1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
|
#include <torch/csrc/jit/passes/create_autodiff_subgraphs.h>
#include <c10/util/Exception.h>
#include <torch/csrc/jit/ir/alias_analysis.h>
#include <torch/csrc/jit/ir/ir.h>
#include <torch/csrc/jit/passes/canonicalize.h>
#include <torch/csrc/jit/passes/common_subexpression_elimination.h>
#include <torch/csrc/jit/passes/utils/subgraph_utils.h>
#include <torch/csrc/jit/runtime/autodiff.h>
namespace torch {
namespace jit {
namespace {
struct WorkBlock : public std::pair<Node*, Node*> {
using pair::pair;
Node* begin() {
return this->first;
}
Node* end() {
return this->second;
}
};
class SubgraphSlicer {
public:
SubgraphSlicer(
Block* block,
std::shared_ptr<Graph> graph,
size_t minSubgraphSize,
AliasDb& aliasDb,
std::vector<Node*>& diff_nodes)
: block_(block),
graph_(std::move(graph)),
minSubgraphSize_(minSubgraphSize),
aliasDb_(aliasDb),
diff_nodes_(diff_nodes) {}
void run() {
// We maintain alias db correctness in-place while building up the autodiff
// subgraphs, however it is difficult to preserve correctness when
// un-inlining autodiff subgraphs. We first recursively construct all
// subgraphs and then recursively cleanup & unmerge the small subgraphs
buildupSubgraphs();
cleanupSubgraphs();
// Run CSE globally onceto eliminate duplicates that may have occurred
// while inlining subgraphs.
EliminateCommonSubexpression(graph_);
}
void cleanupSubgraphs() {
auto curNode = *block_->nodes().rbegin();
while (curNode != *block_->nodes().rend()) {
// Save the previous node, since we might delete `curNode` in next block
auto prevNode = curNode->prev();
if (curNode->kind() == prim::DifferentiableGraph) {
// Inlining nodes may cause some subexpression to come back in the
// subgraphs (for example, copying constants in repeatedly will generate
// redundant prim::Constants). Run CSE to clean them up.
EliminateCommonSubexpression(curNode->g(attr::Subgraph));
if (!inlineIfTooSmall(curNode)) {
diff_nodes_.push_back(curNode);
}
}
curNode = prevNode;
}
for (Node* n : block_->nodes()) {
for (Block* b : n->blocks()) {
SubgraphSlicer(b, graph_, minSubgraphSize_, aliasDb_, diff_nodes_)
.cleanupSubgraphs();
}
}
}
void buildupSubgraphs() {
// We need to run the slicer multiple times in order to get all merge
// opportunities. This is because moveBeforeTopologicalValid may reorder
// nodes to be AFTER the current iteration point. In order to properly
// consider those nodes for merging, we need run the pass until no changes
// have been made.
//
// Example:
// c = f(a, b)
// d = f(c)
// e = f(d) <- iter is here, moving upward
// After c.moveBeforeTopologicallyValid(e), we have:
// c = f(a, b)
// e = f(d) <- iter still here
// d = f(c) <- this was node moved on the other side.
// see [workblocks]
auto workblocks = buildWorkBlocks();
for (auto& workblock : workblocks) {
bool any_changed = true;
while (any_changed) {
any_changed = false;
for (auto it = workblock.end()->reverseIterator();
it != workblock.begin()->reverseIterator();) {
bool changed;
std::tie(it, changed) = scanNode(*it);
any_changed |= changed;
}
}
}
// Construct Subgraphs Recursively
for (Node* n : block_->nodes()) {
for (auto subBlock : n->blocks()) {
SubgraphSlicer(
subBlock, graph_, minSubgraphSize_, aliasDb_, diff_nodes_)
.buildupSubgraphs();
}
}
}
private:
std::vector<WorkBlock> buildWorkBlocks() {
// [workblocks]
// the IR has many nodes which can never be reordered around, such as a
// prim::Bailout. if a node N is surrounded by two nodes which cannot be
// reordered, A and B, then a differentiable subgraph that is created from N
// can only contain nodes from (A, B) The nodes from A to B represent one
// work block for the subgraph slicer to work on. By creating these up
// front, we avoid retraversing the whole graph block any time scanNode
// returns, and we can also avoid attempting to create differentiable
// subgraphs in work blocks that do not contain a # of differentiable nodes
// >= minSubgraphSize_
Node* end_bound_node = block_->return_node();
Node* curr = end_bound_node->prev();
std::vector<WorkBlock> worklist;
size_t differentiable_nodes = 0;
while (curr != block_->param_node()) {
differentiable_nodes += shouldConsiderForMerge(curr);
// cannot reorder around side effectful nodes
if (curr->hasSideEffects()) {
// not enough differentiable nodes to create a differentiable subgraph
if (differentiable_nodes >= minSubgraphSize_) {
worklist.emplace_back(curr, end_bound_node);
}
differentiable_nodes = 0;
end_bound_node = curr;
}
curr = curr->prev();
}
if (differentiable_nodes >= minSubgraphSize_) {
worklist.emplace_back(curr, end_bound_node);
}
return worklist;
}
// Inline this node's group subgraph into the outer graph if it's smaller
// than the specified minimum size.
