args` and `kwargs` are an empty tuple and an empty dict,
    // respectively, users are allowed to not pass `args` and `kwargs`.

    TreeList args_kwargs_timeout_trees(
        input_trees.begin() + 2, input_trees.end());

    // Get user callable.
    const auto& callablePtrs = user_callable_function_value->callees();
    TORCH_INTERNAL_ASSERT(
        callablePtrs.size() == 1,
        "User-provided callable size should be 1. Now it's",
        callablePtrs.size())
    Function* callablePtr = callablePtrs.at(0);

    const auto& functionSchema = callablePtr->getSchema();
    const SourceRange& loc = apply.range();
    auto graphPtr = method.graph();

    // Match FunctionSchema.
    std::vector<NamedValue> args;
    std::vector<NamedValue> kwargs;
    // Get args and kwargs as `NamedValue`s.
    // Similar to getNamedValues(..) and emitAttributes(..).
    if (args_kwargs_timeout_trees.size() >= 1) {
      // Unroll args from a Var that is known to be a Tuple.
      auto& args_tree = args_kwargs_timeout_trees[0];
      auto entry_sugared_values = emitSugaredExpr(Expr(args_tree), 1)
                                      ->asTuple(args_tree->range(), method);
      args.reserve(entry_sugared_values.size());
      for (const auto& entrie_sugared_value : entry_sugared_values) {
        args.emplace_back(
            args_tree->range(),
            entrie_sugared_value->asValue(args_tree->range(), method));
      }
      // NB: Can't do schema check on kwargs, given the RPC API is
      // rpc_op(to, user_callable, args, kwargs),
      // users can construct kwargs = {"first" + "_arg" : 1}.
      // Notice the key is determined at run time.
      // We can do it at compile time, unless one day the RPC API is
      // rpc_op(to, user_callable, arg_0, arg_1, kwarg_0="foo",
      // kwarg_1="bar")
    }
    matchSchema(functionSchema, loc, *graphPtr, args, kwargs);

    // Graph insert the QualifiedName as an constant input IR Value.
    const auto& qualname = callablePtr->qualname();
    IValue userCallableQualNameIValue(qualname.qualifiedName());
    Value* userCallableQualNameValue =
        graphPtr->insertConstant(userCallableQualNameIValue, loc);

    // Graph insert the corresponding RPC node to the graph.
    Node* rpc_node =
        graphPtr->insertNode(graphPtr->create(rpc_op, 1))->setSourceRange(loc);
    {
      WithInsertPoint insert(rpc_node);
      rpc_node->addInput(dst_worker_name_value);
      rpc_node->addInput(userCallableQualNameValue);

      for (const auto& tree : args_kwargs_timeout_trees) {
        rpc_node->addInput(emitExpr(Expr(tree)));
      }
    }
    Value* rpc_node_output = rpc_node->output();

    // Set output type from FunctionSchema and corresponding rpc_op.
    const std::vector<Argument>& returns = functionSchema.returns();
    TORCH_INTERNAL_ASSERT(returns.size() == 1);
    TypePtr output_type = nullptr;
    if (rpc_op == prim::rpc_async) {
      // rpc_async returns FutureType of the functionSchema's return type
      output_type = FutureType::create(returns[0].type());
    } else if (rpc_op == prim::rpc_sync) {
      // rpc_sync returns the functionSchema's return type
      output_type = returns[0].type();
    } else if (rpc_op == prim::rpc_remote) {
      // rpc_remote returns RRefType of the functionSchema's return type
      output_type = RRefType::create(returns[0].type());
    } else {
      throw ErrorReport(apply)
          << rpc_op.toDisplayString() << " is not supported in TorchScript!'";
    }
    rpc_node_output->setType(output_type);
    return std::make_shared<SimpleValue>(rpc_node_output);
  }

  Value* emitSimpleExpr(
      const TreeRef& tree,
      const TypePtr& type_hint = nullptr) {
    switch (tree->kind()) {
      case TK_FLOOR_DIV:
      case '@': {
        const auto& inputs = tree->trees();
        auto kind = getNodeKind(tree->kind(), inputs.size());
        auto named_values = getNamedValues(inputs, /*maybe_unpack=*/false);
        return emitBuiltinCall(
            tree->range(), *method.graph(), kind, named_values, {});
      }
      case TK_IN:
      case TK_POW:
      case TK_NE:
      case TK_EQ:
      case '<':
      case '>':
      case TK_LE:
      case TK_GE:
      case '*':
      case '/':
      case '+':
      case '-':
      case '%':
      case '&':
      case '|':
      case '^':
      case TK_LSHIFT:
      case TK_RSHIFT: {
        const auto& inputs = tree->trees();
        auto kind = getNodeKind(tree->kind(), inputs.size());
        auto overload = getOperatorOverload(tree->kind(), inputs.size());
        auto named_values = getNamedValues(inputs, /*maybe_unpack=*/false);

        if (tree->kind() == TK_IN) {
          // For `in` the arguments are in reverse order (the object being
          // checked is second)
          std::iter_swap(named_values.begin() + 0, named_values.begin() + 1);
        }

