File: onnx.cpp

package info (click to toggle)
pytorch 1.7.1-7
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 80,340 kB
  • sloc: cpp: 670,830; python: 343,991; ansic: 67,845; asm: 5,503; sh: 2,924; java: 2,888; xml: 266; makefile: 244; ruby: 148; yacc: 144; objc: 51; lex: 44
file content (380 lines) | stat: -rw-r--r-- 14,519 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
#include <torch/csrc/jit/passes/onnx.h>
#include <ATen/core/functional.h>
#include <c10/util/Exception.h>
#include <torch/csrc/autograd/function.h>
#include <torch/csrc/autograd/symbolic.h>
#include <torch/csrc/jit/ir/constants.h>
#include <torch/csrc/jit/jit_log.h>
#include <torch/csrc/jit/passes/dead_code_elimination.h>
#include <torch/csrc/jit/passes/onnx/shape_type_inference.h>
#include <torch/csrc/jit/python/python_ir.h>
#include <torch/csrc/utils/pybind.h>
#include <sstream>
#include <unordered_map>

namespace torch {
namespace jit {

void removePrintOps(Block* block) {
  for (auto it = block->nodes().begin(), end = block->nodes().end(); it != end;
       ++it) {
    for (auto b : it->blocks()) {
      removePrintOps(b);
    }
    if (it->kind() == prim::Print || it->kind() == aten::warn) {
      for (size_t i = 0; i < it->inputs().size();) {
        auto input = it->inputs().at(i);
        // only handling constants bc of potential side effects
        if (input->uses().size() == 1 &&
            input->node()->kind() == prim::Constant) {
          it->removeInput(i);
          input->node()->destroy();
        } else {
          ++i;
        }
      }
      it.destroyCurrent();
    }
  }
}

void RemovePrintOps(std::shared_ptr<Graph>& graph) {
  removePrintOps(graph->block());
}

void checkONNXCompatibility(const c10::FunctionSchema& schema) {
  // in ONNX, all inputs are tensors, no support for tensor list
  // so at most one input tensor list is supported
  bool has_tensor_list = false;
  const auto& args = schema.arguments();
  for (const auto& arg : args) {
    if (arg.name() == "_caffe2_preallocated_outputs") {
      continue;
    }
    auto type = arg.type();
    if (type->kind() == TypeKind::OptionalType) {
      type = reinterpret_cast<OptionalType*>(type.get())->getElementType();
      AT_ASSERT(type->kind() != TypeKind::OptionalType);
    }
    if (type->kind() == TypeKind::ListType) {
      const auto& elem_type =
          reinterpret_cast<ListType*>(type.get())->getElementType();
      if (elem_type->isSubtypeOf(TensorType::get())) {
        AT_ASSERTM(
            !has_tensor_list,
            "ONNX export supports at most one TensorList as input.");
        has_tensor_list = true;
      }
    }
  }
}

void preprocessCaffe2Ops(Block* block) {
  for (auto it = block->nodes().begin(), end = block->nodes().end(); it != end;
       ++it) {
    for (auto b : it->blocks()) {
      preprocessCaffe2Ops(b);
    }
    if (it->kind().is_caffe2()) {
      const auto& schema = it->schema();
      checkONNXCompatibility(schema);
      std::vector<Value*> origin_inputs;
      for (Value* v : it->inputs()) {
        origin_inputs.push_back(v);
      }
      it->removeAllInputs();
      const auto& args = schema.arguments();
      size_t origin_inputs_index = 0;
      for (const auto& arg : args) {
        auto type = arg.type();
        AT_ASSERT(origin_inputs_index < origin_inputs.size());
        const auto& origin_input = origin_inputs[origin_inputs_index++];
        if (type->kind() == TypeKind::OptionalType) {
          type = reinterpret_cast<OptionalType*>(type.get())->getElementType();
          if (origin_input->mustBeNone()) {
            continue;
          } else {
            // recursive optional type is not supported
            AT_ASSERT(type->kind() != TypeKind::OptionalType);
          }
        }
        if (type->isSubtypeOf(TensorType::get())) {
          it->addInput(origin_input);
        } else if (
            type->kind() == TypeKind::BoolType ||
            type->kind() == TypeKind::IntType) {
          const auto* constant_node = origin_input->node();
          AT_ASSERT(constant_node->kind() == prim::Constant);
          it->i_(Symbol::attr(arg.name()), constant_node->i(attr::value));
        } else if (type->kind() == TypeKind::FloatType) {
          const auto* constant_node = origin_input->node();
          AT_ASSERT(constant_node->kind() == prim::Constant);
          it->f_(Symbol::attr(arg.name()), constant_node->f(attr::value));
        } else if (type->kind() == TypeKind::StringType) {
          const auto* constant_node = origin_input->node();
          AT_ASSERT(constant_node->kind() == prim::Constant);
          it->s_(Symbol::attr(arg.name()), constant_node->s(attr::value));
        } else if (type->kind() == TypeKind::ListType) {
          const auto& list_node = origin_input->node();
          const auto& elem_type = type->cast<ListType>()->getElementType();
          AT_ASSERT(
              list_node->kind() == prim::ListConstruct ||
              list_node->kind() == prim::Constant);
          if (elem_type->isSubtypeOf(TensorType::get())) {
            AT_ASSERT(list_node->kind(), prim::ListConstruct);
            const auto& tensor_list = origin_input->node()->inputs();
            for (const auto& t : tensor_list) {
              it->addInput(t);
            }
          } else if (elem_type->kind() == TypeKind::FloatType) {
            std::vector<double> values;
            if (list_node->kind() == prim::ListConstruct) {
              for (const auto* elem_input : list_node->inputs()) {
                const auto* constant_node = elem_input->node();
                AT_ASSERT(constant_node->kind() == prim::Constant);
                values.push_back(constant_node->f(attr::value));
              }
            } else { // is a constant list
              values = list_node->fs(attr::value);
            }
            it->fs_(Symbol::attr(arg.name()), values);
          } else {
            throw std::runtime_error(
                "Unhandled scalar arg: " + arg.name() +
                ", type: " + c10::typeKindToString(elem_type->kind()));
          }
        } else {
          throw std::runtime_error(
              "Unsupported input type of arg " + arg.name() +
              " in Caffe2 operator: " + c10::typeKindToString(type->kind()));
        }
      }
    }
  }
  EliminateDeadCode(
      block, true, DCESideEffectPolicy::ALLOW_DELETING_NODES_WITH_SIDE_EFFECTS);
}

