File: import.cpp

package info (click to toggle)
pytorch 1.7.1-7
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 80,340 kB
  • sloc: cpp: 670,830; python: 343,991; ansic: 67,845; asm: 5,503; sh: 2,924; java: 2,888; xml: 266; makefile: 244; ruby: 148; yacc: 144; objc: 51; lex: 44
file content (451 lines) | stat: -rw-r--r-- 15,735 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
#include <torch/csrc/jit/mobile/import.h>
#include <ATen/core/ivalue.h>
#include <caffe2/serialize/inline_container.h>
#include <torch/csrc/jit/api/compilation_unit.h>
#include <torch/csrc/jit/mobile/observer.h>
#include <torch/csrc/jit/runtime/instruction.h>
#include <torch/csrc/jit/serialization/import_export_constants.h>
#include <torch/csrc/jit/serialization/unpickler.h>
#include <torch/custom_class.h>

#include <exception>
#include <fstream>
#include <string>
#include <vector>

// The import process to serialize the bytecode package.
// An example for bytecode.pkl of a small mobile_module looks like:
// (3,
//   ('__torch__.m.forward',
//     (('instructions',
//       (('STOREN', 1, 2),
//        ('DROPR', 1, 0),
//        ('MOVE', 2, 0),
//        ('OP', 0, 0),
//        ('RET', 0, 0))),
//      ('operators', (('aten::Int', 'Tensor'),)),
//      ('constants', ()),
//      ('types', ()),
//      ('register_size', 2))))

// In addition, the module debugging information can be saved
// in mobile_debug.pkl. An example for it looks like:
// (3,
//   ('__torch__.m.forward',
//     (('module_debug_info', (top(A).foo(B).forward)))))

// Note that currently the backward compatibility is not supported by bytecode.
// This format and process need to be revisted and redesigned if we want to
// support backward compatibility in future.

namespace c10 {
// std::string serializeType(const Type &t);
TypePtr parseType(const std::string& pythonStr);
} // namespace c10

namespace torch {
namespace jit {
using caffe2::serialize::IStreamAdapter;
using caffe2::serialize::PyTorchStreamReader;
using caffe2::serialize::ReadAdapterInterface;

OpCode parseOpCode(const char* str);

IValue expect_field(
    IValue tup,
    const std::string& expected_name,
    size_t entry) {
  auto row = tup.toTuple()->elements().at(entry).toTuple();
  TORCH_INTERNAL_ASSERT(
      row->elements().at(0).toStringRef() == expected_name,
      "Expected ",
      expected_name,
      " found ",
      row->elements().at(0).toStringRef());
  return row->elements().at(1);
}

std::string operator_str(
    const std::string& name,
    const std::string& overloadname) {
  std::string result = name;
  if (!overloadname.empty()) {
    result += "." + overloadname;
  }
  return result;
}

namespace {
void print_unsupported_ops_and_throw(
    const std::unordered_set<std::string>& unsupported_ops) {
  std::string error_message("{");
  for (const auto& op_name : unsupported_ops) {
    error_message += op_name + ", ";
  }
  error_message += "}";
  TORCH_CHECK(
      false,
      "Following ops cannot be found. ",
      "May need to add them explicitly to the selective build operator whitelist, ",
      "or re-run the export_opnames to update the whitelist:",
      error_message);
}

void parseMethods(
    const std::vector<IValue>& vals,
    const c10::optional<std::vector<IValue>>& debug_info_vals,
    mobile::CompilationUnit& mcu) {
  TORCH_CHECK(vals.size() > 0, "Bytecode has no elements. ");
  // Initialized with the version number when kProducedBytecodeVersion was
  // introduced. The old models (some of them already in production) without
  // version number don't have to be re-generated.
  int64_t model_version = 0x3L;
  size_t method_i_start = 0;
  if (vals[0].isInt()) {
    model_version = vals[0].toInt();
    method_i_start = 1;
  }
  TORCH_CHECK(
      caffe2::serialize::kMinSupportedBytecodeVersion <= model_version &&
          model_version <= caffe2::serialize::kProducedBytecodeVersion,
      "Lite Interpreter verson number does not match. ",
      "The model version must be between ",
      caffe2::serialize::kMinSupportedBytecodeVersion,
      " and ",
      caffe2::serialize::kProducedBytecodeVersion,
      "But the model version is ",
      model_version);