        return asSimple(
            makeMagic(
                overload, std::make_shared<BuiltinFunction>(kind, at::nullopt))
                ->call(tree->range(), method, named_values, {}, 0));
      }
      case TK_IS:
      case TK_ISNOT:
      case TK_AND:
      case TK_OR:
      case TK_NOT: {
        return emitCondExpr(Expr(tree)).value();
      }
      case TK_UNARY_MINUS: {
        return emitUnaryOp(tree, "__neg__", aten::neg);
      }
      case '~': {
        return emitUnaryOp(tree, "__invert__", aten::bitwise_not);
      }
      case TK_STARRED: {
        throw ErrorReport(tree)
            << "Unexpected starred expansion. File a bug report";
      }
      case TK_CONST: {
        return emitConst(Const(tree));
      } break;
      case TK_TRUE: {
        return graph->insertConstant(true, tree->range());
      } break;
      case TK_FALSE: {
        return graph->insertConstant(false, tree->range());
      } break;
      case TK_NONE: {
        return graph->insertConstant(IValue(), tree->range());
      } break;
      case TK_IF_EXPR: {
        return emitTernaryIf(TernaryIf(tree));
      } break;
      case TK_STRINGLITERAL: {
        return emitStringLiteral(StringLiteral(tree));
      } break;
      case TK_LIST_LITERAL: {
        auto ll = ListLiteral(tree);
        auto values = getValues(ll.inputs(), /*maybe_unpack=*/true);

        // determine the element type of the list
        // if we have a type hint of List[T], use T
        // if the list is non-empty use type_of(list[0])
        // otherwise assume it is List[Tensor]
        TypePtr elem_type = TensorType::get();
        if (type_hint) {
          if (type_hint->kind() == TypeKind::ListType) {
            elem_type = type_hint->expect<ListType>()->getElementType();
          } else {
            // If the type hint was not a List[T] throw an error
            throw ErrorReport(tree)
                << "Expected a List type hint but instead got "
                << type_hint->repr_str();
          }
        } else if (!values.empty()) {
          std::stringstream ss;
          auto types = fmap(values, [](const Value* v) { return v->type(); });
          auto maybe_elem_type = unifyTypeList(types, ss);
          if (!maybe_elem_type) {
            throw ErrorReport(tree) << "Lists must contain only a single type\n"
                                    << ss.str();
          }
          elem_type = maybe_elem_type.value();
        }

        for (auto v : values) {
          std::stringstream ss;
          if (!v->type()->isSubtypeOfExt(elem_type, &ss)) {
            throw ErrorReport(tree)
                << "Lists must contain only a single type, expected: "
                << elem_type->repr_str() << " but found "
                << v->type()->repr_str() << " instead.\n"
                << ss.str();
          }
        }
        Value* result =
            graph->insertNode(graph->createList(elem_type, values))->output();
        return result;
      } break;
      case TK_TUPLE_LITERAL: {
        auto ll = TupleLiteral(tree);
        auto values = getValues(ll.inputs(), /*maybe_unpack=*/true);
        return graph->insertNode(graph->createTuple(values))->output();
      } break;
      case TK_DICT_LITERAL: {
        auto dl = DictLiteral(tree);
        auto key_trees = dl.key_inputs().tree()->trees();
        auto value_trees = dl.value_inputs().tree()->trees();
        AT_ASSERT(key_trees.size() == value_trees.size());
        std::vector<Value*> keys, values;

        for (size_t i = 0; i < key_trees.size(); ++i) {
          keys.push_back(emitExpr(Expr(key_trees[i])));
          values.push_back(emitExpr(Expr(value_trees[i])));
        }

        TypePtr key_type = nullptr;
        TypePtr value_type = nullptr;

        if (type_hint && type_hint->kind() == TypeKind::DictType) {
          auto dict_type = type_hint->expect<DictType>();
          key_type = dict_type->getKeyType();
          value_type = dict_type->getValueType();
        } else if (keys.empty()) {
          key_type = StringType::get();
          value_type = TensorType::get();
        } else {
          key_type = keys.at(0)->type();
          value_type = values.at(0)->type();
        }
        AT_ASSERT(key_type != nullptr && value_type != nullptr);

        auto checkTypeOfValues = [](const TypePtr& type,
                                    const char* what,
                                    const std::vector<Value*>& values,
                                    TreeList trees) {
          for (size_t i = 0, N = values.size(); i < N; ++i) {
            std::stringstream ss;
            if (!values[i]->type()->isSubtypeOfExt(type, &ss)) {
              throw ErrorReport(trees[i])
                  << "Dict " << what
                  << " must contain only a single type, expected: "
                  << type->repr_str() << " but found "
                  << values[i]->type()->repr_str() << " instead.\n"
                  << ss.str();
            }
          }
        };
        checkTypeOfValues(key_type, "keys", keys, key_trees);
        checkTypeOfValues(value_type, "values", values, value_trees);

        return graph
            ->insertNode(graph->createDict(key_type, value_type, keys, values))
            ->output();
      } break;
      case TK_LIST_COMP: {
        auto lc = ListComp(tree);
        return emitListComprehension(lc, type_hint);
      } break;
      default:
        throw ErrorReport(tree) << "Cannot emit expr for: " << tree;
    }
  }

