1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433
|
#pragma once
#include <torch/csrc/jit/ir/attributes.h>
#include <torch/csrc/jit/ir/graph_node_list.h>
#include <torch/csrc/jit/ir/named_value.h>
#include <torch/csrc/jit/ir/scope.h>
#include <torch/csrc/jit/runtime/operator.h>
#include <torch/csrc/WindowsTorchApiMacro.h>
#include <torch/csrc/utils/disallow_copy.h>
#include <torch/csrc/utils/python_stub.h>
#include <ATen/ATen.h>
#include <ATen/core/function_schema.h>
#include <ATen/core/functional.h>
#include <ATen/core/interned_strings.h>
#include <ATen/core/ivalue.h>
#include <ATen/core/jit_type.h>
#include <c10/util/ArrayRef.h>
#include <c10/util/Exception.h>
#include <functional>
#include <iostream>
#include <unordered_set>
#include <vector>
// Forward declare, the real meat is in python_ir.cpp
template <class T>
class THPPointer;
using THPObjectPtr = THPPointer<PyObject>;
using pyobj_list = std::vector<THPObjectPtr>;
namespace torch {
namespace jit {
class AliasDb;
using ::c10::Argument;
using ::c10::FunctionSchema;
using ::c10::Symbol;
using ::c10::ivalue::Shared;
using ::c10::IValue;
using ::c10::ivalue::Future;
using ::c10::ivalue::ConstantString;
#define C10_USING(T) using ::c10::T;
C10_FORALL_TYPES(C10_USING)
#undef C10_USING
#define C10_USING(T) using ::c10::T##Ptr;
C10_FORALL_TYPES(C10_USING)
#undef C10_USING
using ::c10::Type;
using ::c10::TypeEnv;
using ::c10::TypePtr;
using ::c10::getTypePtr;
using ::c10::MatchTypeReturn;
using ::c10::TypeKind;
using ::c10::fmap;
namespace prim {
using namespace ::c10::prim;
}
namespace attr {
using namespace ::c10::attr;
}
namespace aten {
using namespace ::c10::aten;
}
struct Function;
struct MatchedSchema;
// Graph represents one "function" of computation.
// It uses a simple ownership model where the graph owns all the nodes inside
// it. All references inside the graph are raw pointers. Destroying the Graph
// will invalidate any pointers to nodes in the graph.
struct Graph;
// Node is the base class of the IR graph. It represents one computation
// and dependencies on a list of Values. The "prim-ops", so to speak.
struct Node;
// A Value represents an input or output to node that is either a
// Tensor or an opaque Handle object, as determined by type().
struct Value;
TORCH_API std::ostream& operator<<(std::ostream& out, const Graph& g);
TORCH_API std::ostream& operator<<(std::ostream& out, const Node& n);
// A list of nodes, with inputs and outputs
struct Block;
// Each use is represented by this type, see Node::uses()
// 'user' is the consumer of the value, offset is the index into
// 'user's input this where the produces will be found.
struct Use {
Use(Node* user, size_t offset) : user(user), offset(offset) {}
Node* user;
size_t offset;
bool operator==(const Use& b) {
return user == b.user && offset == b.offset;
}
};
// Note [User node does not uniquely identify use]
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// A while back, we wrote some code manipulating uses that looked like this:
//
// for (auto& use : used_val->uses_) {
// if (use.user == this_node) {
// use.offset += 1;
// break;
// }
// }
//
// This code is trying to find a particular use (our node's use) to update it.
// However, it's wrong: there may be *multiple* uses of a value %x in a node,
// as might be the case in this IR:
//
// %y = Add %x %x
//
// In this case, there are two uses of %x whose user is the node 'Add %x %x'.
// So, "use induced by this node" is not a well-formed concept.
//
// If you are looking for "use induced by an input", it's best to use
// findUseForInput() to get it.
// the list types are intentionally simple, but we type-def
// them here so if we need to change them, refactoring will be easier
using node_list = std::vector<Node*>;
using value_list = std::vector<Value*>;
using use_list = std::vector<Use>;
template <typename T>
using ArrayRef = at::ArrayRef<T>;
using NodeKind = Symbol;
using topo_position_t = int64_t;
using ValueSet = std::unordered_set<const Value*>;
struct OperatorSet;
struct Value {
TH_DISALLOW_COPY_AND_ASSIGN(Value);
Value(Node* node_, size_t offset_);
private:
friend struct Node;
friend struct Graph;
Node* node_;
size_t offset_;
size_t unique_ = 0; // unique id
use_list uses_;
std::string unique_name_;
TypePtr type_;
public:
Value* setType(TypePtr type);
TORCH_API void inferTypeFrom(const at::Tensor& output);
TORCH_API void inferTypeFrom(
const c10::intrusive_ptr<c10::ivalue::Object>& output);
const TypePtr& type() const {
AT_ASSERT(type_ != nullptr);
return type_;
}
bool requires_grad() const {
return type()->requires_grad();
}
bool isCompleteTensor() const {
if (auto pt = type()->cast<TensorType>()) {
return pt->isComplete();
}
return false;
}
TORCH_API bool mustBeNone() const;
TORCH_API bool mustNotBeNone() const;
size_t unique() const {
return unique_;
}
bool hasDebugName() const {
return !unique_name_.empty();
}
static bool isValidName(const std::string& name);
TORCH_API Value* setDebugName(const std::string& name);
std::string debugName() const {
if (hasDebugName()) {
return unique_name_;
}
return c10::to_string(unique());
}
TORCH_API std::string debugNameBase() const;
Node* node() {
return node_;
}
size_t offset() const {
return offset_;
}
void setOffset(size_t offset) {
offset_ = offset;
}
const Node* node() const {
return node_;
}
Graph* owningGraph();
const Graph* owningGraph() const;
// TODO: make this more const correct
const use_list& uses() const {
return uses_;
}
bool hasUses() const {
return !uses().empty();
}
TORCH_API void replaceFirstUseWith(Value* newValue);
// Replaces all uses of this value with 'newValue'.