void PreprocessCaffe2Ops(std::shared_ptr<Graph>& graph) {
  preprocessCaffe2Ops(graph->block());
}

// Transform PythonOps into Nodes that match ONNX semantics.
std::shared_ptr<Graph> ToONNX(
    std::shared_ptr<Graph>& graph,
    ::torch::onnx::OperatorExportTypes operator_export_type) {
  auto new_graph = std::make_shared<Graph>(graph->current_scope());
  std::unordered_map<Value*, Value*> env;
  BlockToONNX(graph->block(), new_graph->block(), operator_export_type, env);
  return new_graph;
}

void BlockToONNX(
    Block* old_block,
    Block* new_block,
    ::torch::onnx::OperatorExportTypes operator_export_type,
    std::unordered_map<Value*, Value*> env) {
  torch::autograd::SymbolicContext ctx{};
  ctx.block = new_block;
  py::object onnx = py::module::import("torch.onnx");
  py::object onnx_symbolic = py::module::import("torch.onnx.symbolic_helper");
  py::object onnx_registry = py::module::import("torch.onnx.symbolic_registry");

  // Returns a node that n maps to in the new graph
  auto envFn = [&env](Value* n) -> Value* {
    auto it = env.find(n);
    TORCH_CHECK(it != env.end(), "Dangling node reference");
    TORCH_CHECK(it->second, "Unused node was subsequently used");
    return it->second;
  };

  GRAPH_DEBUG(
      "BlockToONNX: graph of old block: ",
      old_block->owningGraph()->toString());

  // Initialize context and environment
  for (auto input : old_block->inputs()) {
    auto n = ctx.block->addInput()->copyMetadata(input);
    env[input] = n;
  }

  // Put the new outputs in our environment map, and copy the type from the
  // input graph if they were not set by the symbolic. This is called only
  // with results of symbolic call (not for nodes that are just cloned).
  auto setOutputs = [&](const std::string& op_name,
                        Node* node,
                        const value_list& outputs) {
    auto old_outputs = node->outputs();
    // Count all outputs, excluding Handles
    auto num_old_outputs = old_outputs.size();
    if (outputs.size() != num_old_outputs) {
      std::ostringstream ss;
      ss << "symbolic for " << op_name
         << " produced an incorrect number of outputs (expected ";
      ss << num_old_outputs << ", but got " << outputs.size() << ")";
      throw std::runtime_error(ss.str());
    }
    for (size_t i = 0; i < num_old_outputs; ++i) {
      auto old = old_outputs[i];
      if (outputs[i]) {
        // Allow symbolic() to skip specifying the type of the return node.
        // Unfortunately, they are on the hook for all internal nodes
        // (though in practice, the types are not computed.)
        //
        // If onnx shape inference is turned on, the new outputs will have
        // types inferred, and they will be merged with the old types.
        outputs[i]->setType(MergeInferredType(old->type(), outputs[i]->type()));

        // Copy over source location and scope information to all nodes
        // created by the symbolic
        outputs[i]->node()->setSourceRange(node->sourceRange());
        outputs[i]->node()->setScope(node->scope());
        env[old] = outputs[i];
      } else {
        // Null output means that the ONNX op doesn't have outputs corresponding
        // to certain PyTorch outputs
        env[old] = nullptr;
        if (!old->uses().empty()) {
          std::ostringstream ss;
          ss << "symbolic for " << op_name << " returned None for the output "
             << i;
          ss << " (indicating conversion for that particular output is not supported), ";
          ss << "but the network uses this output later";
          // TODO: Say what actually used it
          throw std::runtime_error(ss.str());
        }
      }
    }
  };

