File: constant_fold.cpp

package info (click to toggle)
pytorch 1.7.1-7
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 80,340 kB
  • sloc: cpp: 670,830; python: 343,991; ansic: 67,845; asm: 5,503; sh: 2,924; java: 2,888; xml: 266; makefile: 244; ruby: 148; yacc: 144; objc: 51; lex: 44
file content (459 lines) | stat: -rw-r--r-- 17,960 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
#include <torch/csrc/jit/passes/onnx/constant_fold.h>
#include <c10/util/Exception.h>
#include <torch/csrc/jit/passes/onnx/helper.h>

#include <c10/util/Optional.h>
#include <algorithm>

namespace torch {
namespace jit {

namespace onnx {
using namespace ::c10::onnx;
}

namespace {

enum OnnxType : int {
  ONNX_FLOAT = 1,
  ONNX_UINT8,
  ONNX_INT8,
  ONNX_UINT16,
  ONNX_INT16,
  ONNX_INT32,
  ONNX_INT64,
  ONNX_FLOAT16 = 10,
  ONNX_DOUBLE,
  ONNX_UINT32,
};

std::unordered_map<int, at::ScalarType> onnxTypeToScalarTypeMap = {
    // Only conversion of ONNX numeric types is included here.
    // Unsigned ONNX types are mapped to the next higher signed
    // ScalarType type.
    {ONNX_FLOAT, at::kFloat},
    {ONNX_UINT8, at::kByte},
    {ONNX_INT8, at::kChar},
    {ONNX_UINT16, at::kInt},
    {ONNX_INT16, at::kShort},
    {ONNX_INT32, at::kInt},
    {ONNX_INT64, at::kLong},
    {ONNX_FLOAT16, at::kFloat},
    {ONNX_DOUBLE, at::kDouble},
    {ONNX_UINT32, at::kLong},
};

void handleNegativeStartEndIndex(
    int64_t& start,
    int64_t& end,
    int64_t& axis,
    c10::IntArrayRef tensorSizes) {
  if (start < 0) {
    start = tensorSizes[axis] + start;
  }
  if (end < 0) {
    end = tensorSizes[axis] + end;
  }
  // index higher than dimension is treated as the end.
  if (end > tensorSizes[axis]) {
    end = tensorSizes[axis];
  }
}

c10::optional<at::Tensor> runTorchSlice_opset9(
    const Node* node,
    std::vector<at::Tensor>& inputTensorValues) {
  assert(inputTensorValues.size() == 1);
  if (inputTensorValues.size() != 1) {
    std::cerr
        << "Warning: Constant folding - Invalid number of inputs found for opset 9 onnx::Slice op. "
        << "Constant folding not applied." << std::endl;
    return c10::nullopt;
  }
  if (!(node->hasAttributeS("starts") && node->hasAttributeS("ends"))) {
    return c10::nullopt;
  }
  auto startsAttr = node->is(attr::starts);
  auto endsAttr = node->is(attr::ends);
  if (startsAttr.size() != endsAttr.size()) {
    return c10::nullopt;
  }
  std::vector<int64_t> axesAttr;
  if (node->hasAttributeS("axes")) {
    axesAttr = node->is(attr::axes);
  } else {
    axesAttr.resize(startsAttr.size());
    std::iota(axesAttr.begin(), axesAttr.end(), 0);
  }
  auto updated_val = inputTensorValues[0];
  for (size_t i = 0; i < axesAttr.size(); ++i) {
    // ONNX slice accepts negative starts and ends values.
    int64_t axis = axesAttr[i], start = startsAttr[i], end = endsAttr[i];
    // ONNX slice accepts negative axis, fix this for aten op
    axis += axis < 0 ? inputTensorValues[0].sizes().size() : 0;
    handleNegativeStartEndIndex(start, end, axis, updated_val.sizes());
    int64_t length = end - start;
    if (length < 0 || start > updated_val.sizes()[axis] - length)
      return c10::nullopt;
    updated_val = at::narrow(updated_val, axis, start, length);
  }
  return c10::optional<at::Tensor>(updated_val);
}

