1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
|
#include <torch/csrc/jit/mobile/import_data.h>
#include <ATen/core/ivalue.h>
#include <caffe2/serialize/inline_container.h>
#include <torch/csrc/jit/api/compilation_unit.h>
#include <torch/csrc/jit/mobile/observer.h>
#include <torch/csrc/jit/runtime/instruction.h>
#include <torch/csrc/jit/serialization/unpickler.h>
#include <torch/custom_class.h>
#include <exception>
#include <fstream>
#include <string>
#include <vector>
namespace c10 {
// std::string serializeType(const Type &t);
TypePtr parseType(const std::string& pythonStr);
} // namespace c10
namespace torch {
namespace jit {
using caffe2::serialize::IStreamAdapter;
using caffe2::serialize::PyTorchStreamReader;
using caffe2::serialize::ReadAdapterInterface;
namespace {
// The deserializer class which loads the bytecode package from bc files.
class BytecodeDeserializer final {
public:
explicit BytecodeDeserializer(std::unique_ptr<PyTorchStreamReader> reader);
c10::IValue deserialize(c10::optional<at::Device> device);
private:
c10::IValue readArchive(
const std::string& archive_name,
std::shared_ptr<mobile::CompilationUnit> mcu,
c10::optional<at::Device> device);
std::shared_ptr<CompilationUnit> compilation_unit_;
std::unique_ptr<PyTorchStreamReader> reader_;
};
BytecodeDeserializer::BytecodeDeserializer(
std::unique_ptr<PyTorchStreamReader> reader)
: compilation_unit_(std::make_shared<CompilationUnit>()),
reader_(std::move(reader)) {}
c10::IValue BytecodeDeserializer::deserialize(
c10::optional<at::Device> device) {
auto mcu = std::make_shared<mobile::CompilationUnit>();
return readArchive("data", mcu, std::move(device));
}
c10::IValue BytecodeDeserializer::readArchive(
const std::string& archive_name,
std::shared_ptr<mobile::CompilationUnit> mcu,
c10::optional<at::Device> device) {
std::stringstream picklename;
picklename << archive_name << ".pkl";
at::DataPtr pickle_ptr;
size_t pickle_size;
std::tie(pickle_ptr, pickle_size) = reader_->getRecord(picklename.str());
size_t bytes_read = 0;
auto data = reinterpret_cast<const char*>(pickle_ptr.get());
auto reader = [&](char* buffer, size_t len) -> size_t {
if (bytes_read >= pickle_size) {
return 0;
}
len = std::min(pickle_size - bytes_read, len);
// Copy len bytes into buffer
const char* start = data + bytes_read;
std::memcpy(buffer, start, len);
bytes_read += len;
return len;
};
static const c10::QualifiedName torchPrefix = "__torch__";
auto type_resolver = [&](const c10::QualifiedName& qn) {
TypePtr type;
// HACK: first we check whether the name starts with `__torch__` to tell if
// it's "supposed" to be a class type. This is a reliable check today, but
// there is no guarantee that this is the case. The real solution is to
// merge type parsers so we can share class resolution logic.