//
// Returns true if an inlining has occurred, false otherwise.
bool inlineIfTooSmall(Node* n) {
AT_ASSERT(n->kind() == prim::DifferentiableGraph);
auto subgraph = SubgraphUtils::getSubgraph(n);
size_t i = 0;
for (auto it = subgraph->nodes().begin(); it != subgraph->nodes().end();
++it) {
i += !it->notExecutedOp();
if (i >= minSubgraphSize_) {
return false;
}
}
SubgraphUtils::unmergeSubgraph(n);
return true;
}
value_list sortReverseTopological(ArrayRef<Value*> inputs) {
value_list result;
for (auto i : inputs) {
if (i->node()->owningBlock() == block_) {
result.push_back(i);
}
}
// Sort in reverse topological order
std::sort(result.begin(), result.end(), [&](Value* a, Value* b) {
return a->node()->isAfter(b->node());
});
return result;
}
bool isViewOp(Node* n) {
switch (n->kind()) {
case aten::view:
case aten::view_as:
case aten::reshape:
case aten::reshape_as:
case aten::transpose:
case aten::expand:
case aten::expand_as:
return true;
}
return false;
}
bool shouldConsiderForMerge(Node* node) {
// if we're already in the process of merging
if (node->kind() == prim::DifferentiableGraph) {
return true;
}
if (node->kind() == prim::Constant) {
return false;
}
// view ops as outputs of differentiable subgraphs can cause incorrect
// differentiation for now, do not include them in the subgraph
if (isViewOp(node)) {
return false;
}
return isDifferentiable(node);
}
std::pair<graph_node_list::iterator, bool> scanNode(Node* consumer) {
if (shouldConsiderForMerge(consumer)) {
if (consumer->kind() != prim::DifferentiableGraph) {
consumer = SubgraphUtils::createSingletonSubgraphAndUpdateAliasing(
consumer, prim::DifferentiableGraph, aliasDb_);
}
auto inputs = sortReverseTopological(consumer->inputs());
for (auto input : inputs) {
if (auto group = tryMerge(consumer, input->node())) {
// we successfully merged, so the new group's `inputs` may have
// changed. So rescan the new group for more merging opportunities.
return std::make_pair(group.value()->reverseIterator(), true);
}
}
}
return std::make_pair(++consumer->reverseIterator(), false);
}
// Try to merge `producer` into `consumer`. If successful, this destroys
// `producer` and returns the `consumer` group.
c10::optional<Node*> tryMerge(Node* consumer, Node* producer) {
AT_ASSERT(consumer->kind() == prim::DifferentiableGraph);
bool canMerge = shouldConsiderForMerge(producer) &&
aliasDb_.moveBeforeTopologicallyValid(producer, consumer);
if (!canMerge) {
return c10::nullopt;
}
SubgraphUtils::mergeNodeIntoSubgraphAndUpdateAliasing(
producer, consumer, aliasDb_);
return consumer;
}
Block* block_;
std::shared_ptr<Graph> graph_;
size_t minSubgraphSize_;
AliasDb& aliasDb_;
std::vector<Node*>& diff_nodes_;
};
} // anonymous namespace
std::vector<Node*> CreateAutodiffSubgraphs(
const std::shared_ptr<Graph>& graph,
size_t threshold) {
std::vector<Node*> diff_nodes;
AliasDb db(graph);
SubgraphSlicer(graph->block(), graph, threshold, db, diff_nodes).run();
return diff_nodes;
}
} // namespace jit
} // namespace torch
|