c10::optional<at::Tensor> runTorchSlice_opset10(
    const Node* node,
    std::vector<at::Tensor>& inputTensorValues) {
  const int maxSliceInputCount = 5;
  const int minSliceInputCount = 3;
  if (inputTensorValues.size() < minSliceInputCount ||
      inputTensorValues.size() > maxSliceInputCount) {
    std::cerr
        << "Warning: Constant folding - Invalid number of inputs found for opset 10 or 11 onnx::Slice op. "
        << "Constant folding not applied." << std::endl;
    return c10::nullopt;
  }
  // Checking validity of 'starts' and 'ends' input
  if (inputTensorValues[1].sizes().size() != 1 ||
      inputTensorValues[2].sizes().size() != 1) {
    std::cerr
        << "Warning: Constant folding - Invalid 'starts' or 'ends' inputs found for opset 10 or 11 onnx::Slice op. "
        << "Constant folding not applied." << std::endl;
    return c10::nullopt;
  }
  if (inputTensorValues[1].sizes()[0] != inputTensorValues[2].sizes()[0]) {
    // Number of elements of 'starts' and 'ends' 1-D input tensors should be the
    // same
    return c10::nullopt;
  }
  // Checking 'axes' input, if available.
  std::vector<int64_t> axes;
  if (inputTensorValues.size() > 3) {
    if (inputTensorValues[3].sizes().size() != 1) {
      std::cerr
          << "Warning: Constant folding - Invalid 'axes' input found for opset 10 onnx::Slice op. "
          << "Constant folding not applied." << std::endl;
      return c10::nullopt;
    }
    if (inputTensorValues[3].sizes()[0] != inputTensorValues[1].sizes()[0]) {
      // Number of elements of 'axes' and 'ends' 1-D input tensors should be the
      // same
      std::cerr
          << "Warning: Constant folding - Invalid 'axes' or 'ends' inputs found for opset 10 onnx::Slice op. "
          << "Constant folding not applied." << std::endl;
      return c10::nullopt;
    }
    auto axes_a = inputTensorValues[3].accessor<int64_t, 1>();
    axes.reserve(inputTensorValues[3].sizes()[0]);
    // ONNX slice accepts negative axis, fix this for aten op
    for (size_t i = 0; i < inputTensorValues[3].sizes()[0]; ++i) {
      axes[i] = axes_a[i] < 0 ? axes_a[i] + inputTensorValues[0].sizes().size()
                              : axes_a[i];
    }
  } else {
    axes = std::vector<int64_t>(inputTensorValues[1].sizes()[0], 0);
  }
  // Checking 'steps' input, if available.
  if (inputTensorValues.size() > 4) {
    if (inputTensorValues[4].sizes().size() != 1) {
      std::cerr
          << "Warning: Constant folding - Invalid 'steps' input found for opset 10 onnx::Slice op. "
          << "Constant folding not applied." << std::endl;
      return c10::nullopt;
    }
    if (inputTensorValues[4].sizes()[0] != inputTensorValues[1].sizes()[0]) {
      // Number of elements of 'steps' and 'ends' 1-D input tensors should be
      // the same
      std::cerr
          << "Warning: Constant folding - Invalid 'steps' or 'ends' inputs found for opset 10 onnx::Slice op. "
          << "Constant folding not applied." << std::endl;
      return c10::nullopt;
    }
    auto steps_a = inputTensorValues[4].accessor<int64_t, 1>();
    for (size_t i = 0; i < inputTensorValues[4].sizes()[0]; ++i) {
      // Only steps == 1 are supported for constant-folding.
      if (steps_a[i] != 1) {
        std::cerr
            << "Warning: Constant folding - Only steps=1 can be constant folded for opset 10 onnx::Slice op. "
            << "Constant folding not applied." << std::endl;
        return c10::nullopt;
      }
    }
  }
  auto starts_a = inputTensorValues[1].accessor<int64_t, 1>();
  auto ends_a = inputTensorValues[2].accessor<int64_t, 1>();
  auto updated_val = inputTensorValues[0];
  for (size_t i = 0; i < inputTensorValues[1].sizes()[0]; ++i) {
    // ONNX slice accepts negative starts and ends values.
    int64_t start = starts_a[i], end = ends_a[i], axis = axes[i];
    handleNegativeStartEndIndex(start, end, axis, updated_val.sizes());
    int64_t length = end - start;
    if (length < 0 || start > updated_val.sizes()[axis] - length)
      return c10::nullopt;
    updated_val = at::narrow(updated_val, axis, start, length);
  }
  return c10::optional<at::Tensor>(updated_val);
}

