1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
|
#include <torch/csrc/jit/passes/onnx.h>
#include <ATen/core/functional.h>
#include <c10/util/Exception.h>
#include <torch/csrc/autograd/function.h>
#include <torch/csrc/autograd/symbolic.h>
#include <torch/csrc/jit/ir/constants.h>
#include <torch/csrc/jit/jit_log.h>
#include <torch/csrc/jit/passes/dead_code_elimination.h>
#include <torch/csrc/jit/passes/onnx/shape_type_inference.h>
#include <torch/csrc/jit/python/python_ir.h>
#include <torch/csrc/utils/pybind.h>
#include <sstream>
#include <unordered_map>
namespace torch {
namespace jit {
void removePrintOps(Block* block) {
for (auto it = block->nodes().begin(), end = block->nodes().end(); it != end;
++it) {
for (auto b : it->blocks()) {
removePrintOps(b);
}
if (it->kind() == prim::Print || it->kind() == aten::warn) {
for (size_t i = 0; i < it->inputs().size();) {
auto input = it->inputs().at(i);
// only handling constants bc of potential side effects
if (input->uses().size() == 1 &&
input->node()->kind() == prim::Constant) {
it->removeInput(i);
input->node()->destroy();
} else {
++i;
}
}
it.destroyCurrent();
}
}
}
void RemovePrintOps(std::shared_ptr<Graph>& graph) {
removePrintOps(graph->block());
}
void checkONNXCompatibility(const c10::FunctionSchema& schema) {
// in ONNX, all inputs are tensors, no support for tensor list
// so at most one input tensor list is supported
bool has_tensor_list = false;
const auto& args = schema.arguments();
for (const auto& arg : args) {
if (arg.name() == "_caffe2_preallocated_outputs") {
continue;
}
auto type = arg.type();
if (type->kind() == TypeKind::OptionalType) {
type = reinterpret_cast<OptionalType*>(type.get())->getElementType();
AT_ASSERT(type->kind() != TypeKind::OptionalType);
}
if (type->kind() == TypeKind::ListType) {
const auto& elem_type =
reinterpret_cast<ListType*>(type.get())->getElementType();
if (elem_type->isSubtypeOf(TensorType::get())) {
AT_ASSERTM(
!has_tensor_list,
"ONNX export supports at most one TensorList as input.");
has_tensor_list = true;
}
}
}
}
void preprocessCaffe2Ops(Block* block) {
for (auto it = block->nodes().begin(), end = block->nodes().end(); it != end;
++it) {
for (auto b : it->blocks()) {
preprocessCaffe2Ops(b);
}
if (it->kind().is_caffe2()) {
const auto& schema = it->schema();
checkONNXCompatibility(schema);
std::vector<Value*> origin_inputs;
for (Value* v : it->inputs()) {
origin_inputs.push_back(v);
}
it->removeAllInputs();
const auto& args = schema.arguments();
size_t origin_inputs_index = 0;
for (const auto& arg : args) {
auto type = arg.type();
AT_ASSERT(origin_inputs_index < origin_inputs.size());
const auto& origin_input = origin_inputs[origin_inputs_index++];
if (type->kind() == TypeKind::OptionalType) {
type = reinterpret_cast<OptionalType*>(type.get())->getElementType();
if (origin_input->mustBeNone()) {
continue;
} else {
// recursive optional type is not supported
AT_ASSERT(type->kind() != TypeKind::OptionalType);
}
}
if (type->isSubtypeOf(TensorType::get())) {
it->addInput(origin_input);
} else if (
type->kind() == TypeKind::BoolType ||
type->kind() == TypeKind::IntType) {
const auto* constant_node = origin_input->node();
AT_ASSERT(constant_node->kind() == prim::Constant);
it->i_(Symbol::attr(arg.name()), constant_node->i(attr::value));
} else if (type->kind() == TypeKind::FloatType) {
const auto* constant_node = origin_input->node();
AT_ASSERT(constant_node->kind() == prim::Constant);
it->f_(Symbol::attr(arg.name()), constant_node->f(attr::value));
} else if (type->kind() == TypeKind::StringType) {
const auto* constant_node = origin_input->node();
AT_ASSERT(constant_node->kind() == prim::Constant);
it->s_(Symbol::attr(arg.name()), constant_node->s(attr::value));
} else if (type->kind() == TypeKind::ListType) {
const auto& list_node = origin_input->node();
const auto& elem_type = type->cast<ListType>()->getElementType();
AT_ASSERT(
list_node->kind() == prim::ListConstruct ||
list_node->kind() == prim::Constant);
if (elem_type->isSubtypeOf(TensorType::get())) {
AT_ASSERT(list_node->kind(), prim::ListConstruct);
const auto& tensor_list = origin_input->node()->inputs();
for (const auto& t : tensor_list) {
it->addInput(t);
}
} else if (elem_type->kind() == TypeKind::FloatType) {
std::vector<double> values;
if (list_node->kind() == prim::ListConstruct) {
for (const auto* elem_input : list_node->inputs()) {
const auto* constant_node = elem_input->node();
AT_ASSERT(constant_node->kind() == prim::Constant);
values.push_back(constant_node->f(attr::value));
}
} else { // is a constant list
values = list_node->fs(attr::value);
}
it->fs_(Symbol::attr(arg.name()), values);
} else {
throw std::runtime_error(
"Unhandled scalar arg: " + arg.name() +
", type: " + c10::typeKindToString(elem_type->kind()));
}
} else {
throw std::runtime_error(
"Unsupported input type of arg " + arg.name() +
" in Caffe2 operator: " + c10::typeKindToString(type->kind()));
}
}
}
}
EliminateDeadCode(
block, true, DCESideEffectPolicy::ALLOW_DELETING_NODES_WITH_SIDE_EFFECTS);
}
void PreprocessCaffe2Ops(std::shared_ptr<Graph>& graph) {
preprocessCaffe2Ops(graph->block());
}
// Transform PythonOps into Nodes that match ONNX semantics.
