File: eval_peephole.cpp

package info (click to toggle)
pytorch 1.7.1-7
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 80,340 kB
  • sloc: cpp: 670,830; python: 343,991; ansic: 67,845; asm: 5,503; sh: 2,924; java: 2,888; xml: 266; makefile: 244; ruby: 148; yacc: 144; objc: 51; lex: 44
file content (146 lines) | stat: -rw-r--r-- 4,766 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
#include <torch/csrc/jit/passes/onnx/eval_peephole.h>
#include <torch/csrc/jit/passes/onnx/helper.h>
#include <torch/torch.h>

#include <c10/util/Optional.h>
#include <algorithm>

namespace torch {
namespace jit {

namespace onnx {
using namespace ::c10::onnx;
}

std::vector<at::Tensor> getValues(
    Node* node,
    const ValueToParamPairMap& valsToParamsMap) {
  size_t numInputs = node->inputs().size();
  std::vector<at::Tensor> inputTensorValues;
  inputTensorValues.reserve(numInputs);
  for (auto val : node->inputs()) {
    if (val->node()->kind() == prim::Param) {
      auto itr = valsToParamsMap.find(val);
      if (itr == valsToParamsMap.end()) {
        continue;
      }
      inputTensorValues.push_back(itr->second.second.toTensor());
    } else if (val->node()->kind() == onnx::Constant) {
      inputTensorValues.push_back(val->node()->t(attr::value));
    } else {
      continue;
    }
  }
  return inputTensorValues;
}

// This pass fuses Conv and BatchNorm into Conv node
// Conv and BatchNorm can be fused only if inputs for Batchnorm node:
// scale, bias, mean and var are all tensors of same shape (C) and
// if the size of the first dimension (dim 0) is the same between Conv
// input weight and Batchnorm input scale
static void fuseConvBatchNorm(Block* b, ValueToParamPairMap& valsToParamsMap) {
  for (auto it = b->nodes().begin(), end = b->nodes().end(); it != end; ++it) {
    for (auto* child_block : it->blocks()) {
      fuseConvBatchNorm(child_block, valsToParamsMap);
    }
    if (it->kind() == onnx::Conv) {
      if (it->output()->uses().size() != 1) {
        continue;
      }
      auto bnNode = it->output()->uses()[0].user;
      if (bnNode->kind() != onnx::BatchNormalization) {
        continue;
      }
      auto origconvNode = *it;
      auto epsilon = bnNode->f(attr::epsilon);
      auto w_conv_value = getValues(origconvNode, valsToParamsMap);
      if (w_conv_value.size() < 1 ||
          (origconvNode->inputs().size() == 3 && w_conv_value.size() != 2)) {
        continue;
      }

      auto bn_value = getValues(bnNode, valsToParamsMap);
      if (bn_value.size() != 4) {
        continue;
      }

      auto bn_scale = bn_value[0].clone();
      auto bn_B = bn_value[1].clone();
      auto bn_mean = bn_value[2].clone();
      auto bn_var = bn_value[3].clone();
      auto w_conv = w_conv_value[0].clone();
      at::Tensor b_conv;

      if (!bn_scale.is_floating_point() || !bn_B.is_floating_point() ||
          !bn_mean.is_floating_point() || !bn_var.is_floating_point() ||
          !w_conv.is_floating_point() || bn_scale.dim() != 1 ||
          bn_B.dim() != 1 || bn_mean.dim() != 1 || bn_var.dim() != 1 ||
          !(bn_scale.size(0) == bn_B.size(0)) ||
          !(bn_B.size(0) == bn_mean.size(0)) ||
          !(bn_mean.size(0) == bn_var.size(0)) || !(w_conv.dim() > 2) ||
          !(w_conv.size(0) == bn_scale.size(0))) {
        continue;
      }

      bn_var = bn_var.add(epsilon);
      bn_var = bn_var.sqrt();
      bn_scale = bn_scale.div(bn_var);

      // Calculate weight
      for (size_t i = 0; i < w_conv.size(0); i++) {
        w_conv[i] = w_conv[i].mul(bn_scale[i]);
      }

      // Calculate bias
      if (origconvNode->inputs().size() == 3) {
        b_conv = w_conv_value[1].clone();
        b_conv = b_conv.sub(bn_mean);
        b_conv = b_conv.mul(bn_scale);
        b_conv = b_conv.add(bn_B);
      } else {
        bn_mean = bn_mean.mul(bn_scale);
        bn_B = bn_B.sub(bn_mean);
        b_conv = bn_B;
      }

      Node* convNode =
          b->owningGraph()->create(onnx::Conv, bnNode->outputs().size());
      for (size_t i = 0; i < convNode->outputs().size(); ++i) {
        convNode->outputs()[i]->copyMetadata(bnNode->outputs()[i]);
      }

      convNode->copyAttributes(*origconvNode);
      convNode->insertBefore(bnNode);
      convNode->addInput(origconvNode->inputs().at(0));

      auto conv_W = b->owningGraph()->addInput();
      valsToParamsMap.insert(
          {conv_W, std::make_pair(conv_W->debugName(), w_conv)});
      conv_W->inferTypeFrom(w_conv);
      convNode->addInput(conv_W);

      auto conv_B = b->addInput();
      valsToParamsMap.insert(
          {conv_B, std::make_pair(conv_B->debugName(), b_conv)});
      conv_B->inferTypeFrom(b_conv);
      convNode->addInput(conv_B);

      bnNode->replaceAllUsesWith(convNode);
      bnNode->removeAllInputs();
      it->removeAllInputs();
      bnNode->destroy();
      it.destroyCurrent();
    }
  }
}

void EvalPeepholeONNX(Block* b, ParamMap& paramsDict) {
  auto valsToParamsMap = buildValueToParamsMap(b, paramsDict);
  fuseConvBatchNorm(b, valsToParamsMap);
  buildParamsMapFromValueToParamsMap(valsToParamsMap, paramsDict);
  return;
}

} // namespace jit
} // namespace torch