//
// Given: %3 = f(%1, %2)
// %4 = g(%3)
// %5 = h(%3, %3)
// Execute: %3.replaceAllUsesWith(%6)
// Result: %3 = f(%1, %2)
// %4 = g(%6)
// %5 = h(%6, %6)
TORCH_API void replaceAllUsesWith(Value* newValue);
// Replaces all uses of this value with 'newValue' after 'node'.
// Given: %3 = f(%1, %2)
// %4 = g(%3)
// %5 = inplace_(%3)
// %6 = h(%3, %3)
// Execute: %3.replaceAllUsesAfterNodeWith(%5.node(), %5)
// Result: %3 = f(%1, %2)
// %4 = g(%3)
// %5 = inplace_(%3)
// %6 = h(%5, %5)
TORCH_API void replaceAllUsesAfterNodeWith(const Node* node, Value* newValue);
TORCH_API Value* copyMetadata(Value* from);
};
struct TORCH_API Node {
TH_DISALLOW_COPY_AND_ASSIGN(Node);
friend struct Graph;
friend struct Block;
friend struct Value;
friend graph_node_list;
friend const_graph_node_list;
friend graph_node_list_iterator;
friend const_graph_node_list_iterator;
private:
const NodeKind kind_;
std::vector<Value*> inputs_;
std::vector<Value*> outputs_;
// subblocks
std::vector<Block*> blocks_;
Graph* graph_;
Block* owning_block_;
c10::optional<SourceRange> source_range_;
ScopePtr scope_;
c10::optional<InlinedCallStackPtr> callstack_;
// Assumes FunctionSchemas are persistent, so we don't manage their lifetime.
// This field is effective a cache that's populated on attribute lookups and
// invalidated every time we perform an operation that could potentially
// change the schema. note: mutable because schema_ is effectively a cache
mutable const Operator* op_;
topo_position_t topo_position_ = 0;
protected:
Node(Graph* graph_, NodeKind kind_); // defined after graph
public:
// each node but Return/Param
// is associated with exactly one place in the node list...
// of the graph_
// this circular is a doubly-linked list, the Return node is used as the
// sentinel for the beginning and end of the list such that the list never has
// null pointers next_in_graph[0] is next pointer next_in_graph[1] is prev
// pointer using an array to allow the same iterator class for forward and
// reverse node lists This list represents a topological sort
Node* next_in_graph[2] = {nullptr, nullptr};
Node*& next() {
return next_in_graph[kNextDirection];
}
Node*& prev() {
return next_in_graph[kPrevDirection];
}
Node* const& next() const {
return next_in_graph[kNextDirection];
}
Node* const& prev() const {
return next_in_graph[kPrevDirection];
}
NodeKind kind() const {
return kind_;
}
Node* setSourceRange(SourceRange r) {
source_range_ = std::move(r);
return this;
}
SourceRange sourceRange() const;
Graph* owningGraph() {
return graph_;
}
const Graph* owningGraph() const {
return graph_;
}
Block* owningBlock() {
return owning_block_;
}
const Block* owningBlock() const {
return owning_block_;
}
ScopePtr scope() {
return scope_;
}
void setScope(ScopePtr scope) {
scope_ = std::move(scope);
}
std::string scopeName() const {
if (!scope_) {
return "";
}
return scope_->namesFromRoot();
}
Node* copyMetadata(Node* from) {
this->setSourceRange(from->sourceRange());
this->setScope(from->scope());
if (auto cs = from->callstack()) {
this->setCallStack(*cs);
}
return this;
}
c10::optional<InlinedCallStackPtr> callstack() const {
return callstack_;
}
void setCallStack(InlinedCallStackPtr cs) {
callstack_ = cs;
}
// NB: This returns an ArrayRef; that means that it will
// get invalidated if you resize inputs (e.g., using addInput)
// We can't return a std::vector<Node*>& because there's no
// way to soundly cast to std::vector<const Node*> (an insane
// implementation of std::vector could make this representationally
// different.)
at::ArrayRef<Value*> inputs() {
return inputs_;
}
at::ArrayRef<const Value*> inputs() const {
// Vectors are not convertible in const-ness of elements, but
// raw pointers are.
return {inputs_.data(), inputs_.size()};
}
// NB: This returns an ArrayRef; that means that it will
// get invalidated if you resize inputs (e.g., using addInput)
// We can't return a std::vector<Node*>& because there's no
// way to soundly cast to std::vector<const Node*> (an insane
// implementation of std::vector could make this representationally
// different.)