c10::optional<at::Tensor> runTorchBackendForOnnx(
    const Node* node,
    std::vector<at::Tensor>& inputTensorValues,
    int opset_version) {
  at::Tensor updated_val;
  if (node->kind() == onnx::Slice) {
    if (opset_version == ONNX_OPSET_9) {
      return runTorchSlice_opset9(node, inputTensorValues);
    } else if (
        opset_version == ONNX_OPSET_10 || opset_version == ONNX_OPSET_11 ||
        opset_version == ONNX_OPSET_12) {
      return runTorchSlice_opset10(node, inputTensorValues);
    } else {
      std::cerr << "Warning: Constant folding - unsupported opset version. "
                << "Constant folding not applied." << std::endl;
      return c10::nullopt;
    }
  } else if (node->kind() == onnx::Concat) {
    if (!node->hasAttributeS("axis")) {
      return c10::nullopt;
    }
    updated_val =
        at::cat(at::TensorList(inputTensorValues), node->i(attr::axis));
    return c10::optional<at::Tensor>(updated_val);
  } else if (node->kind() == onnx::Sqrt) {
    updated_val = at::sqrt(inputTensorValues[0]);
    return c10::optional<at::Tensor>(updated_val);
  } else if (node->kind() == onnx::Div) {
    updated_val = at::div(inputTensorValues[0], inputTensorValues[1]);
    return c10::optional<at::Tensor>(updated_val);
  } else if (node->kind() == onnx::Mul) {
    updated_val = at::mul(inputTensorValues[0], inputTensorValues[1]);
    return c10::optional<at::Tensor>(updated_val);
  } else if (node->kind() == onnx::Sub) {
    updated_val = at::sub(inputTensorValues[0], inputTensorValues[1]);
    return c10::optional<at::Tensor>(updated_val);
  } else if (node->kind() == onnx::Add) {
    updated_val = at::add(inputTensorValues[0], inputTensorValues[1]);
    return c10::optional<at::Tensor>(updated_val);
  } else if (node->kind() == onnx::Unsqueeze) {
    assert(inputTensorValues.size() == 1);
    if (!node->hasAttributeS("axes")) {
      return c10::nullopt;
    }
    updated_val = inputTensorValues[0];
    for (auto axis : node->is(attr::axes)) {
      updated_val = at::unsqueeze(updated_val, axis);
    }
    return c10::optional<at::Tensor>(updated_val);
  } else if (node->kind() == onnx::Transpose) {
    assert(inputTensorValues.size() == 1);
    if (!node->hasAttributeS("perm")) {
      return c10::nullopt;
    }
    updated_val = inputTensorValues[0].permute(node->is(attr::perm));
    return c10::optional<at::Tensor>(updated_val);
  } else if (node->kind() == onnx::Cast) {
    assert(inputTensorValues.size() == 1);
    if (node->hasAttributeS("to") && ONNXTypeToATenType(node->i(attr::to))) {
      updated_val = inputTensorValues[0].to(
          ONNXTypeToATenType(node->i(attr::to)).value());
      return c10::optional<at::Tensor>(updated_val);
    }
    return c10::nullopt;
  } else if (node->kind() == onnx::Reshape) {
    assert(inputTensorValues.size() == 2);
    updated_val = inputTensorValues[0];
    std::vector<int64_t> shape(inputTensorValues[1].sizes()[0], 0);
    auto shape_a = inputTensorValues[1].accessor<int64_t, 1>();
    for (size_t i = 0; i < inputTensorValues[1].sizes()[0]; ++i) {
      // All shape dim values should be >= -1
      // onnx::Reshape supports a shape dim value to be zero, in
      // which case the actual dim value remains unchanged. However,
      // at::reshape does not support shape dim value to be zero
      assert(shape_a[i] >= -1);
      if (shape_a[i] == 0) {
        if (i >= inputTensorValues[0].sizes().size()) {
          throw std::runtime_error(
              "Dimension with value 0 exceeds the input size dimensions.");
        }
        shape[i] = inputTensorValues[0].sizes()[i];
      } else {
        shape[i] = shape_a[i];
      }
    }
    return c10::optional<at::Tensor>(at::reshape(updated_val, shape));
  } else if (node->kind() == onnx::Shape) {
    TORCH_INTERNAL_ASSERT(inputTensorValues.size() == 1);
    updated_val = at::_shape_as_tensor(inputTensorValues[0]);
    return c10::optional<at::Tensor>(updated_val);
  } else if (node->kind() == onnx::ReduceL1 || node->kind() == onnx::ReduceL2) {
    assert(inputTensorValues.size() == 1);
    if (!node->hasAttributeS("axes")) {
      return c10::nullopt;
    }
    if (!node->hasAttributeS("keepdims")) {
      return c10::nullopt;
    }
    int p = node->kind() == onnx::ReduceL1 ? 1 : 2;
    updated_val = at::norm(
        inputTensorValues[0], p, node->is(attr::axes), node->i(attr::keepdims));
    return c10::optional<at::Tensor>(updated_val);
  } else if (node->kind() == onnx::Gather) {
    assert(inputTensorValues.size() == 2);
    if (!node->hasAttributeS("axis")) {
      return c10::nullopt;
    }
    auto axis = node->i(attr::axis);
    // If axis attribute for onnx::Gather has a value less than 0,
    // It needs to be adjusted (+= dim sizes) for aten op
    axis += axis < 0 ? inputTensorValues[0].sizes().size() : 0;
    at::Tensor indices = inputTensorValues[1];
    // If indices input for onnx::Gather has a value less than 0,
    // It needs to be adjusted (+= dim value) for aten op
    auto less_mask = at::lt(indices, 0);
    auto indices_corr = at::add(indices, inputTensorValues[0].sizes()[axis]);
    auto indices_masked = at::where(less_mask, indices_corr, indices);
    updated_val = at::index_select(inputTensorValues[0], axis, indices_masked);
    return c10::optional<at::Tensor>(updated_val);
  } else {
    return c10::nullopt;
  }
}