std::shared_ptr<Graph> ToONNX(
std::shared_ptr<Graph>& graph,
::torch::onnx::OperatorExportTypes operator_export_type) {
auto new_graph = std::make_shared<Graph>(graph->current_scope());
std::unordered_map<Value*, Value*> env;
BlockToONNX(graph->block(), new_graph->block(), operator_export_type, env);
return new_graph;
}
void BlockToONNX(
Block* old_block,
Block* new_block,
::torch::onnx::OperatorExportTypes operator_export_type,
std::unordered_map<Value*, Value*> env) {
torch::autograd::SymbolicContext ctx{};
ctx.block = new_block;
py::object onnx = py::module::import("torch.onnx");
py::object onnx_symbolic = py::module::import("torch.onnx.symbolic_helper");
py::object onnx_registry = py::module::import("torch.onnx.symbolic_registry");
// Returns a node that n maps to in the new graph
auto envFn = [&env](Value* n) -> Value* {
auto it = env.find(n);
TORCH_CHECK(it != env.end(), "Dangling node reference");
TORCH_CHECK(it->second, "Unused node was subsequently used");
return it->second;
};
GRAPH_DEBUG(
"BlockToONNX: graph of old block: ",
old_block->owningGraph()->toString());
// Initialize context and environment
for (auto input : old_block->inputs()) {
auto n = ctx.block->addInput()->copyMetadata(input);
env[input] = n;
}
// Put the new outputs in our environment map, and copy the type from the
// input graph if they were not set by the symbolic. This is called only
// with results of symbolic call (not for nodes that are just cloned).
auto setOutputs = [&](const std::string& op_name,
Node* node,
const value_list& outputs) {
auto old_outputs = node->outputs();
// Count all outputs, excluding Handles
auto num_old_outputs = old_outputs.size();
if (outputs.size() != num_old_outputs) {
std::ostringstream ss;
ss << "symbolic for " << op_name
<< " produced an incorrect number of outputs (expected ";
ss << num_old_outputs << ", but got " << outputs.size() << ")";
throw std::runtime_error(ss.str());
}
for (size_t i = 0; i < num_old_outputs; ++i) {
auto old = old_outputs[i];
if (outputs[i]) {
// Allow symbolic() to skip specifying the type of the return node.
// Unfortunately, they are on the hook for all internal nodes
// (though in practice, the types are not computed.)
//
// If onnx shape inference is turned on, the new outputs will have
// types inferred, and they will be merged with the old types.
