File: constant_propagation.cpp

package info (click to toggle)
pytorch 1.7.1-7
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 80,340 kB
  • sloc: cpp: 670,830; python: 343,991; ansic: 67,845; asm: 5,503; sh: 2,924; java: 2,888; xml: 266; makefile: 244; ruby: 148; yacc: 144; objc: 51; lex: 44
file content (374 lines) | stat: -rw-r--r-- 11,919 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
#include <torch/csrc/jit/passes/constant_propagation.h>
#include <ATen/core/functional.h>
#include <ATen/core/ivalue.h>
#include <c10/util/Exception.h>
#include <torch/csrc/autograd/variable.h>
#include <torch/csrc/jit/ir/alias_analysis.h>
#include <torch/csrc/jit/ir/constants.h>
#include <torch/csrc/jit/ir/ir.h>
#include <torch/csrc/jit/ir/node_hashing.h>
#include <torch/csrc/jit/jit_log.h>
#include <torch/csrc/jit/passes/dead_code_elimination.h>
#include <torch/csrc/jit/runtime/operator.h>
#include <torch/csrc/jit/runtime/vararg_functions.h>
#include <torch/csrc/utils/memory.h>

namespace torch {
namespace jit {

c10::optional<std::vector<IValue>> runNodeIfInputsAreConstant(const Node* n) {
  Stack stack;
  for (auto input : n->inputs()) {
    if (auto ival = toIValue(input)) {
      stack.push_back(*ival);
    } else {
      return c10::nullopt;
    }
  }
  switch (n->kind()) {
    case prim::ListUnpack: {
      if (stack.back().toList().size() != n->outputs().size()) {
        return c10::nullopt;
      }
      listUnpack(stack, n->outputs().size());
    } break;
    case prim::TupleConstruct: {
      auto tt = n->output()->type()->expect<TupleType>();
      if (tt->name()) {
        namedTupleConstruct(stack, tt, n->inputs().size());
      } else {
        tupleConstruct(stack, n->inputs().size());
      }
    } break;
    case prim::ListConstruct: {
      listConstruct(
          stack, n->output()->type()->expect<ListType>(), n->inputs().size());
    } break;
    case prim::DictConstruct: {
      dictConstruct(
          stack, n->output()->type()->expect<DictType>(), n->inputs().size());
    } break;
    case prim::CreateObject: {
      createObject(stack, n->output()->type()->expect<ClassType>());
    } break;
    case prim::isinstance: {
      isinstance(stack, n->tys(attr::types));
    } break;
    default: {
      const auto& the_operator = n->getOperator();
      if (the_operator.schema().is_vararg()) {
        // vararg schemas require the number of inputs at the top of the stack
        // but this is broken in other places in constant prop, so disable it
        // for now
        return c10::nullopt;
      }

      auto op = n->getOperation();
      try {
        op(&stack);
      } catch (...) {
        return c10::nullopt;
      }
    } break;
  }

  for (const IValue& v : stack) {
    if (v.isTensor()) {
      at::Tensor t = v.toTensor();
      if (t.defined() && t.requires_grad()) {
        // requires grad tensors cannot be constants
        return c10::nullopt;
      }
    }
  }
  return stack;
}

namespace {

std::unordered_set<Symbol> skip_list = {
    prim::If,
    prim::Loop,
    prim::Function,
    prim::Constant,
    prim::AutogradZero,
    prim::Uninitialized,
    prim::Guard,
    prim::profile,
    prim::profile_optional,
    prim::unchecked_unwrap_optional, // TODO remove
    // TODO (zach): we should consider skipping tensor factories in the cases
    // where the constant tensor would be large but cheap to create.
};

struct ConstantPropagator {
  // Runs constant propagation with an aliasing db and checks if inputs or
  // outputs might be mutated in the graph
  static ConstantPropagator WithAliasDb(std::shared_ptr<Graph> graph) {
    return ConstantPropagator(graph, true);
  }