at::ArrayRef<Value*> outputs() {
return outputs_;
}
at::ArrayRef<const Value*> outputs() const {
// Vectors are not convertible in const-ness of elements, but
// raw pointers are.
return {outputs_.data(), outputs_.size()};
}
Value* output(size_t i) const {
return outputs_.at(i);
}
bool hasUses() const {
for (auto o : outputs()) {
if (!o->uses().empty()) {
return true;
}
}
return false;
}
void replaceAllUsesWith(Node* n);
// lots of things like chunk have a single input or single output, so we have
// a helper to make accessing it easier
Value* input() {
AT_ASSERT(inputs_.size() == 1);
return inputs_.at(0);
}
Value* output() {
AT_ASSERT(outputs_.size() == 1);
return outputs_.at(0);
}
const Value* output() const {
AT_ASSERT(outputs_.size() == 1);
return outputs_.at(0);
}
const Value* input() const {
AT_ASSERT(inputs_.size() == 1);
return inputs_.at(0);
}
// Access a particular input. This is a checked index.
Value* input(size_t i) const {
return inputs_.at(i);
}
Value* namedInput(Symbol name) const;
c10::optional<IValue> get(Symbol name) const;
template <typename T>
c10::optional<T> get(Symbol name) const {
if (auto v = get(name)) {
return v->template to<T>();
}
return c10::nullopt;
}
// Returns true if the value of input name is statically known
bool is_constant(Symbol name) const {
return static_cast<bool>(get(name));
}
bool mustBeNone() const;
bool isNondeterministic() const;
bool hasSideEffects() const;
// instructions lowered by the interpreter and not run in the optimized graph
bool notExecutedOp() const {
return kind_ == prim::Constant || kind_ == prim::profile ||
kind_ == prim::profile_optional;
}
// Graphs
// Note [Topological invariant]
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// We always maintain an up-to-date topological ordering of all nodes via
// the next()/prev() links. All transformations to graphs must preserve
// this topological ordering: for example, it is only valid to 'addInput'
// with an input which is topologically before the current node.
//
// Usually, it is obvious whether or not topological order is maintained;
// for example, if you are adding nodes to the end of the topsort, it's
// impossible for them to refer to inputs that are not in the topsort.
// If it is not obvious, please comment accordingly.
// Add 'node' as an input to 'this' at the end of existing
// arguments. Returns the added node for ease of chaining.
//
// Given: %3 = f(%1, %2)
// Execute: %3.addInput(%4)
// Result: %3 = f(%1, %2, %4)
Value* addInput(Value* value);
// Add 'value' as an input to 'this' at the specified position in the
// arguments. Returns the added value for ease of chaining.
Value* insertInput(size_t i, Value* value);
// Replace the input of 'this' at position 'i' with
// 'newValue', returning the old node.
//
// Given: %3 = f(%1, %2)
// Execute: %3.replaceInput(1, %4)
// Result: %3 = f(%1, %4)
Value* replaceInput(size_t i, Value* newValue);
// Replace all occurrences of 'from' in the inputs of this
// node with 'to'. Corresponds to llvm's replaceUsesOfWith.
//
// Given: %3 = f(%1, %2, %1)
// Execute: %3.replaceInputWith(%1, %4)
// Result: %3 = f(%4, %2, %4)
void replaceInputWith(Value* from, Value* to);
Value* addOutput();
Value* insertOutput(size_t i);
void eraseOutput(size_t i);
Block* addBlock();
void eraseBlock(size_t i);
// Each Node can have a list of subblocks. These are used to define structured
// nested control flow operators such as If and Loop.
// The meaning of a block is specific to the kind of node it is in, but
// all blocks share these semantics:
// * Nested lexical scoping: If a node 'Parent' has a subblock which contains
// a node 'Child', Child can use any value that was in scope for the Parent
// node in addition to any values defined before 'Child' in the subblock.
// * The list of inputs to the block are in scope for the duration of the
// block
// * the outputs of the Parent node are not in scope for the subblocks
// Typically the inputs to a block that represents control flow act as
// as the equivalents phi-nodes in standard SSA form,
// defining a new Value to represent any term that has multiple
// definitions depending on how control flowed. Outputs of the node containing
// control flow serve a similiar purpose defining new values for variables
// that would have different definitions depending on which way control
// flowed.
at::ArrayRef<Block*> blocks() {
return blocks_;
}
at::ArrayRef<const Block*> blocks() const {
// Vectors are not convertible in const-ness of elements, but
// raw pointers are.
return {blocks_.data(), blocks_.size()};
}
// Is 'this' before 'n' in the topological order?
bool isBefore(const Node* n) const;
// Is 'this' after 'n' in the topological order?
bool isAfter(const Node* n) const;
// Insert unattached 'this' node before 'n' in the topological order.
// Returns this (for chaining).
//
// Given: %3 = f(%1, %2)
// %4 = g(%3)
// and unattached: %5 = h(%1)
// Execute: %5.insertBefore(%4)
// Result: %3 = f(%1, %2)
// %5 = h(%1)
// %4 = g(%3)
Node* insertBefore(Node* n);
// Insert unattached 'this' node after 'n' in the topological order.
// Returns this (for chaining).
//
// Given: %3 = f(%1, %2)
// %4 = g(%3)
// and unattached: %5 = h(%1)
// Execute: %5.insertAfter(%4)
// Result: %3 = f(%1, %2)
// %4 = g(%3)
// %5 = h(%1)
Node* insertAfter(Node* n);
// Move 'this' (already in the graph) after 'n' in the topological order.