  bool has_debug_info = debug_info_vals.has_value();
  if (has_debug_info) {
    TORCH_CHECK(
        debug_info_vals->size() == vals.size(),
        "The numbers of bytecode values and debug info values do not match.");
  }

  for (size_t i = method_i_start; i < vals.size(); ++i) {
    const auto& element = vals[i];
    const auto& m_tuple = element.toTuple()->elements();
    const std::string& function_name = m_tuple[0].toStringRef();
    IValue table = m_tuple[1];

    auto function = std::unique_ptr<mobile::Function>(
        new mobile::Function(c10::QualifiedName(function_name)));

    const auto& ins_list =
        expect_field(table, "instructions", BYTECODE_INDEX_INSTRUCTION)
            .toTuple()
            ->elements();
    const auto& ops_list =
        expect_field(table, "operators", BYTECODE_INDEX_OPERATOR)
            .toTuple()
            ->elements();
    const auto& consts_list =
        expect_field(table, "constants", BYTECODE_INDEX_CONSTANT)
            .toTuple()
            ->elements();
    const auto& types_list =
        expect_field(table, "types", BYTECODE_INDEX_TYPE).toTuple()->elements();
    const auto& register_size =
        expect_field(table, "register_size", BYTECODE_INDEX_REGISTER_SIZE)
            .toInt();

    std::vector<IValue> module_debug_info_list;
    if (has_debug_info) {
      const auto& debug_info_element = (*debug_info_vals)[i];
      const auto& debug_info_m_tuple = debug_info_element.toTuple()->elements();
      const std::string& debug_info_function_name =
          debug_info_m_tuple[0].toStringRef();
      TORCH_CHECK(
          debug_info_function_name == function_name,
          "The function names in the bytecode table and the debug info table do not match.");
      IValue debug_info_table = debug_info_m_tuple[1];
      module_debug_info_list = expect_field(
                                   debug_info_table,
                                   "module_debug_info",
                                   BYTECODE_INDEX_MODULE_DEBUG_INFO)
                                   .toTuple()
                                   ->elements();
      TORCH_CHECK(
          module_debug_info_list.size() == ops_list.size(),
          "The numbers of operators and module info strings do not match.");
    }

    function->set_module_debug_info_list_size(ins_list.size());
    for (size_t i = 0; i < ins_list.size(); ++i) {
      auto ins_item = ins_list[i].toTuple()->elements();
      TORCH_CHECK(
          ins_item.size() == 3,
          "There should be three parts in an instruction. The function name is ",
          function_name);
      OpCode op_code = parseOpCode(ins_item[0].toString()->string().c_str());
      int X = ins_item[1].toInt();
      int N = ins_item[2].toInt();
      function->append_instruction(op_code, X, N);
      if (op_code == OP) {
        std::string module_debug_info = (has_debug_info)
            ? module_debug_info_list[X].toString()->string()
            : "";
        function->set_module_info(module_debug_info, i);
      }
    }

    std::unordered_set<std::string> unsupported_op_names;
    for (const auto& op : ops_list) {
      auto op_item = op.toTuple()->elements();
      TORCH_CHECK(
          op_item.size() == 2,
          "There should be two parts in an operator name.");
      auto op_found = function->append_operator(
          op_item[0].toString()->string(),
          op_item[1].toString()->string(),
          model_version);
      if (!op_found) {
        unsupported_op_names.emplace(operator_str(
            op_item[0].toString()->string(), op_item[1].toString()->string()));
      }
    }
    if (!unsupported_op_names.empty()) {
      print_unsupported_ops_and_throw(unsupported_op_names);
    };

    for (const auto& constant : consts_list) {
      function->append_constant(constant);
    }

    for (const auto& t : types_list) {
      function->append_type(c10::parseType(t.toStringRef()));
    }

    function->set_register_size(register_size);