  Value* emitConst(const Const& c) {
    if (c.isFloatingPoint())
      return materializeConstant(
          c.asFloatingPoint(), *graph, c.range(), fp_constants);
    else
      return materializeConstant(
          c.asIntegral(), *graph, c.range(), integral_constants);
  }

  Value* emitStringLiteral(const StringLiteral& c) {
    return insertConstant(*graph, c.text(), c.range());
  }

  // Desugars select indexing: tensor[i] -> tensor.select(dim, i)
  Value* emitSelect(
      const SourceRange& loc,
      Value* input,
      Value* dim,
      Value* index) {
    return emitBuiltinCall(loc, *graph, aten::select, {input, dim, index}, {});
  }

  Value* emitSliceOp(
      const SourceRange& loc,
      Value* sliceable,
      Value* dim,
      Value* start,
      Value* end,
      Value* step) {
    std::vector<NamedValue> args;
    args.reserve(4);
    args.emplace_back(loc, "self", sliceable);

    // XXX: If list slicing becomes more complicated or stops using
    // aten::slice, we should separate it from this function.
    if (dim) {
      AT_ASSERT(sliceable->type()->isSubtypeOf(TensorType::get()));

      args.emplace_back(dim);
    } else {
      AT_ASSERT(!sliceable->type()->isSubtypeOf(TensorType::get()));
    }

    // Default value for start is 0.
    if (!start) {
      start = graph->insertConstant(0, loc);
    }
    args.emplace_back(loc, "start", start);

    if (end) {
      args.emplace_back(loc, "end", end);
    }
    if (sliceable->type()->cast<TupleType>()) {
      if (step) {
        // TODO: add support for slicing tuples with a step
        throw ErrorReport(loc)
            << "Unsupported operation: slicing tuples with a step isn't supported";
      }

      if (end) {
        return emitTupleSlice(loc, args[0], args[1], /*end*/ args[2]);
      } else {
        return emitTupleSlice(loc, args[0], args[1], c10::nullopt);
      }
    }

    if (!step) {
      step = graph->insertConstant(1, loc);
    }
    NamedValue step_nv = NamedValue(loc, "step", step);
    return emitBuiltinCall(loc, *graph, aten::slice, args, {step_nv});
  }

  // Desugars slice indexing: tensor[begin:end] -> tensor.slice(dim, begin, end,
  // 1)
  Value* emitSlice(
      const SourceRange& loc,
      Value* input,
      Value* dim, // Only used for tensor slicing
      const SliceExpr& slice) {
    Value* start = nullptr;
    Value* end = nullptr;
    Value* step = nullptr;
    if (slice.start().present()) {
      start = emitExpr(Expr(slice.start().get()));
    }
    if (slice.end().present()) {
      end = emitExpr(Expr(slice.end().get()));
    }
    if (slice.step().present()) {
      step = emitExpr(Expr(slice.step().get()));
    }
    return emitSliceOp(loc, input, dim, start, end, step);
  }

  Value* emitUnsqueeze(const SourceRange& loc, Value* input, Value* dim_val) {
    return emitBuiltinCall(loc, *graph, aten::unsqueeze, {input, dim_val}, {});
  }

  Value* emitIndex(
      const SourceRange& loc,
      Value* input,
      at::ArrayRef<Value*> indices) {
    // NB: the index of aten::index should be a type of List[Optional[Tensor]],
    // this is to support the case like t[:, :, 1] where : here indicates a
    // None/undefined tensor(optional tensor)
    auto* index =
        graph->insertNode(graph->createList(OptionalType::ofTensor(), indices))
            ->output();
    return emitBuiltinCall(loc, *graph, aten::index, {input, index}, {});
  }

  // Emits multidimensional slicing with int and slice indices.
  // Returns:
  // - Value*: the input after it has been indexed by int and slice indices.
  // - vector<Value*>: A list of tensor Value* indices that have not been
  // applied yet.
  //   Should be NULL at indices where sliceable (post-slicing) isn't indexed by
  //   a tensor.
  std::pair<Value*, std::vector<Value*>> emitIntAndSliceIndexing(
      const SourceRange& loc,
      Value* sliceable,
      const List<Expr>& subscript_exprs) {
    // Overall, to handle indexing (other than Tensors), we need to handle a
    // couple different things. For example, for x[1:3, None, 4], each of these
    // different index types (slice, None, and integer) result in different
    // number of dimensions. Slicing doesn't change the number of dimensions,
    // None adds a dimension, and integer removes a dimension. As these indexing
    // operations are applied left to right, the actual index that it's being
    // applied to depends on the previous operations. Ellipses indexing throws
    // another wrinkle. Ellipses selects any remaining unspecified dimensions.
    // Thus, for indexes following an ellipses, the actual index an indexing
    // operation is being applied to depends on the operations to the right.
    // Thus, we do two passes, one from left to right up until the ellipses, and
    // one from right to left.