  // Runs constant propagation only on ops that clearly do not have aliased
  // inputs or outputs without computing aliasing information
  static ConstantPropagator NoAliasDb(std::shared_ptr<Graph> graph) {
    return ConstantPropagator(graph, false);
  }

  void run() {
    ConstantPropagation(graph_->block());
  }

 private:
  ConstantPropagator(std::shared_ptr<Graph> graph, bool aliasing_types)
      : graph_(std::move(graph)) {
    if (aliasing_types) {
      aliasDb_ = torch::make_unique<AliasDb>(graph_);
    } else {
      aliasDb_ = nullptr;
    }
  }

  void propagateNode(Node* n) {
    std::vector<IValue> outputs;
    if (auto outputs_opt = runNodeIfInputsAreConstant(n)) {
      outputs = std::move(outputs_opt.value());
    } else {
      // The op failed to run, so we cannot continue constant-prop for it.
      return;
    }
    auto graph = n->owningGraph();
    WithInsertPoint guard(n);
    for (size_t i = 0; i < outputs.size(); ++i) {
      auto new_output = tryInsertConstant(*graph, outputs[i]);
      if (new_output) {
        GRAPH_UPDATE(
            "Folding %",
            n->outputs()[i]->debugName(),
            " with ",
            getHeader((*new_output)->node()));
        if (outputs[i].isNone()) {
          (*new_output)->setType(n->outputs()[i]->type());
        }
        n->outputs()[i]->replaceAllUsesWith(*new_output);
      }
      // If we cannot insert the IValue as a constant, give up replacing the
      // node and let DCE remove it
    }
  }

  void removeLoopNode(Node* n) {
    auto loop_input_offset = 2; // offset of loop carried deps in input list
    for (size_t i = 0; i < n->outputs().size(); ++i) {
      n->outputs().at(i)->replaceAllUsesWith(
          n->inputs().at(i + loop_input_offset));
    }
    n->destroy();
  }

  bool loopWillNotRun(Node* node) {
    Value* trip_count = node->inputs().at(0);
    int64_t iter_len = constant_as<int64_t>(trip_count).value_or(1);

    Value* start_cond = node->inputs().at(1);
    bool cond_val = constant_as<bool>(start_cond).value_or(true);

    bool loop_might_run = cond_val && iter_len > 0;
    if (!loop_might_run) {
      GRAPH_UPDATE(
          "Removing unexecuted loop: ",
          *node,
          "\ntripcount: ",
          trip_count,
          " and start_cond: ",
          getHeader(start_cond->node()));
    }
    return !loop_might_run;
  }

  void inlineIfBody(Block* body) {
    Node* n = body->owningNode();
    for (auto it = body->nodes().begin(); it != body->nodes().end();) {
      Node* body_node = *it;
      // advance iterator because after body_node is moved its next pointer will
      // be to n
      it++;
      body_node->moveBefore(n);
    }
    for (size_t i = 0; i < n->outputs().size(); ++i) {
      n->outputs().at(i)->replaceAllUsesWith(body->outputs().at(i));
    }
    // NB: destroy the node here, because it might contain side effects, like
    // print
    n->destroy();
  }

  void inlineIf(Node* n) {
    auto input_bool = constant_as<bool>(n->input());
    AT_ASSERT(input_bool);
    GRAPH_UPDATE(
        "Folding if ",
        getHeader(n->input()->node()),
        " where condition = ",
        *input_bool);
    size_t block_index = *input_bool ? 0 : 1;
    ConstantPropagation(n->blocks().at(block_index));
    inlineIfBody(n->blocks().at(block_index));
  }

  void replaceAndRemoveIfOutput(Node* n, size_t i, Value* replacement) {
    n->outputs().at(i)->replaceAllUsesWith(replacement);
    n->eraseOutput(i);
    n->blocks().at(0)->eraseOutput(i);
    n->blocks().at(1)->eraseOutput(i);
  }

  // remove extra outputs from the node
  bool removeExtraIfOutputs(Node* n) {
    TORCH_CHECK(n->kind() == prim::If, "Only supported for If nodes");
    auto true_block = n->blocks()[0];
    auto false_block = n->blocks()[1];
    auto graph = n->owningGraph();
    auto initial_outputs = true_block->outputs().size();
    WithInsertPoint guard(n);
    for (size_t i = 0; i < true_block->outputs().size();) {
      auto t_out = true_block->outputs().at(i);
      auto f_out = false_block->outputs().at(i);

      // neither block changes the output value
      if (true_block->outputs()[i] == false_block->outputs()[i]) {
        replaceAndRemoveIfOutput(n, i, true_block->outputs()[i]);
        continue;
      }

      // true block output is constant and constant matches false block output
      auto maybe_const = toIValue(t_out);
      auto eq = EqualNode();
      if (maybe_const && eq(t_out->node(), f_out->node())) {
        auto new_const = graph->insertConstant(*maybe_const);
        replaceAndRemoveIfOutput(n, i, new_const);
        continue;
      }

      i++; // increment bc we didn't remove current index
    }
    // an output was removed
    return initial_outputs != true_block->outputs().size();
  }