    mcu.register_function(std::move(function));
  }
}

// The deserializer class which loads the bytecode package from bc files.
class BytecodeDeserializer final {
 public:
  explicit BytecodeDeserializer(std::unique_ptr<PyTorchStreamReader> reader);
  mobile::Module deserialize(c10::optional<at::Device> device);
  std::unordered_map<std::string, std::string> deserializeMetadata(
      c10::optional<at::Device> device);

 private:
  c10::IValue readArchive(
      const std::string& archive_name,
      std::shared_ptr<mobile::CompilationUnit> mcu);
  std::unordered_map<std::string, std::string> readMobileMetadata(
      std::shared_ptr<mobile::CompilationUnit> mcu);
  std::shared_ptr<CompilationUnit> compilation_unit_;
  std::unordered_set<std::string> imported_libs_;
  std::unique_ptr<PyTorchStreamReader> reader_;
  c10::optional<at::Device> device_;
};

BytecodeDeserializer::BytecodeDeserializer(
    std::unique_ptr<PyTorchStreamReader> reader)
    : compilation_unit_(std::make_shared<CompilationUnit>()),
      reader_(std::move(reader)) {}

std::unordered_map<std::string, std::string> BytecodeDeserializer::
    deserializeMetadata(c10::optional<at::Device> device) {
  device_ = device;
  auto mcu = std::make_shared<mobile::CompilationUnit>();
  return readMobileMetadata(mcu);
}

mobile::Module BytecodeDeserializer::deserialize(
    c10::optional<at::Device> device) {
  device_ = device;
  auto mcu = std::make_shared<mobile::CompilationUnit>();
  auto bvals = readArchive("bytecode", mcu).toTuple()->elements();

  c10::optional<std::vector<IValue>> debug_info_bvals;
  if (reader_->hasRecord("mobile_debug.pkl")) {
    debug_info_bvals = readArchive("mobile_debug", mcu).toTuple()->elements();
  }
  parseMethods(bvals, debug_info_bvals, *mcu);
  auto meta_dict = readMobileMetadata(mcu);
  return mobile::Module(readArchive("data", mcu).toObject(), meta_dict, mcu);
}

std::unordered_map<std::string, std::string> BytecodeDeserializer::
    readMobileMetadata(std::shared_ptr<mobile::CompilationUnit> mcu) {
  std::unordered_map<std::string, std::string> res;
  if (!reader_->hasRecord("metadata.pkl")) {
    return res;
  }
  auto ivalue_dict = readArchive("metadata", mcu).toGenericDict();
  for (auto it = ivalue_dict.begin(); it != ivalue_dict.end(); ++it) {
    auto key = it->key().toString()->string();
    auto value = it->value().toString()->string();
    res[key] = value;
  }
  return res;
}

c10::IValue BytecodeDeserializer::readArchive(
    const std::string& archive_name,
    std::shared_ptr<mobile::CompilationUnit> mcu) {
  std::stringstream picklename;
  picklename << archive_name << ".pkl";
  at::DataPtr pickle_ptr;
  size_t pickle_size;
  std::tie(pickle_ptr, pickle_size) = reader_->getRecord(picklename.str());

  size_t bytes_read = 0;
  auto data = reinterpret_cast<const char*>(pickle_ptr.get());
  auto reader = [&](char* buffer, size_t len) -> size_t {
    if (bytes_read >= pickle_size) {
      return 0;
    }
    len = std::min(pickle_size - bytes_read, len);
    // Copy len bytes into buffer
    const char* start = data + bytes_read;
    std::memcpy(buffer, start, len);
    bytes_read += len;
    return len;
  };

  static const c10::QualifiedName torchPrefix = "__torch__";
  auto type_resolver = [&](const c10::QualifiedName& qn) {
    TypePtr type;
    // HACK: first we check whether the name starts with `__torch__` to tell if
    // it's "supposed" to be a class type. This is a reliable check today, but
    // there is no guarantee that this is the case. The real solution is to
    // merge type parsers so we can share class resolution logic.
    if (torchPrefix.isPrefixOf(qn)) {
      if (compilation_unit_->get_class(qn) == nullptr) {
        auto typeptr = ClassType::create(qn, compilation_unit_, true);
        compilation_unit_->register_type(typeptr);
      }
      type = compilation_unit_->get_class(qn);
    } else {
      type = c10::parseType(qn.qualifiedName());
    }
    return c10::StrongTypePtr(compilation_unit_, type);
  };