    std::vector<Value*> tensor_indices;

    auto insert_value_for_dim = [&](int64_t dim) {
      return graph->insertConstant(dim, loc);
    };
    std::vector<int64_t> dims(subscript_exprs.size());
    std::vector<c10::optional<Value*>> exprs(
        subscript_exprs.size(), c10::nullopt);

    auto handle_indexing = [&](const Expr& subscript_expr,
                               int expr_idx,
                               int64_t dim,
                               bool is_reverse = false) {
      dims[expr_idx] = dim;

      // Slice expression case, does not represent a single index.
      if (subscript_expr.kind() == TK_SLICE_EXPR) {
        if (is_reverse) {
          return dim - 1;
        } else {
          return dim + 1;
        }
      }

      // Slice object case, does not represent a single index.
      auto subscript_sv = emitSugaredExpr(subscript_expr, 1);
      if (dynamic_cast<SliceValue*>(subscript_sv.get())) {
        if (is_reverse) {
          return dim - 1;
        } else {
          return dim + 1;
        }
      }

      TypePtr type_hint;
      if (subscript_expr.kind() == TK_NONE) {
        type_hint = NoneType::get();
      }
      auto index = emitExpr(subscript_expr, type_hint);

      // Accept list as subscript but convert it to a Tensor
      // since it's equivalent to indexing with Tensor.
      // The list can be a list literal or list variable.
      // Advanced indexing using list:
      // @torch.jit.script
      // def f(x):
      //   return x[[0, 1, 5]]  # or
      //   return x[[0, 1], [0, 1]]  # or
      //   return x[[[0, 1], [0, 1]], [[0, 1], [0, 1]]]  # or
      //   ls = [0, 1]
      //   return x[ls]
      // Statements above are equivalent to advanced indexing using Tensor:
      // @torch.jit.script
      // def f(x):
      //   return x[torch.tensor([0, 1, 5])]  # or
      //   return x[torch.tensor([0, 1]), torch.tensor([0, 1])]  # or
      //   return x[torch.tensor([[0, 1], [0, 1]]),
      //            torch.tensor([[0, 1], [0, 1]])]  # or
      //   ls = [0, 1]
      //   return x[torch.tensor(ls)]
      if (index->type()->kind() == c10::TypeKind::ListType) {
        // Always create index tensor as LongTensor.
        // This is to match Pytorch eager frontend behavior which accepts
        // indexing with float list.
        index = graph->insert(
            aten::tensor, {index}, {NamedValue("dtype", c10::kLong)});
      }

      exprs[expr_idx] = index;
      if (index->type()->isSubtypeOf(NoneType::get())) {
        if (is_reverse) {
          return dim;
        } else {
          return dim + 1;
        }
      } else if (index->type() == IntType::get()) {
        if (is_reverse) {
          return dim - 1;
        } else {
          return dim;
        }
      } else if (index->type()->isSubtypeOf(OptionalType::ofTensor())) {
        if (is_reverse) {
          throw ErrorReport(loc)
              << "Ellipses followed by tensor indexing is currently not supported";
        } else {
          return dim + 1;
        }
      } else {
        throw ErrorReport(loc)
            << "Unsupported operation: indexing tensor with unsupported index type '"
            << index->type()->repr_str()
            << "'. Only ints, slices, lists and tensors are supported";
      }
    };

    size_t idx = 0;
    int64_t dim = 0;
    for (; idx < subscript_exprs.size(); idx++) {
      auto subscript_expr = subscript_exprs[idx];
      if (subscript_expr.kind() == TK_DOTS) {
        break;
      }
      dim = handle_indexing(subscript_expr, idx, dim, /*is_reverse=*/false);
    }
    int64_t rdim = -1;
    for (size_t rev_idx = subscript_exprs.size() - 1; rev_idx > idx;
         rev_idx--) {
      auto subscript_expr = subscript_exprs[rev_idx];
      if (subscript_expr.kind() == TK_DOTS) {
        throw ErrorReport(loc)
            << "An index can only have a single ellipsis ('...')";
      }
      rdim =
          handle_indexing(subscript_expr, rev_idx, rdim, /*is_reverse=*/true);
    }
    for (size_t i = 0; i < exprs.size(); i++) {
      if (!exprs[i].has_value()) {
        if (subscript_exprs[i].kind() == TK_SLICE_EXPR) {
          sliceable = emitSlice(
              loc,
              sliceable,
              insert_value_for_dim(dims[i]),
              SliceExpr(subscript_exprs[i]));
          continue;
        }

        if (subscript_exprs[i].kind() == TK_DOTS) {
          continue;
        }

        auto subscript_sv = emitSugaredExpr(subscript_exprs[i], 1);
        if (const auto slice_value =
                dynamic_cast<SliceValue*>(subscript_sv.get())) {
          sliceable = emitSliceOp(
              loc,
              sliceable,
              insert_value_for_dim(dims[i]),
              slice_value->start(),
              slice_value->stop(),
              slice_value->step());
        }