  // Clone the node and add it to the new graph
  auto cloneNode = [&](Node* node) {
    auto n_ = ctx.block->appendNode(
        ctx.block->owningGraph()->createClone(node, envFn));
    for (size_t i = 0; i < node->outputs().size(); i++) {
      // n_->outputs()[i]->setType(node->outputs()[i]->type());
      env[node->outputs()[i]] = n_->outputs()[i];
    }
  };

  // Cast output of symbolic() python implementation
  auto processSymbolicOutput = [&](const std::string& op_name,
                                   Node* n,
                                   const py::object& raw_output) {
    if (raw_output.ptr() == Py_None) {
      cloneNode(n);
      return;
    }
    // Cast the outputs back to C++ and put them in the new graph
    std::vector<Value*> outputs;
    try {
      if (py::isinstance<Value>(raw_output)) {
        outputs = value_list{py::cast<Value*>(raw_output)};
      } else {
        outputs = py::cast<std::vector<Value*>>(raw_output);
      }
    } catch (const std::exception& ex) {
      std::ostringstream ss;
      ss << "Error casting results of symbolic for " << op_name
         << ": expected to return list of op nodes, instead received type ''"
         << py::str(raw_output.get_type()) << "': " << py::str(raw_output);
      throw std::runtime_error(ss.str());
    }

    setOutputs(op_name, n, outputs);
  };

  auto callPySymbolicFunction = [&](Node* n) {
    // The idea is delegate as much of the actual argument massaging to
    // Python as possible

    py::tuple py_inputs(n->inputs().size());
    Py_ssize_t input_nr = 0;
    for (auto* input : n->inputs()) {
      py_inputs[input_nr++] = py::cast(envFn(input));
    }

    WithInsertPoint insert_point_guard(ctx.block);
    WithCurrentScope scope_guard(*ctx.block->owningGraph(), n->scope());
    py::object raw_output = onnx.attr("_run_symbolic_function")(
        ctx.block->owningGraph(), n, py_inputs, env, operator_export_type);

    // TODO: Assert it's an ATen identifier???
    // (Sometimes it's not...)
    processSymbolicOutput(n->kind().toUnqualString(), n, raw_output);
    GRAPH_DUMP("after process output:", ctx.block->owningGraph());
  };

  auto callPySymbolicMethod = [&](ConcretePythonOp* op) {
    // Test if there is a symbolic function; bail if there is not
    auto pyobj = py::handle(op->pyobj.get());
    auto func = op->autogradFunction();
    if (func) {
      pyobj = func->get();
    }
    if (!py::hasattr(pyobj, "symbolic")) {
      cloneNode(op);
      return;
    }

    // Prepare args for Python. First one is the graph, and is followed
    // by regular args, with Variables replaced by corresponding nodes.
    Py_ssize_t input_nr = 0;
    py::tuple py_symbolic_args(1 + op->cconv.size());
    py_symbolic_args[input_nr++] = py::cast(ctx.block->owningGraph());
    auto inputs = op->inputs();
    auto node_it = inputs.begin();
    auto scalar_it = op->scalar_args.begin();
    for (auto arg_type : op->cconv) {
      py::object obj;
      if (arg_type == 'c') {
        TORCH_CHECK(
            scalar_it != op->scalar_args.end(),
            "expected too many scalar args");
        obj = py::reinterpret_borrow<py::object>(
            py::handle((scalar_it++)->get()));
      } else if (arg_type == 'd') {
        TORCH_CHECK(node_it != inputs.end(), "expected too many inputs");
        obj = py::cast(envFn(*node_it++));
      } else {
        throw std::runtime_error("unexpected calling convention");
      }
      py_symbolic_args[input_nr++] = obj;
    }

    WithInsertPoint insert_point_guard(ctx.block);
    WithCurrentScope scope_guard(*ctx.block->owningGraph(), op->scope());
    // Call the symbolic function
    // Use a little trampoline function so we can give good error messages
    // upon argument mismatch
    py::object opset_version = onnx_symbolic.attr("_export_onnx_opset_version");
    onnx_registry.attr("register_op")(
        op->name(), pyobj.attr("symbolic"), "", opset_version);
    py::object raw_output = onnx.attr("_run_symbolic_method")(
        op->name(), pyobj.attr("symbolic"), py_symbolic_args);

    processSymbolicOutput(op->name(), op, raw_output);
  };

  // Finally, visit all nodes in the graph
  for (auto node : old_block->nodes()) {
    if (node->kind().is_caffe2()) {
      // Pass on Caffe2 operator, since we already preprocess it
      cloneNode(node);
    } else if (node->kind() == prim::PythonOp) {
      callPySymbolicMethod(static_cast<ConcretePythonOp*>(node));
    } else {
      callPySymbolicFunction(node);
    }
  }
  for (auto output : old_block->outputs()) {
    ctx.block->registerOutput(env.at(output));
  }
  EliminateDeadCode(
      ctx.block,
      true,
      DCESideEffectPolicy::ALLOW_DELETING_NODES_WITH_SIDE_EFFECTS);
}

} // namespace jit
} // namespace torch