//
// NOTE: Does not check that value dependencies are preserved, see
// AliasDb::moveAfterTopologicallyValid
//
// Given: %2 = f(%1)
// %3 = g(%1)
// Execute: %2.moveAfter(%3)
// Result: %3 = g(%1)
// %2 = f(%1)
//
void moveAfter(Node* n);
// Move a node 'n' (already in the graph) before 'this' in the topological
// order.
//
// NOTE: Does not check that value dependencies are preserved, see
// AliasDb::moveBeforeTopologicallyValid
//
// Given: %2 = f(%1)
// %3 = g(%1)
// Execute: %3.moveBefore(%2)
// Result: %3 = g(%1)
// %2 = f(%1)
void moveBefore(Node* n);
// Remove the input at 'i' from this node.
//
// WARNING: This is O(n) in the number of inputs, so avoid repeatedly calling
// removeInput.
//
// Given: %3 = f(%1, %2)
// Execute: %3.removeInput(1)
// Result: %3 = f(%1)
void removeInput(size_t i);
// Remove all inputs from a node.
//
// Given: %3 = f(%1, %2)
// Execute: %3.removeAllInputs()
// Result: %3 = f()
void removeAllInputs();
// Rearrange the ordering of inputs or outputs of a node
// Given: %3 = f(%1, %2)
// Execute: %3.permuteInputs({1, 0})
// Result: %3 = f(%2, %1)
// Each index must appear exactly once
void permuteInputs(const std::vector<size_t>& new_inputs);
void permuteOutputs(const std::vector<size_t>& new_inputs);
// iterators of the node list starting at this node
// useful for resuming a search starting at this node
inline graph_node_list_iterator iterator() {
return {this, 0};
}
inline graph_node_list_iterator reverseIterator() {
return iterator().reverse();
}
inline const_graph_node_list_iterator iterator() const {
return {this, 0};
}
inline const_graph_node_list_iterator reverseIterator() const {
return iterator().reverse();
}
// Remove 'this' from the instruction list and deallocate it.
//
// Invariant: no outputs of 'this' may have any uses.
//
// Given: %2 = f(%1)
// %3 = g(%1)
// Execute: %2.destroy()
// Result: %3 = g(%1)
void destroy();
// Dynamically cast this node to the subclass indicated by the
// template variable, returning nullptr if the cast is invalid..
//
// Example usage: if(auto s = n.cast<Select>()) { ... }
template <typename T>
T* cast() {
if (T::Kind == kind()) {
return static_cast<T*>(this);
}
return nullptr;
}
template <typename T>
const T* cast() const {
if (T::Kind == kind()) {
return static_cast<const T*>(this);
}
return nullptr;
}
template <typename T>
T* expect() {
TORCH_CHECK(
T::Kind == kind(),
"expected a ",
T::Kind.toDisplayString(),
" but found a ",
kind().toDisplayString());
return static_cast<T*>(this);
}
bool matches(const FunctionSchema& schema) const;
// XXX: this function is meant to be used with string literals only!
bool matches(
const char* signature_literal,
at::ArrayRef<Symbol> const_inputs = {}) const;
bool isMemberOf(const OperatorSet& os) const;
const FunctionSchema& schema() const;
const FunctionSchema* maybeSchema() const;
const Operator& getOperator() const;
Operation getOperation() const;
const Operator* maybeOperator() const;
void dump() const;
std::ostream& print(
std::ostream& out,
size_t level,
std::vector<const Node*>* groups,
bool print_source_locations = true,
bool print_attributes = true,
bool print_scopes = true,
bool print_body = true) const;
virtual ~Node() = default;
// Methods for accessing attributes
Node* copyAttributes(const Node& rhs) {
values_.clear();
for (const AVPtr& i : rhs.values_) {
values_.push_back(i->clone());
}
return this;
}
bool hasAttribute(Symbol name) const {
AT_ASSERT(name.is_attr());
return findAttr(name, false) != values_.end();
}
bool hasAttributeS(const std::string& name) const {
return hasAttribute(Symbol::attr(name));
}
AttributeKind kindOf(Symbol name) const {
AT_ASSERT(name.is_attr());
return (*findAttr(name, true))->kind();
}
AttributeKind kindOfS(const std::string& name) const {
return kindOf(Symbol::attr(name));
}
Node* removeAttribute(Symbol name) {
AT_ASSERT(name.is_attr());
values_.erase(findAttr(name, true));
return this;
}
Node* removeAttributeS(const std::string& name) {
return removeAttribute(Symbol::attr(name));
}
bool hasAttributes() const {
return values_.size() > 0;
}
size_t numAttributes() const {
return values_.size();
}
// The names are returned in order, since name actually is the index.