        continue;
      }
      auto expr = exprs[i].value();
      if (expr->type()->isSubtypeOf(NoneType::get())) {
        sliceable =
            emitUnsqueeze(loc, sliceable, insert_value_for_dim(dims[i]));
      } else if (expr->type() == IntType::get()) {
        sliceable =
            emitSelect(loc, sliceable, insert_value_for_dim(dims[i]), expr);
      } else if (expr->type()->isSubtypeOf(OptionalType::ofTensor())) {
        tensor_indices.resize(dims[i] + 1);
        tensor_indices[dims[i]] = expr;
      } else {
        TORCH_INTERNAL_ASSERT(
            false, "Trying to process index type that we don't support.");
      }
    }
    // at::index takes in a List[Optional[Tensor]] where some dims can be None.
    // create None node with optional tensor output type and pass to at::index.
    for (auto& index : tensor_indices) {
      if (index == nullptr) {
        index = graph->insertNode(graph->createNone())->output();
      }
    }
    return std::make_pair(sliceable, tensor_indices);
  }

  // Desugars multidim slicing into slice/select/index/unsqueeze calls.
  //
  // XXX: Errors in user code are not elegantly reported.
  // Let's say someone were to do the following:
  //   @torch.jit.script
  //   def fn(x):
  //       return x[0, 1]
  //   fn(torch.randn(5))
  // Because we desugar this into two aten::select ops, the error message
  // complains about aten::select failing rather than there "not being
  // enough dimensions to index".
  //
  // The strategy is to slice and select the tensor for int and slices first
  // in one pass and then apply at::index on the result of the
  // slicing/selecting. Call the tensor after we've applied slice / select the
  // `sliced`. tensor_indices should have the same size as sliced.dim():
  // - tensor_indices[i] = NULL if we should not index `sliced` at dim i
  // - tensor_indices[i] = t if we should index `sliced` at dim i with tensor t.
  Value* emitMultidimSlicing(
      const SourceRange& loc,
      Value* sliceable,
      const List<Expr>& subscript_exprs) {
    if (!sliceable->type()->isSubtypeOf(TensorType::get())) {
      throw ErrorReport(loc)
          << "Unsupported operation: attempted to use multidimensional "
          << "indexing on a non-tensor type";
    }

    std::vector<Value*> tensor_indices;
    std::tie(sliceable, tensor_indices) =
        emitIntAndSliceIndexing(loc, sliceable, subscript_exprs);

    if (tensor_indices.empty()) {
      // XXX: Might need to at::alias this when we support mutability
      return sliceable;
    }

    return emitIndex(loc, sliceable, tensor_indices);
  }

  // Desugars slice syntactic sugar tensor[begin:end] -> tensor.slice(begin,
  // end).
  Value* emitBasicSlice(
      const SourceRange& loc,
      Value* sliceable,
      const List<Expr>& subscript_exprs) {
    AT_ASSERT(subscript_exprs.size() == 1);
    AT_ASSERT(subscript_exprs[0].kind() == TK_SLICE_EXPR);
    auto slice_exp = SliceExpr(subscript_exprs[0]);
    Value* maybe_dim = nullptr;
    if (sliceable->type()->isSubtypeOf(TensorType::get())) {
      // If the sliceable object is a tensor, specify a default dimension
      maybe_dim = graph->insertConstant(0, loc);
    }
    return emitSlice(loc, sliceable, maybe_dim, slice_exp);
  }

  int64_t getAdjTupleIndex(
      const SourceRange& loc,
      const TupleTypePtr& tuple_type,
      int64_t input_index,
      bool allow_out_of_bounds) {
    // set index to be positive to simplify logic in runtime
    int64_t adj_index = input_index;
    int64_t tuple_len = tuple_type->elements().size();
    if (input_index < 0) {
      adj_index = tuple_len + input_index;
    }
    if (!allow_out_of_bounds && (adj_index >= tuple_len || adj_index < 0)) {
      throw ErrorReport(loc) << "Tuple index out of range. Tuple is length "
                             << tuple_len << " and index is " << input_index;
    }
    return adj_index;
  }

  // When a list is marked const in a module, it gets converted to a tuple.
  // The result is indexing into a Tuple which contains only one type
  // is quite common. since indexing will likely be done in a for loop,
  // we do not want to invoke the overhead of converting the tuple to a list
  // each iter.
  Value* emitTupleIndex(
      const SourceRange& loc,
      Value* tuple_val,
      Value* idx_val) {
    auto tuple_typ = tuple_val->type()->cast<TupleType>();
    auto elems = tuple_typ->elements();
    TypePtr output_type;
    if (idx_val->type() != IntType::get()) {
      throw ErrorReport(loc) << "tuple index must be an integer";
    }
    auto idx = toIValue(idx_val);
    if (!idx) {
      if (elems.size() == 0 ||
          !convertibleToList(tuple_typ, ListType::create(elems[0]))) {
        throw ErrorReport(loc)
            << "Cannot index into a " << tuple_typ->repr_str()
            << " with a non-integer literal because we cannot resolve the output type";
      }
      output_type = elems[0];
    } else {
      auto adj_index = getAdjTupleIndex(
          loc, tuple_typ, idx->toInt(), /*allow_out_of_bounds*/ false);
      output_type = elems[adj_index];
    }
    return graph
        ->insertNode(graph->createTupleIndex(tuple_val, idx_val, output_type))
        ->output();
  }

  int64_t getSliceInd(Value* idx_val, const SourceRange& loc) {
    auto ivalue = toIValue(idx_val);
    if (ivalue && ivalue->isInt()) {
      return ivalue->to<int64_t>();
    } else {
      throw ErrorReport(loc) << "tuple slice indices must be integer constants";
    }
  }