  // remove extra outputs from the node
  void removeExtraLoopOutputs(Node* node) {
    auto loop_body = node->blocks().at(0);
    auto loop_input_offset = 2; // offset of loop carried deps in input list
    auto loop_body_offset =
        1; // offset to the loop carried dependencies in block inputs/outputs
    for (size_t i_1 = node->outputs().size(); i_1 > 0; --i_1) {
      size_t i = i_1 - 1;
      // if the value is no longer changed remove output
      if (loop_body->inputs().at(loop_body_offset + i) ==
          loop_body->outputs().at(loop_body_offset + i)) {
        auto node_input = node->inputs().at(loop_input_offset + i);
        node->outputs().at(i)->replaceAllUsesWith(node_input);
        loop_body->inputs()
            .at(loop_body_offset + i)
            ->replaceAllUsesWith(node_input);
        node->eraseOutput(i);
        node->removeInput(loop_input_offset + i);
        loop_body->eraseInput(loop_body_offset + i);
        loop_body->eraseOutput(loop_body_offset + i);
      }
    }
  }

  // An Op has runnable inputs if:
  // - All inputs are constants.
  // - It is an op that forwards tuples, and all inputs are constants
  // or tuples that we know the ivalue for. We can't use known tuple ivalues
  // for non-forwarding ops because that Tuple could contain an ivalue that is
  // not allowed as a constant, for instance, a Tensor with a gradient.
  bool runnableInputs(Node* n) {
    if (std::all_of(n->inputs().begin(), n->inputs().end(), [&](Value* v) {
          return v->node()->kind() == prim::Constant;
        })) {
      return true;
    }
    return false;
  };

  bool noMutableValues(at::ArrayRef<Value*> values) {
    return std::none_of(values.begin(), values.end(), [](Value* v) {
      return AliasDb::isMutableType(v);
    });
  }

  bool supportedNode(Node* n) {
    bool no_mutation;
    if (aliasDb_) {
      no_mutation = !aliasDb_->hasWriters(n);
    } else {
      no_mutation =
          noMutableValues(n->inputs()) && noMutableValues(n->outputs());
    }
    return no_mutation && !n->kind().is_onnx() &&
        skip_list.count(n->kind()) == 0 && !n->isNondeterministic() &&
        !n->hasSideEffects() && n->blocks().size() == 0;
  }

  void ConstantPropagation(at::ArrayRef<Block*> blocks) {
    for (Block* block : blocks) {
      ConstantPropagation(block);
    }
  }

  void ConstantPropagation(Node* n) {
    bool runnable_inputs = runnableInputs(n);
    if (n->kind() == prim::If) {
      // inline node if we can, otherwise check for simplified outputs
      if (runnable_inputs) {
        inlineIf(n);
      } else {
        ConstantPropagation(n->blocks());
        removeExtraIfOutputs(n);
      }
    } else if (n->kind() == prim::Loop) {
      if (loopWillNotRun(n)) {
        removeLoopNode(n);
      } else {
        ConstantPropagation(n->blocks());
        removeExtraLoopOutputs(n);
      }
    } else if (runnable_inputs && supportedNode(n)) {
      propagateNode(n);
    } else {
      ConstantPropagation(n->blocks());
    }
  }

  void ConstantPropagation(Block* block) {
    for (auto it = block->nodes().begin(); it != block->nodes().end();) {
      Node* n = *it;
      it++; // advance iterator bc the current node may be destroyed
      ConstantPropagation(n);
    }
  }

  std::shared_ptr<Graph> graph_;
  std::unique_ptr<AliasDb> aliasDb_;
};
} // anonymous namespace

void ConstantPropagation(std::shared_ptr<Graph>& graph) {
  ConstantPropagator cp = ConstantPropagator::WithAliasDb(graph);
  cp.run();
  EliminateDeadCode(graph);
  GRAPH_DUMP("After ConstantPropagation: ", graph);
}

void ConstantPropagationImmutableTypes(std::shared_ptr<Graph>& graph) {
  ConstantPropagator cp = ConstantPropagator::NoAliasDb(graph);
  cp.run();
  EliminateDeadCode(graph);
  GRAPH_DUMP("After ConstantPropagation: ", graph);
}

} // namespace jit
} // namespace torch