if (torchPrefix.isPrefixOf(qn)) {
if (compilation_unit_->get_class(qn) == nullptr) {
auto typeptr = ClassType::create(qn, compilation_unit_, true);
compilation_unit_->register_type(typeptr);
}
type = compilation_unit_->get_class(qn);
} else {
type = c10::parseType(qn.qualifiedName());
}
return c10::StrongTypePtr(compilation_unit_, type);
};
auto obj_loader = [&](const at::StrongTypePtr& type, IValue input) {
auto cls = type.type_->expect<at::ClassType>();
auto qn = cls->name();
c10::QualifiedName method_name(qn.value(), "__setstate__");
auto setstate = mcu->find_function(method_name);
auto find_custom_class_with_setstate = [&qn]() -> c10::ClassTypePtr {
auto custom_class_type = torch::jit::getCustomClass(qn->qualifiedName());
if (custom_class_type && custom_class_type->findMethod("__setstate__")) {
return custom_class_type;
}
return nullptr;
};
if (setstate) {
auto obj = c10::ivalue::Object::create(type, 0);
Stack stack({obj, input});
setstate->run(stack);
return obj;
} else if (auto custom_class_type = find_custom_class_with_setstate()) {
auto obj = c10::ivalue::Object::create(
c10::StrongTypePtr(nullptr, custom_class_type), 1);
Stack stack({obj, input});
custom_class_type->getMethod("__setstate__").run(stack);
return obj;
} else {
auto dict = std::move(input).toGenericDict();
size_t ndict = dict.size();
auto obj = c10::ivalue::Object::create(type, ndict);
auto it = dict.begin();
for (size_t i = 0; i < ndict; ++i) {
std::stringstream name;
name << it->key();
cls->addOrCheckAttribute(name.str(), it->key().type());
obj->setSlot(i, it->value());
++it;
}
return obj;
}
};
auto read_record = [&](const std::string& name) {
std::stringstream ss;
ss << archive_name << "/" << name;
return std::get<0>(reader_->getRecord(ss.str()));
};
Unpickler unpickler(
reader,
std::move(type_resolver),
std::move(obj_loader),
std::move(read_record),
std::move(device));
return unpickler.parse_ivalue();
}
} // namespace
namespace mobile {
mobile::Module _load_data(std::istream& in, c10::optional<at::Device> device) {
std::unique_ptr<IStreamAdapter> rai = std::make_unique<IStreamAdapter>(&in);
return _load_data(std::move(rai), std::move(device));
}
mobile::Module _load_data(
const std::string& filename,
c10::optional<at::Device> device) {
std::unique_ptr<FileAdapter> rai = std::make_unique<FileAdapter>(filename);
return _load_data(std::move(rai), std::move(device));
}
mobile::Module _load_data(
std::unique_ptr<ReadAdapterInterface> rai,
c10::optional<c10::Device> device) {
auto observer = torch::observerConfig().getModuleObserver();
if (observer) {
observer->onEnterLoadModel();
}
try {
auto reader = torch::make_unique<PyTorchStreamReader>(std::move(rai));
BytecodeDeserializer deserializer(std::move(reader));
auto mcu = std::make_shared<mobile::CompilationUnit>();
mobile::Module result = mobile::Module(
deserializer.deserialize(std::move(device)).toObject(), mcu);
std::unordered_map<std::string, std::string> copied_metadata =
result.metadata();
if (result.metadata().find("model_name") == result.metadata().end()) {
copied_metadata["model_name"] = result.name();
}
if (observer) {
observer->onExitLoadModel(copied_metadata);
}
return result;
} catch (c10::Error& error) {
if (observer) {
observer->onFailLoadModel(error.what());
}
TORCH_RETHROW(error);
} catch (...) {
auto currentException = std::current_exception();
try {
if (!currentException) {
TORCH_CHECK(false, "Unknown exception");
} else {
try {
std::rethrow_exception(currentException);
} catch (const std::exception& e) {
TORCH_CHECK(false, e.what());
}
}
} catch (c10::Error& error) {
if (observer) {
observer->onFailLoadModel(error.what());
}
TORCH_RETHROW(error);
}
}
}
} // namespace mobile
std::map<std::string, at::Tensor> _load_parameters(
std::istream& in,
c10::optional<at::Device> device) {
std::unique_ptr<IStreamAdapter> rai = std::make_unique<IStreamAdapter>(&in);
return _load_parameters(std::move(rai), std::move(device));
}
std::map<std::string, at::Tensor> _load_parameters(
const std::string& filename,
c10::optional<at::Device> device) {
std::unique_ptr<FileAdapter> rai = std::make_unique<FileAdapter>(filename);
return _load_parameters(std::move(rai), std::move(device));
}
std::map<std::string, at::Tensor> _load_parameters(
std::unique_ptr<ReadAdapterInterface> rai,
c10::optional<c10::Device> device) {
auto reader = torch::make_unique<PyTorchStreamReader>(std::move(rai));
BytecodeDeserializer deserializer(std::move(reader));
auto result = deserializer.deserialize(std::move(device)).toGenericDict();
std::map<std::string, at::Tensor> map;
for (const auto& e : result) {
auto key = e.key().toString()->string();
auto value = e.value().toTensor().tensor_data();
map[key] = value;
}
return map;
}
} // namespace jit
} // namespace torch
|