  Value* emitTupleSlice(
      const SourceRange& loc,
      const NamedValue& tuple_val,
      const NamedValue& beg_val,
      const at::optional<NamedValue>& end_val) {
    auto tuple_type = tuple_val.value(*graph)->type()->expect<TupleType>();
    int64_t beg = getAdjTupleIndex(
        loc,
        tuple_type,
        getSliceInd(beg_val.value(*graph), loc),
        /*allow_out_of_bounds*/ true);
    int64_t end;
    int64_t tuple_len = tuple_type->elements().size();
    if (end_val) {
      end = getAdjTupleIndex(
          loc, tuple_type, getSliceInd(end_val->value(*graph), loc), true);
    } else {
      end = tuple_len;
    }
    // slicing does not throw out of bounds errors
    end = std::min(std::max((int64_t)0, end), tuple_len);
    beg = std::min(std::max((int64_t)0, beg), tuple_len);

    return graph
        ->insertNode(graph->createTupleSlice(tuple_val.value(*graph), beg, end))
        ->output();
  }

  std::shared_ptr<SugaredValue> emitSubscript(const Subscript& subscript) {
    const SugaredValuePtr sv = emitSugaredExpr(subscript.value(), 1);
    const List<Expr>& subscript_exprs = subscript.subscript_exprs();
    const SourceRange& range = subscript.range();
    const SourceRange& val_range = subscript.value().range();
    if (subscript_exprs.size() != 1) {
      return std::make_shared<SimpleValue>(emitMultidimSlicing(
          range, sv->asValue(val_range, method), subscript_exprs));
    }
    if (subscript_exprs[0].kind() == TK_SLICE_EXPR) {
      // TODO @wconstab refactor using Symbol instead of string compare
      if (sv->kind() == "module") {
        // Slicing isn't currently implemented for Sequential/ModuleList,
        // but is implemented for Tuples, so a quick workaround is to
        // convert to a tuple of Modules for slicing support.
        auto s_tuple_val =
            sv->asTupleValue(val_range, method)->asValue(val_range, method);
        const SliceExpr& slice = SliceExpr(subscript_exprs[0]);
        auto begin =
            NamedValue(val_range, "begin", emitExpr(Expr(slice.startOr(0))));
        if (slice.end().present()) {
          auto end =
              NamedValue(val_range, "end", emitExpr(Expr(slice.end().get())));
          auto tupleSliceValue =
              emitTupleSlice(val_range, s_tuple_val, begin, end);
          return std::make_shared<SimpleValue>(tupleSliceValue);
        } else {
          auto tupleSliceValue =
              emitTupleSlice(val_range, s_tuple_val, begin, c10::nullopt);
          return std::make_shared<SimpleValue>(tupleSliceValue);
        }
      } else {
        return std::make_shared<SimpleValue>(emitBasicSlice(
            range, sv->asValue(val_range, method), subscript_exprs));
      }
    } else {
      AT_ASSERT(subscript_exprs.size() == 1);
      Value* sliceable = sv->asValue(val_range, method);

      // In case of subscript expression being a Python Slice object.
      auto subscript_sv = emitSugaredExpr(subscript_exprs[0], 1);
      if (const auto slice_value =
              dynamic_cast<SliceValue*>(subscript_sv.get())) {
        Value* dim = nullptr;
        // aten::slice.tensor needs an additional `dim` input.
        if (sliceable->type()->isSubtypeOf(TensorType::get())) {
          dim = method.graph()->insertConstant(0, val_range);
        }

        Value* sliced = emitSliceOp(
            val_range,
            sliceable,
            dim,
            slice_value->start(),
            slice_value->stop(),
            slice_value->step());
        return std::make_shared<SimpleValue>(sliced);
      }

      // subscript is not a slice object, then it must be convertible to
      // a normal value.
      // Desugars gather syntactic sugar foo[i]
      Value* idx = subscript_sv->asValue(val_range, method);
      if (sliceable->type()->cast<TupleType>()) {
        return std::make_shared<SimpleValue>(
            emitTupleIndex(range, sv->asValue(val_range, method), idx));
      } else if (sliceable->type()->isSubtypeOf(TensorType::get())) {
        return std::make_shared<SimpleValue>(
            emitMultidimSlicing(range, sliceable, subscript_exprs));
      } else {
        return sv->getitem(range, method, idx);
      }
    }
  }
};

struct FunctionResolver : public Resolver {
  explicit FunctionResolver(
      Resolver* otherResolver,
      const std::unordered_map<std::string, Function*>& functionTable)
      : otherResolver_(otherResolver), functionTable_(functionTable) {}

  std::shared_ptr<SugaredValue> resolveValue(
      const std::string& name,
      Function& m,
      const SourceRange& loc) override {
    auto it = functionTable_.find(name);
    if (it != functionTable_.end()) {
      return std::make_shared<FunctionValue>(it->second);
    }
    return otherResolver_->resolveValue(name, m, loc);
  }