std::vector<Symbol> attributeNames() const {
std::vector<Symbol> names;
for (const AVPtr& a : values_) {
names.push_back(a->name);
}
return names;
}
std::vector<const char*> attributeNamesS() const {
std::vector<const char*> names;
for (const AVPtr& a : values_) {
names.push_back(a->name.toUnqualString());
}
return names;
}
#define CREATE_ACCESSOR(Kind, method) \
Node* method##_(Symbol name, Kind##Attr::ConstructorType v) { \
return setAttr<Kind##Attr>( \
name, std::forward<Kind##Attr::ConstructorType>(v)); \
} \
const Kind##Attr::ValueType& method(Symbol name) const { \
return getAttr<Kind##Attr>(name); \
}
CREATE_ACCESSOR(Float, f)
CREATE_ACCESSOR(Floats, fs)
CREATE_ACCESSOR(String, s)
CREATE_ACCESSOR(Strings, ss)
CREATE_ACCESSOR(Int, i)
CREATE_ACCESSOR(Ints, is)
CREATE_ACCESSOR(Graph, g)
CREATE_ACCESSOR(Graphs, gs)
CREATE_ACCESSOR(Type, ty)
CREATE_ACCESSOR(Types, tys)
CREATE_ACCESSOR(IValue, ival)
#undef CREATE_ACCESSOR
// Our Graphs are not very const-correct, so we need to allow returning
// non-const references too
GraphAttr::ValueType& g(Symbol name) {
return getAttr<GraphAttr>(name);
}
// does not use CREATE_ACCESSOR because we need additional asserts
Node* t_(Symbol name, TensorAttr::ConstructorType v) {
return setAttr<TensorAttr>(
name, std::forward<TensorAttr::ConstructorType>(v));
}
const TensorAttr::ValueType& t(Symbol name) const {
return getAttr<TensorAttr>(name);
}
Node* ts_(Symbol name, TensorsAttr::ConstructorType v) {
return setAttr<TensorsAttr>(
name, std::forward<TensorsAttr::ConstructorType>(v));
}
const TensorsAttr::ValueType& ts(Symbol name) const {
return getAttr<TensorsAttr>(name);
}
Block* findCommonAncestorBlockWith(Node* n);
size_t blocksFromGraphBlock();
private:
void printAttrValue(std::ostream& out, const Symbol& name) const;
void printAttributes(std::ostream& out, bool ignore_subgraph) const;
template <typename T>
Node* setAttr(Symbol name, typename T::ConstructorType v) {
AT_ASSERT(name.is_attr());
auto it = findAttr(name, false);
auto nv = AVPtr(new T(name, std::forward<typename T::ConstructorType>(v)));
if (it == values_.end()) {
values_.push_back(std::move(nv));
} else {
*it = std::move(nv);
}
return this;
}
template <typename T>
typename T::ValueType& getAttr(Symbol name) const {
AT_ASSERT(name.is_attr());
auto it = findAttr(name, true);
auto* child = dynamic_cast<T*>(it->get());
if (child == nullptr) {
throw AttributeError(name, true);
}
return child->value();
}
using AVPtr = AttributeValue::Ptr;
// NB: For determinism, we use a vector rather than a hash map. This does
// mean that lookups are O(n), so you shouldn't use Attributes to store
// a big pile of messages.
std::vector<AVPtr> values_;
std::vector<AVPtr>::iterator findAttr(Symbol name, bool required) {
AT_ASSERT(name.is_attr());
auto it = std::find_if(values_.begin(), values_.end(), [&](const AVPtr& v) {
return v->name == name;
});
if (required && it == values_.end()) {
throw AttributeError(name, false);
}
AT_ASSERT(!required || it != values_.end());
return it;
}
std::vector<AVPtr>::const_iterator findAttr(Symbol name, bool required)
const {
AT_ASSERT(name.is_attr());
auto it = std::find_if(values_.begin(), values_.end(), [&](const AVPtr& v) {
return v->name == name;
});
if (required && it == values_.end()) {
throw AttributeError(name, false);
}
AT_ASSERT(!required || it != values_.end());
return it;
}
enum class MoveSide { BEFORE, AFTER };
bool isBeforeOrAfter(const Node* n, MoveSide moveSide) const;
std::pair<Value*, const Argument&> findInput(Symbol name);
// Lookup iterator in use list of _input i_ that corresponds to its use of
// _this_
use_list::iterator findUseForInput(size_t i);
// remove the use of input i, this sets input i to nullptr, but
// is only used internally to Node before setting it to a new value
// or erasing the entry from the list.
Value* dropInput(size_t i);
bool inBlockList() const {
if (next() == nullptr) {
AT_ASSERT(prev() == nullptr);
}
return next() != nullptr;
}
void removeFromList();
void lint() const;
void assignTopoPosition();
protected:
// subclasses must override
// this function is used by createClone to initialize a new version
// of a node in another graph. It should allocate a new instance of the same
// concrete type as 'this', but in graph 'g' which might be different
// than graph_
virtual Node* allocNewInstance(Graph* g) {
return new Node(g, kind());
}
// create a copy of all properties of Node s into this.
// subclasses should extend if they have additional information to copy.
