File: lower_grad_of.cpp

package info (click to toggle)
pytorch 1.7.1-7
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 80,340 kB
  • sloc: cpp: 670,830; python: 343,991; ansic: 67,845; asm: 5,503; sh: 2,924; java: 2,888; xml: 266; makefile: 244; ruby: 148; yacc: 144; objc: 51; lex: 44
file content (38 lines) | stat: -rw-r--r-- 1,341 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
#include <torch/csrc/jit/passes/lower_grad_of.h>
#include <torch/csrc/jit/jit_log.h>

namespace torch {
namespace jit {

void LowerGradOf(Graph& g) {
  for (auto it = g.nodes().begin(); it != g.nodes().end(); ++it) {
    if (it->kind() == prim::GradOf) {
      // if any_defined(inputs):
      //  outputs = <original_computation>
      // else:
      //  outputs = autograd zero tensors
      WithInsertPoint guard(*it);
      auto cond = g.insertNode(g.create(prim::AutogradAnyNonZero, it->inputs()))
                      ->output()
                      ->setType(IntType::get());
      auto if_stat =
          g.insertNode(g.create(prim::If, {cond}, it->outputs().size()));
      if_stat->addBlock()->cloneFrom(
          it->blocks().at(0), [](Value* v) { return v; });
      auto else_block = if_stat->addBlock();
      auto undef = g.createAutogradZero()
                       ->insertBefore(else_block->return_node())
                       ->output();
      for (size_t i = 0; i < it->outputs().size(); ++i) {
        else_block->registerOutput(undef);
        if_stat->outputs().at(i)->copyMetadata(it->outputs().at(i));
      }
      GRAPH_UPDATE("Replacing ", getHeader(*it), " with ", getHeader(if_stat));
      it->replaceAllUsesWith(if_stat);
      it.destroyCurrent();
    }
  }
}

} // namespace jit
} // namespace torch