  TypePtr resolveType(const std::string& name, const SourceRange& loc)
      override {
    return otherResolver_->resolveType(name, loc);
  }

 private:
  Resolver* otherResolver_;
  const std::unordered_map<std::string, Function*>& functionTable_;
};

CompilationUnit::CompilationUnit(const std::string& source)
    : CompilationUnit() {
  // calles the define with native resolver to generate the graph for functions
  define(c10::nullopt, source, nativeResolver(), nullptr);
}

// This pair represents a pair of functions (getter and setter) obtained from
// compiling a Property.
struct CompilationUnit::PropertyPair
    : public std::pair<std::unique_ptr<Function>, std::unique_ptr<Function>> {
  PropertyPair(
      std::unique_ptr<Function> getter,
      std::unique_ptr<Function> setter) {
    TORCH_INTERNAL_ASSERT(getter, "Property pair must have defined getter")
    this->first = std::move(getter);
    this->second = std::move(setter);
  }

  std::unique_ptr<Function>& getGetter() {
    return this->first;
  }

  std::unique_ptr<Function>& getSetter() {
    return this->second;
  }
};

CompilationUnit::PropertyPair CompilationUnit::define_property(
    const c10::optional<c10::QualifiedName>& prefix,
    const Property& prop,
    const ResolverPtr& resolver,
    const Self* self,
    const std::unordered_map<std::string, Function*>& function_table,
    bool shouldMangle) const {
  // self must be defined because properties are features of classes and
  // modules.
  TORCH_INTERNAL_ASSERT(self);

  // Compile the getter function.
  std::unique_ptr<Function> getter_fn = define(
      prefix, prop.getter(), resolver, self, function_table, shouldMangle);

  // Compile the setter function if it exists.
  std::unique_ptr<Function> setter_fn = nullptr;
  if (prop.setter().present()) {
    setter_fn = define(
        prefix,
        prop.setter().get(),
        resolver,
        self,
        function_table,
        shouldMangle);
  }

  // Add the property to the class type definition.
  self->getClassType()->addProperty(
      prop.name().name(), getter_fn.get(), setter_fn.get());

  return PropertyPair(std::move(getter_fn), std::move(setter_fn));
}

std::unique_ptr<Function> CompilationUnit::define(
    const c10::optional<QualifiedName>& prefix,
    const Def& def,
    const ResolverPtr& resolver,
    const Self* self,
    const std::unordered_map<std::string, Function*>& function_table,
    bool shouldMangle) const {
  TORCH_INTERNAL_ASSERT(resolver);
  auto _resolver = resolver;
  if (!self) {
    // if self is defined, then these are methods and do not go into the
    // global namespace otherwise, they get defined together so we add them to
    // the function table so the methods can see each other
    _resolver =
        std::make_shared<FunctionResolver>(resolver.get(), function_table);
  }
  auto creator = [def, _resolver, self](Function& method) {
    // Store the function name so that it can be referenced if there is an error
    // while compiling this function
    std::string call_name = method.qualname().name();
    if (self) {
      auto atoms = method.qualname().atoms();
      // There should be at least a ClassName.method_name
      TORCH_INTERNAL_ASSERT(atoms.size() >= 2);
      call_name = atoms.at(atoms.size() - 2) + "." + atoms.at(atoms.size() - 1);
    }
    ErrorReport::CallStack call(call_name, def.range());
    to_ir(def, _resolver, self, method);
  };
  auto name = prefix ? QualifiedName(*prefix, def.name().name())
                     : QualifiedName(def.name().name());
  if (shouldMangle) {
    // If `shouldMangle` is set, we should generate a unique name for this
    // function if there is already an existing one.
    if (auto fn = find_function(name)) {
      name = mangle(name);
    }
  }
  auto fn = torch::make_unique<GraphFunction>(
      std::move(name), std::make_shared<Graph>(), creator);
  if (self) {
    // Register this as a method on `self`'s type
    self->getClassType()->addMethod(fn.get());
  }
  return fn;
}

std::vector<Function*> CompilationUnit::define(
    const c10::optional<c10::QualifiedName>& prefix,
    const std::vector<Property>& properties,
    const std::vector<ResolverPtr>& propResolvers,
    const std::vector<Def>& definitions,
    const std::vector<ResolverPtr>& defResolvers,
    const Self* self,
    bool shouldMangle) {
  TORCH_INTERNAL_ASSERT(definitions.size() == defResolvers.size());
  TORCH_INTERNAL_ASSERT(properties.size() == propResolvers.size());
  std::vector<Function*> functions;
  std::unordered_map<std::string, Function*> function_table;