  auto obj_loader = [&](at::StrongTypePtr type, IValue input) {
    auto cls = type.type_->expect<at::ClassType>();
    auto qn = cls->name();
    c10::QualifiedName method_name(qn.value(), "__setstate__");
    auto setstate = mcu->find_function(method_name);
    auto find_custom_class_with_setstate = [&qn]() -> c10::ClassTypePtr {
      auto custom_class_type = torch::jit::getCustomClass(qn->qualifiedName());
      if (custom_class_type && custom_class_type->findMethod("__setstate__")) {
        return custom_class_type;
      }
      return nullptr;
    };
    if (setstate) {
      auto obj = c10::ivalue::Object::create(type, 0);
      Stack stack({obj, input});
      setstate->run(stack);
      return obj;
    } else if (auto custom_class_type = find_custom_class_with_setstate()) {
      auto obj = c10::ivalue::Object::create(
          c10::StrongTypePtr(nullptr, custom_class_type), 1);
      Stack stack({obj, input});
      custom_class_type->getMethod("__setstate__").run(stack);
      return obj;
    } else {
      auto dict = std::move(input).toGenericDict();
      size_t ndict = dict.size();
      auto obj = c10::ivalue::Object::create(type, ndict);
      auto it = dict.begin();
      for (size_t i = 0; i < ndict; ++i) {
        std::stringstream name;
        name << it->key();
        cls->addOrCheckAttribute(name.str(), it->key().type());
        obj->setSlot(i, it->value());
        ++it;
      }
      return obj;
    }
  };

  auto read_record = [&](const std::string& name) {
    std::stringstream ss;
    ss << archive_name << "/" << name;
    return std::get<0>(reader_->getRecord(ss.str()));
  };

  Unpickler unpickler(
      reader,
      std::move(type_resolver),
      std::move(obj_loader),
      std::move(read_record),
      device_);
  return unpickler.parse_ivalue();
}

} // namespace

mobile::Module _load_for_mobile(
    std::istream& in,
    c10::optional<at::Device> device) {
  std::unique_ptr<IStreamAdapter> rai = std::make_unique<IStreamAdapter>(&in);
  auto module = _load_for_mobile(std::move(rai), device);
  return module;
}

mobile::Module _load_for_mobile(
    const std::string& filename,
    c10::optional<at::Device> device) {
  std::unique_ptr<FileAdapter> rai = std::make_unique<FileAdapter>(filename);
  auto module = _load_for_mobile(std::move(rai), device);
  return module;
}

mobile::Module _load_for_mobile(
    std::unique_ptr<ReadAdapterInterface> rai,
    c10::optional<c10::Device> device) {
  auto observer = torch::observerConfig().getModuleObserver();
  if (observer) {
    observer->onEnterLoadModel();
  }
  auto reader = torch::make_unique<PyTorchStreamReader>(std::move(rai));
  BytecodeDeserializer deserializer(std::move(reader));
  try {
    mobile::Module result = deserializer.deserialize(std::move(device));
    std::unordered_map<std::string, std::string> copied_metadata =
        result.metadata();
    if (result.metadata().find("model_name") == result.metadata().end()) {
      copied_metadata["model_name"] = result.name();
    }
    if (observer) {
      observer->onExitLoadModel(copied_metadata);
    }
    return result;
  } catch (c10::Error& error) {
    if (observer) {
      observer->onFailLoadModel(
          error.what(), deserializer.deserializeMetadata(std::move(device)));
    }
    TORCH_RETHROW(error);
  } catch (...) {
    auto currentException = std::current_exception();
    try {
      if (!currentException) {
        TORCH_CHECK(false, "Unknown exception");
      } else {
        try {
          std::rethrow_exception(currentException);
        } catch (const std::exception& e) {
          TORCH_CHECK(false, e.what());
        }
      }
    } catch (c10::Error& error) {
      if (observer) {
        observer->onFailLoadModel(
            error.what(), deserializer.deserializeMetadata(std::move(device)));
      }
      TORCH_RETHROW(error);
    }
  }
}

} // namespace jit
} // namespace torch