bool isConstant(Value* val, const ValueToParamPairMap& valsToParamsMap) {
  auto parentNode = val->node();
  return (parentNode->kind() == prim::Param &&
          valsToParamsMap.find(val) !=
              valsToParamsMap
                  .end()) || // Checks val is a parameter and not a real input
      (parentNode->kind() == onnx::Constant && !parentNode->mustBeNone() &&
       parentNode->kindOf(attr::value) ==
           AttributeKind::t); // Check other types?
}

std::vector<at::Tensor> getValues(
    Node* node,
    const ValueToParamPairMap& valsToParamsMap) {
  size_t numInputs = node->inputs().size();
  std::vector<at::Tensor> inputTensorValues;
  inputTensorValues.reserve(numInputs);
  for (auto val : node->inputs()) {
    if (val->node()->kind() == prim::Param) {
      auto itr = valsToParamsMap.find(val);
      if (itr == valsToParamsMap.end()) {
        throw std::runtime_error(
            "getValues: Input value not found amongst constant parameters.");
      }
      inputTensorValues.push_back(itr->second.second.toTensor());
    } else if (val->node()->kind() == onnx::Constant) {
      inputTensorValues.push_back(val->node()->t(attr::value));
    } else {
      throw std::runtime_error(
          "getValues: Unsupported kind of constant node found.");
    }
  }
  AT_ASSERT(inputTensorValues.size() == numInputs);
  return inputTensorValues;
}