  // Records fn in function_table, functions and with register_function.
  // This is done several times below, so this lambda helps avoid repeating
  // code.
  auto record_function = [&](std::unique_ptr<Function> fn) {
    function_table[fn->name()] = fn.get();
    functions.emplace_back(fn.get());
    this->register_function(std::move(fn));
  };

  for (size_t i = 0; i < properties.size(); i++) {
    PropertyPair property_fns = define_property(
        prefix,
        properties[i],
        propResolvers[i],
        self,
        function_table,
        shouldMangle);

    auto& getter_fn = property_fns.getGetter();
    auto& setter_fn = property_fns.getSetter();

    record_function(std::move(getter_fn));

    if (setter_fn) {
      record_function(std::move(setter_fn));
    }
  }

  for (size_t i = 0; i < definitions.size(); i++) {
    auto fn = define(
        prefix,
        definitions[i],
        defResolvers[i],
        self,
        function_table,
        shouldMangle);

    record_function(std::move(fn));
  }

  // We need to compile `__init__` first, since it can determine what attributes
  // are available to other methods. So reorder the definitions accordingly.
  for (auto& kv : function_table) {
    if (kv.first == "__init__") {
      kv.second->ensure_defined();
    }
  }

  for (Function* function : functions) {
    function->ensure_defined();
  }

  return functions;
}

std::vector<Function*> CompilationUnit::define(
    const c10::optional<QualifiedName>& prefix,
    const std::string& source,
    const ResolverPtr& resolver,
    const Self* self) {
  Parser p(std::make_shared<Source>(source, "<string>", 1));
  std::vector<Def> definitions;
  std::vector<ResolverPtr> resolvers;
  while (p.lexer().cur().kind != TK_EOF) {
    auto def = Def(p.parseFunction(/*is_method=*/bool(self)));
    definitions.push_back(def);
    resolvers.push_back(resolver);
  }
  return define(
      prefix,
      /*properties=*/{},
      /*propResolvers=*/{},
      definitions,
      resolvers,
      self);
}

void runCleanupPasses(std::shared_ptr<Graph>& to_clean) {
  liftClosures(to_clean);
  inlineForkedClosures(to_clean);
  if (getInlineEverythingMode()) {
    Inline(*to_clean);
  }

  // remove any uses of tuples that we inserted that are not needed
  LowerSimpleTuples(to_clean);

  // full constant propagation runs ops with mutable inputs if it can
  // prove that the inputs are not mutated anywhere in the graph.
  // if a mutating node is removed in the graph (e.g. constant prop inlined a
  // a constant if) then the next time constant prop is run it might be able
  // to run nodes it was not able to previously, and the graph may change
  // (jitter) So we run only constant prop w immutable types here bc
  // successive runs of immutable constant prop does not change the graph
  ConstantPropagationImmutableTypes(to_clean);

  // Constant Pooling pass must be after ConstantPropogation, which can create
  // new constants that needs to be pooled.
  ConstantPooling(to_clean);

  // For jitter
  CanonicalizeOutputs(to_clean);
}

// we consider _N where N is a number, to be a non-meaningful name
// and do not record it as a unique name. This allows python printing to
// be able to export and import more consistently named graphs
bool meaningfulName(const std::string& name) {
  if (name.size() == 0)
    return false;
  if (name[0] == '$')
    return false;
  if (name[0] != '_')
    return true;
  for (size_t i = 1; i < name.size(); ++i) {
    if (!isdigit(name[i]))
      return true;
  }
  return false;
}

void CompilationUnit::define_interface(
    const c10::QualifiedName& qualifiedName,
    const ClassDef& classDef,
    ResolverPtr rcb,
    bool is_module) {
  ScriptTypeParser typeParser(std::move(rcb));
  InterfaceTypePtr iface =
      InterfaceType::create(c10::QualifiedName(qualifiedName), is_module);
  for (const Stmt& stmt : classDef.body()) {
    if (stmt.kind() != TK_DEF) {
      throw ErrorReport(stmt)
          << "interface declartions can only contain method definitions";
    }
    auto method_def = Def(stmt);
    if (!method_def.decl().return_type().present()) {
      throw ErrorReport(method_def)
          << "interface declarations must have a return type annotated.";
    }
    FunctionSchema schema =
        typeParser.parseSchemaFromDef(method_def, /* skip_self*/ true);
    // need to add self as the first because we skipped it
    std::vector<Argument> arguments;
    arguments.emplace_back(
        Argument(method_def.decl().params()[0].ident().name(), iface));
    arguments.insert(
        arguments.end(), schema.arguments().begin(), schema.arguments().end());
    iface->addMethod(schema.cloneWithArguments(std::move(arguments)));
    if (method_def.statements().size() != 1 ||
        method_def.statements()[0].kind() != TK_PASS) {
      throw ErrorReport(method_def.range())
          << "interfaces declarations should only contain a single 'pass' statement.";
    }
  }
  this->register_type(iface);
}

} // namespace jit
} // namespace torch