// 'this' will be allocated with s->allocNewInstance(g) so it should have
// the same concrete type as 's'
//
virtual void cloneFrom(Node* s);
};
struct Block {
friend struct Node;
friend struct Graph;
TH_DISALLOW_COPY_AND_ASSIGN(Block);
TORCH_API Block(Graph* graph_, Node* node_);
at::ArrayRef<Value*> inputs() {
return input_->outputs();
}
at::ArrayRef<const Value*> inputs() const {
const auto& inputs = input_->outputs();
return {inputs.data(), inputs.size()};
}
at::ArrayRef<Value*> outputs() {
return output_->inputs();
}
at::ArrayRef<const Value*> outputs() const {
return static_cast<const Node*>(output_)->inputs();
}
graph_node_list nodes() {
return {input_, kNextDirection};
}
const_graph_node_list nodes() const {
return {input_, kNextDirection};
}
Node* return_node() {
return output_;
}
const Node* return_node() const {
return output_;
}
Node* param_node() {
return input_;
}
const Node* param_node() const {
return input_;
}
Graph* owningGraph() {
return graph_;
}
const Graph* owningGraph() const {
return graph_;
}
Node* owningNode() {
return owning_node_;
}
const Node* owningNode() const {
return owning_node_;
}
Value* addInput(std::string name = "") {
Value* v = input_->addOutput();
v->setDebugName(std::move(name));
return v;
}
Value* insertInput(size_t i, std::string name = "") {
Value* v = input_->insertOutput(i);
v->setDebugName(std::move(name));
return v;
}
void eraseInput(size_t i) {
input_->eraseOutput(i);
}
size_t registerOutput(Value* v) {
output_->addInput(v);
return outputs().size() - 1;
}
size_t insertOutput(size_t i, Value* n) {
output_->insertInput(i, n);
return i;
}
void eraseOutput(size_t i) {
output_->removeInput(i);
}
void replaceOutput(size_t i, Value* n) {
output_->replaceInput(i, n);
}
void permuteOutputs(const std::vector<size_t>& new_inputs) {
output_->permuteInputs(new_inputs);
}
void permuteInputs(const std::vector<size_t>& new_inputs) {
input_->permuteOutputs(new_inputs);
}
Node* appendNode(Node* n) {
AT_ASSERT(n->graph_ == graph_ && !n->inBlockList());
n->insertBefore(output_);
return n;
}
Node* prependNode(Node* n) {
AT_ASSERT(n->graph_ == graph_ && !n->inBlockList());
n->insertAfter(input_);
return n;
}
// clone all inputs, nodes, and outputs from src and append them
// to the inputs, nodes, and outputs of this block
// value_map is used whenever a node in src references a free variable
// in src to look up its corresponding value
TORCH_API void cloneFrom(Block* src, std::function<Value*(Value*)> value_map);
TORCH_API void remapTypes(const std::function<TypePtr(TypePtr)>& type_map);
private:
void reIndexTopology();
// get rid of all nodes
// destroys in reverse order so that uses internal to this block
// do not have to be removed before you can destroy the block
void destroy();
Graph* const graph_;
// holds outputs in a way that can be reflected
// as a Use object
// also used as the beginning/end of the circular node list to avoid
// having corner cases where the list is empty.
Node* const output_;
Node* const input_;
Node* const
owning_node_; // either the node that has this block or nullptr for root
};
struct Graph {
TH_DISALLOW_COPY_AND_ASSIGN(Graph);
friend struct Node;
friend struct Value;
friend struct Block;
private:
// only used to keep track of allocated nodes
// actual representation of Graph is done with
// inputs, outputs, nodes
std::unordered_set<const Node*> all_nodes;
std::unordered_set<const Value*> all_values;
std::unordered_set<const Block*> all_blocks;
size_t next_unique_;
std::unordered_map<std::string, Value*> unique_names_;
ScopePtr current_scope_;
Block* const block_;
// when insertNode() is called, the node is inserted before this node
// by default this is set to append to the top level block
Node* insert_before_;
public:
Graph(ScopePtr scope_root)
: next_unique_(0),
current_scope_(std::move(scope_root)),
block_(new Block(this, nullptr)),
insert_before_(return_node()) {}
Graph() : Graph(c10::make_intrusive<Scope>()) {}
at::ArrayRef<Value*> inputs() {
return block_->inputs();
}
at::ArrayRef<const Value*> inputs() const {
const Block& block = *block_;
return block.inputs();
}
at::ArrayRef<Value*> outputs() {
return block_->outputs();
}
at::ArrayRef<const Value*> outputs() const {
const Block& block = *block_;
return block.outputs();
}
graph_node_list nodes() {
return block_->nodes();
}
const_graph_node_list nodes() const {
const Block& block = *block_;
return block.nodes();
}
Node* param_node() {
return block_->param_node();
}
const Node* param_node() const {
return block_->param_node();
}
Node* return_node() {
return block_->return_node();
}
const Node* return_node() const {
return block_->return_node();
}
const std::unordered_map<std::string, Value*>& debugNames() const {
return unique_names_;
}
TORCH_API void push_scope(const std::string& scope_name);
TORCH_API void pop_scope();
ScopePtr current_scope() {
return current_scope_;
}
void set_current_scope(ScopePtr scope) {
current_scope_ = std::move(scope);
}
Value* addInput(std::string name = "") {
return block_->addInput(std::move(name));
}
Value* insertInput(size_t i, std::string name = "") {
return block_->insertInput(i, std::move(name));
}
void eraseInput(size_t i) {
block_->eraseInput(i);
}