bool areNodeInputsConstant(
    Node* node,
    const ValueToParamPairMap& valsToParamsMap) {
  return std::all_of(
      node->inputs().begin(),
      node->inputs().end(),
      [&valsToParamsMap](Value* v) { return isConstant(v, valsToParamsMap); });
}

std::vector<Node*> getOnnxConstParentsToRemove(Node* node) {
  std::vector<Node*> parentNodes;
  for (auto val : node->inputs()) {
    // If the parent of 'node' is an onnx::Constant node,
    // and 'node' is the only downstream node it serves (this
    // is important), then push it in the list to remove.
    if (val->node()->kind() == onnx::Constant && val->uses().size() == 1) {
      parentNodes.push_back(val->node());
    }
  }
  return parentNodes;
}

} // Anonymous namespace

// This method updates the block in-place to fold all the one-time
// constant-based computations/ops into an initializer node.
//
// NB: This is not constant folding in the traditional sense, as we
// don't try particularly hard to evaluate operations on constant nodes.
// This is more of a partial evaluation analysis, where operations on constant
// nodes can be lifted so we run them earlier, before the usual parameters are
// known.
void ConstantFoldONNX(Block* b, ParamMap& paramsDict, int opset_version) {
  if (opset_version != ONNX_OPSET_9 && opset_version != ONNX_OPSET_10 &&
      opset_version != ONNX_OPSET_11 && opset_version != ONNX_OPSET_12) {
    // Number of elements of 'axes' and 'ends' 1-D input tensors should be the
    // same
    std::cerr
        << "Warning: Constant folding supported for only opsets 9, 10, and 11. "
        << "Constant folding not applied." << std::endl;
    return;
  }
  AT_ASSERT(b->param_node());
  auto valsToParamsMap = buildValueToParamsMap(b, paramsDict);
  // Only the root block is constant-folded. Folding nested blocks is
  // not supported for now.
  for (auto it = b->nodes().begin(), end = b->nodes().end(); it != end; ++it) {
    auto node = *it;
    if (node->outputs().size() > 1) {
      // Constant folding for multiple-output nodes not supported. Skip it.
      continue;
    }
    if (!areNodeInputsConstant(node, valsToParamsMap)) {
      // If all the inputs to this node are not either parameter or
      // onnx::Constant, then skip this node.
      continue;
    }

    auto inputTensorValues = getValues(node, valsToParamsMap);
    if (inputTensorValues.empty()) {
      // This is a terminal node with no inputs, such as onnx::Constant. Skip
      // it.
      continue;
    }
    auto updatedValWrapped =
        runTorchBackendForOnnx(node, inputTensorValues, opset_version);
    if (updatedValWrapped == c10::nullopt) {
      // Constant folding is not supported for this op. Skip it.
      continue;
    }
    // Create a new input to the block (prim::Param node output). Add a
    // corresponding entryin valToParamMap. Replace the downstream inputs
    // with this value, and disconnect all the input values of the folded node.
    at::Tensor updatedVal = *updatedValWrapped;
    auto newSourceNodeOutput = b->addInput();
    valsToParamsMap.insert(
        {newSourceNodeOutput,
         std::make_pair(newSourceNodeOutput->debugName(), updatedVal)});
    newSourceNodeOutput->inferTypeFrom(updatedVal);
    node->outputs().at(0)->replaceAllUsesWith(newSourceNodeOutput);

    // Next we remove the current node that has been replaced by
    // an initializer. But before we start de-wiring this node,
    // we check if any parents of this nodes were onnx::Constant
    // and remove them first (following proper sequence as shown
    // below), and then remove the current node. If the parent was
    // an initializer (not onnx::Constant) then they are all removed
    // by eraseUnusedBlockInputs() call (below) outside the loop.
    auto onnxConstParents = getOnnxConstParentsToRemove(node);
    node->removeAllInputs();
    for (auto* n : onnxConstParents) {
      n->destroy();
    }
    it.destroyCurrent();
  }
  eraseUnusedValuesFromMap(valsToParamsMap);
  eraseUnusedBlockInputs(b);
  buildParamsMapFromValueToParamsMap(valsToParamsMap, paramsDict);
  return;
}

} // namespace jit
} // namespace torch