outputs[i]->setType(MergeInferredType(old->type(), outputs[i]->type()));
// Copy over source location and scope information to all nodes
// created by the symbolic
outputs[i]->node()->setSourceRange(node->sourceRange());
outputs[i]->node()->setScope(node->scope());
env[old] = outputs[i];
} else {
// Null output means that the ONNX op doesn't have outputs corresponding
// to certain PyTorch outputs
env[old] = nullptr;
if (!old->uses().empty()) {
std::ostringstream ss;
ss << "symbolic for " << op_name << " returned None for the output "
<< i;
ss << " (indicating conversion for that particular output is not supported), ";
ss << "but the network uses this output later";
// TODO: Say what actually used it
throw std::runtime_error(ss.str());
}
}
}
};
// Clone the node and add it to the new graph
auto cloneNode = [&](Node* node) {
auto n_ = ctx.block->appendNode(
ctx.block->owningGraph()->createClone(node, envFn));
for (size_t i = 0; i < node->outputs().size(); i++) {
// n_->outputs()[i]->setType(node->outputs()[i]->type());
env[node->outputs()[i]] = n_->outputs()[i];
}
};
// Cast output of symbolic() python implementation
auto processSymbolicOutput = [&](const std::string& op_name,
Node* n,
const py::object& raw_output) {
if (raw_output.ptr() == Py_None) {
cloneNode(n);
return;
}
// Cast the outputs back to C++ and put them in the new graph
std::vector<Value*> outputs;
try {
if (py::isinstance<Value>(raw_output)) {
outputs = value_list{py::cast<Value*>(raw_output)};
} else {
outputs = py::cast<std::vector<Value*>>(raw_output);
}
} catch (const std::exception& ex) {
std::ostringstream ss;
ss << "Error casting results of symbolic for " << op_name
<< ": expected to return list of op nodes, instead received type ''"
<< py::str(raw_output.get_type()) << "': " << py::str(raw_output);
throw std::runtime_error(ss.str());
}
setOutputs(op_name, n, outputs);
};
auto callPySymbolicFunction = [&](Node* n) {
// The idea is delegate as much of the actual argument massaging to
// Python as possible
py::tuple py_inputs(n->inputs().size());
Py_ssize_t input_nr = 0;
for (auto* input : n->inputs()) {
py_inputs[input_nr++] = py::cast(envFn(input));
}
WithInsertPoint insert_point_guard(ctx.block);
WithCurrentScope scope_guard(*ctx.block->owningGraph(), n->scope());
py::object raw_output = onnx.attr("_run_symbolic_function")(
ctx.block->owningGraph(), n, py_inputs, env, operator_export_type);
// TODO: Assert it's an ATen identifier???
// (Sometimes it's not...)
processSymbolicOutput(n->kind().toUnqualString(), n, raw_output);
GRAPH_DUMP("after process output:", ctx.block->owningGraph());
};
auto callPySymbolicMethod = [&](ConcretePythonOp* op) {
// Test if there is a symbolic function; bail if there is not
auto pyobj = py::handle(op->pyobj.get());
auto func = op->autogradFunction();
if (func) {
pyobj = func->get();
}
if (!py::hasattr(pyobj, "symbolic")) {
cloneNode(op);
return;
}
// Prepare args for Python. First one is the graph, and is followed
// by regular args, with Variables replaced by corresponding nodes.
Py_ssize_t input_nr = 0;
py::tuple py_symbolic_args(1 + op->cconv.size());
py_symbolic_args[input_nr++] = py::cast(ctx.block->owningGraph());
auto inputs = op->inputs();
auto node_it = inputs.begin();
auto scalar_it = op->scalar_args.begin();
for (auto arg_type : op->cconv) {
py::object obj;
if (arg_type == 'c') {
TORCH_CHECK(
scalar_it != op->scalar_args.end(),
"expected too many scalar args");
obj = py::reinterpret_borrow<py::object>(
py::handle((scalar_it++)->get()));
} else if (arg_type == 'd') {
TORCH_CHECK(node_it != inputs.end(), "expected too many inputs");
obj = py::cast(envFn(*node_it++));
} else {
throw std::runtime_error("unexpected calling convention");
}
py_symbolic_args[input_nr++] = obj;
}
WithInsertPoint insert_point_guard(ctx.block);
WithCurrentScope scope_guard(*ctx.block->owningGraph(), op->scope());
// Call the symbolic function
// Use a little trampoline function so we can give good error messages
// upon argument mismatch
py::object opset_version = onnx_symbolic.attr("_export_onnx_opset_version");
onnx_registry.attr("register_op")(
op->name(), pyobj.attr("symbolic"), "", opset_version);
py::object raw_output = onnx.attr("_run_symbolic_method")(
op->name(), pyobj.attr("symbolic"), py_symbolic_args);
processSymbolicOutput(op->name(), op, raw_output);
};
// Finally, visit all nodes in the graph
for (auto node : old_block->nodes()) {
if (node->kind().is_caffe2()) {
// Pass on Caffe2 operator, since we already preprocess it
cloneNode(node);
} else if (node->kind() == prim::PythonOp) {
callPySymbolicMethod(static_cast<ConcretePythonOp*>(node));
} else {
callPySymbolicFunction(node);
}
}
for (auto output : old_block->outputs()) {
ctx.block->registerOutput(env.at(output));
}
EliminateDeadCode(
ctx.block,
true,
DCESideEffectPolicy::ALLOW_DELETING_NODES_WITH_SIDE_EFFECTS);
}
} // namespace jit
} // namespace torch
|