size_t registerOutput(Value* n) {
return block_->registerOutput(n);
}
void eraseOutput(size_t i) {
block_->eraseOutput(i);
}
TORCH_API Node* create(NodeKind kind, size_t num_outputs = 1);
TORCH_API Node* create(
NodeKind kind,
ArrayRef<Value*> inputs,
size_t num_outputs = 1);
TORCH_API Node* createNone();
TORCH_API Node* createAutogradZero();
TORCH_API Node* createUninitialized(TypePtr typ);
TORCH_API Node* createWithSubgraph(Symbol kind);
TORCH_API Node* createDifferentiableSubgraph();
TORCH_API Node* createTuple(
at::ArrayRef<Value*> values,
TupleTypePtr optional_named_tuple = nullptr);
TORCH_API Node* createTupleUnpack(Value* v);
TORCH_API Node* createTupleIndex(
Value* tup,
Value* idx,
const TypePtr& output_type);
TORCH_API Node* createTupleSlice(Value* tup, int64_t beg, int64_t end);
TORCH_API Node* createEnumName(Value* e);
TORCH_API Node* createEnumValue(Value* e);
TORCH_API Node* createList(
const TypePtr& elem_type,
at::ArrayRef<Value*> values);
TORCH_API Node* createListUnpack(Value* v, size_t size);
TORCH_API Node* createDict(
const TypePtr& key_type,
const TypePtr& value_type,
at::ArrayRef<Value*> keys,
at::ArrayRef<Value*> values);
TORCH_API Node* createNumToTensor(Value* value);
TORCH_API Node* createObject(const ClassTypePtr& type);
TORCH_API Node* createSetAttr(
Value* obj,
const std::string& field,
Value* newValue);
TORCH_API Node* createGetAttr(Value* obj, const std::string& field);
Value* insertGetAttr(Value* obj, const std::string& field) {
return insertNode(createGetAttr(obj, field))->output();
}
TORCH_API Node* createStore(const std::string& name, Value* v);
TORCH_API Node* createLoad(const std::string& name, const TypePtr& type);
TORCH_API Node* createIsInstance(Value* v, at::ArrayRef<TypePtr> types);
TORCH_API Value* insertUncheckedCast(Value* v, TypePtr type);
// Insert a ToList operator with argument \p v and output type \p type.
// \returns the output of the operation.
TORCH_API Value* insertToList(Value* v, TypePtr type);
TORCH_API Value* insertFunctionCall(
Function* callee,
const MatchedSchema& matched);
TORCH_API Value* insertMethodCall(
std::string method_name,
const MatchedSchema& matched);
// Note: defined in python_ir.cpp and can be used only in python extension
Node* createPythonOp(
THPObjectPtr&& pyobj,
const std::string& cconv,
pyobj_list&& scalar_args);
// clone n, making a new node in _this_ graph.
// use node_map to translate inputs of n to inputs of the cloned node
// if copy_blocks is false, it will not recursively clone the nested blocks
// this node contains.
TORCH_API Node* createClone(
Node* n,
const std::function<Value*(Value*)>& value_map,
bool copy_blocks = true);
// Insert constant IValue into the graph.
TORCH_API Value* insertConstant(
const IValue& val,
c10::optional<SourceRange> loc = c10::nullopt,
c10::optional<ScopePtr> scope = c10::nullopt);
// Schema-driven insert:
// This inserts a node into the graph with inputs determined from args and
// kwargs using Python argument matching rules, and checks that the op matches
// a known schema.
//
// If this node successfully completes, it guarentees the node
// is a correctly-formed invocation of opname
TORCH_API Value* insert(
Symbol opname,
at::ArrayRef<NamedValue> args,
at::ArrayRef<NamedValue> kwargs = {},
const c10::optional<SourceRange>& range = {});
Node* appendNode(Node* n) {
return block_->appendNode(n);
}
Node* prependNode(Node* n) {
return block_->prependNode(n);
}
// insert before insert_before_ node
// initialized to insert at the end of the top level block
// can be changed with setInsertPoint()
Node* insertNode(Node* n) {
AT_ASSERT(
insert_before_->inBlockList() &&
"insert point node is no longer in a block list");
return n->insertBefore(insert_before_);
}
// set where nodes are inserted to append to the end of this block
void setInsertPoint(Block* b) {
AT_ASSERT(b->owningGraph() == this);
insert_before_ = b->return_node();
}
// set where nodes are inserted to insert _before_ this node
// for implementation simplicity we only support inserting before a node for
// now
void setInsertPoint(Node* n) {
AT_ASSERT(n->owningGraph() == this && n->inBlockList());
insert_before_ = n;
}
Node* insertPoint() {
return insert_before_;
}
// the top level block
Block* block() {
return block_;
}
const Block* block() const {
return block_;
}
// Checks well-formedness and invariants of graph
TORCH_API void lint() const;
// for use in debugger
TORCH_API void dump() const;
TORCH_API ~Graph();
TORCH_API std::string toString(bool print_source_locations = true) const;
TORCH_API std::ostream& print(
std::ostream& out,
bool print_source_locations = true) const;
friend TORCH_API std::ostream& operator<<(std::ostream& out, const Graph& g);
TORCH_API std::shared_ptr<Graph> copy();
TORCH_API void remapTypes(const std::function<TypePtr(TypePtr)>& type_map);
private:
friend void Lint(const AliasDb* db);
TORCH_API void freeNode(Node* n);
TORCH_API void freeValue(Value* v);
TORCH_API void freeBlock(Block* b);
};
/** \brief An utility class for setting temporary insertion points.
*
* When an object of this class is created, it stores the current insertion
* point, sets the new one, and restores the original insertion point when the
* object is destroyed.
*/
struct WithInsertPoint {
WithInsertPoint(Node* n) : prev_(n->owningGraph()->insertPoint()) {
n->owningGraph()->setInsertPoint(n);
}
WithInsertPoint(Block* b) : WithInsertPoint(b->return_node()) {}
~WithInsertPoint() {
prev_->owningGraph()->setInsertPoint(prev_);
}
private:
Node* prev_;
};
/** \brief An utility class for setting temporary scopes.
*
* When an object of this class is created, it stores the current scope, sets
* the new one, and restores the original scope when the object is destroyed.
*/
struct WithCurrentScope {
WithCurrentScope(Graph& g, ScopePtr scope)
: graph_(&g), prev_scope_(g.current_scope()) {
g.set_current_scope(std::move(scope));
}
~WithCurrentScope() {
graph_->set_current_scope(prev_scope_);
}
private:
Graph* graph_;
ScopePtr prev_scope_;
};
inline Value::Value(Node* node_, size_t offset_)
: node_(node_),
offset_(offset_),
unique_(node_->graph_->next_unique_++),
type_(TensorType::get()) {
node_->graph_->all_values.emplace(this);
}
inline Value* Value::setType(TypePtr type) {
AT_ASSERT(type);
type_ = std::move(type);
for (Use& use : uses_) {
use.user->op_ = nullptr;
}
return this;
}
inline Graph* Value::owningGraph() {
return node()->owningGraph();
}
inline const Graph* Value::owningGraph() const {
return node()->owningGraph();
}
/************* All nodes not required to be defined before Graph **************/
struct ProfileOp : public Node {
static constexpr Symbol Kind = ::c10::prim::profile;
ProfileOp(Graph* graph, std::function<void(std::vector<IValue>&)> callback)
: Node(graph, ::c10::prim::profile), callback_(callback) {}
void cloneFrom(Node* other_) override;
Node* allocNewInstance(Graph* g) override;
const std::function<void(std::vector<IValue>&)>& getCallback() const {
return callback_;
}
void setCallback(std::function<void(std::vector<IValue>&)> callback) {
callback_ = callback;
}
private:
std::function<void(std::vector<IValue>&)> callback_;
};
struct TORCH_API ProfileOptionalOp : public Node {
static constexpr Symbol Kind = ::c10::prim::profile_optional;
ProfileOptionalOp(
Graph* graph,
std::function<void(std::vector<IValue>&)> callback)
: Node(graph, ::c10::prim::profile_optional), callback_(callback) {}
void cloneFrom(Node* other_) override;
Node* allocNewInstance(Graph* g) override;
const std::function<void(std::vector<IValue>&)>& getCallback() const {
return callback_;
}
void setCallback(std::function<void(std::vector<IValue>&)> callback) {
callback_ = callback;
}
private:
std::function<void(std::vector<IValue>&)> callback_;
};
// execute a Python function, used for Ops we can't optimize but that we want to
// optimize around
//
// Note: actual implementation (ConcretePythonOp) is defined in python_ir.cpp
// which is not included in libtorch.so. We still include some bits and pieces
// of PythonOp here to enable writing simple passes generically. In general,
// python-aware bits need to be moved to the descendant classes.
struct TORCH_API PythonOp : public Node {
using Node::Node;
virtual std::string name() const = 0;
virtual void writeScalars(std::ostream& out) const = 0;
void cloneFrom(Node* other_) override = 0;
Node* allocNewInstance(Graph* g) override = 0;
// recover the autograd.Function instance, if this PythonOp's function
// was originally SomeFunction.apply
// used in ONNX for discovering symbolics
virtual c10::optional<THPObjectPtr> autogradFunction() const = 0;
virtual void lint_python() const = 0;
};
TORCH_API void LintGraph(const std::shared_ptr<Graph>& graph);
TORCH_API at::ArrayRef<Value*> createTupleUnpack(Value* v);
/** Insert graph \p CALLEE into graph \p G using \p INPUTS as input values.
* The insertion happens at the current insertion point.
* Optionally, one can also pass \p VALUE_MAP to get a map between \p CALLEE
* values and their cloned copies in \p G.
*/
TORCH_API std::vector<Value*> insertGraph(
Graph& g,
Graph& callee,
ArrayRef<Value*> inputs);
TORCH_API std::vector<Value*> insertGraph(
Graph& g,
Graph& callee,
ArrayRef<Value*> inputs,
std::unordered_map<Value*, Value*>& value_map);
/** Insert function \p CALLEE after node \p TO_REPLACE, remove the node and
* replace all its uses with corresponding outputs of the inserted function.
* This asserts that the number of outputs of the original node and the
* graph are the same.
*/
TORCH_API std::vector<Value*> inlineCallTo(
Node* to_replace,
Function* callee,
bool use_graph = true);
/** If there is only one value in \p OUTPUTS and its kind is Tuple, insert a
* tuple unpack node and return the resulting values.
*/
TORCH_API std::vector<Value*> unpackOutputs(const std::vector<Value*>& outputs);
struct OperatorSet {
OperatorSet(std::initializer_list<const char*> sig_literals);
private:
friend struct Node;
std::unordered_map<Symbol, std::vector<std::shared_ptr<Operator>>> ops;
};
} // namespace jit
} // namespace torch
|