1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
|
#include <torch/csrc/jit/passes/onnx/fixup_onnx_controlflow.h>
#include <torch/csrc/jit/jit_log.h>
#include <torch/csrc/jit/passes/dead_code_elimination.h>
#include <torch/csrc/jit/passes/onnx/peephole.h>
namespace torch {
namespace jit {
namespace onnx {
using namespace ::c10::onnx;
}
namespace {
const int ONNX_OPSET_13 = 13;
const int ONNX_TYPE_BOOL = 9;
Node* CreateCastToBoolNode(Value* val, Graph* graph) {
Node* cast_node = graph->create(onnx::Cast);
cast_node->addInput(val);
cast_node->i_(attr::to, ONNX_TYPE_BOOL);
cast_node->output()->setType(BoolType::get());
return cast_node;
}
Node* InsertCastForCond(Value* cond_val, Graph* graph, Node* consumer_node) {
// prev: cond_val -> consumer_node
// after: cond_val -> cast -> consumer_node
// NOTE: The cast is required because operators like PyTorch Greater/Less
// return tensor in type torch.uint8. However the type for condition
// input in ONNX Loop must be bool.
Node* cast_node = CreateCastToBoolNode(cond_val, graph);
cast_node->insertBefore(consumer_node);
consumer_node->replaceInputWith(cond_val, cast_node->output());
return cast_node;
}
bool IsCondCastRequired(Value* cond_val) {
const auto& type = cond_val->type();
if (auto tt = type->cast<TensorType>()) {
if (auto scalar_type = tt->scalarType()) {
return *scalar_type != c10::kBool;
}
}
return !type->isSubtypeOf(BoolType::get());
}
bool IsErasableSequence(const Node* loop_node, size_t i) {
TORCH_INTERNAL_ASSERT(loop_node->blocks().size() == 1);
auto* sub_block = loop_node->blocks()[0];
auto* seq_node = sub_block->outputs()[i - 1]->node();
auto* in_val = sub_block->inputs()[i];
if (seq_node->kind() != ::c10::onnx::SequenceInsert) {
return false;
}
if (seq_node->inputs().size() == 3) {
// Non-default insert position is not supported.
return false;
}
if (seq_node->input(0) != in_val) {
// Only SequenceInsert that applies on loop-carried sequence is supported.
return false;
}
const auto* init_seq_node = loop_node->inputs()[i]->node();
const auto init_seq_node_kind = init_seq_node->kind();
if ((init_seq_node_kind != ::c10::onnx::SequenceEmpty) &&
(init_seq_node_kind != ::c10::prim::ListConstruct ||
init_seq_node->inputs().size() != 0)) {
// Initial sequence must be empty.
return false;
}
if (seq_node->output()->uses().size() != 1) {
// The sequence is not supported to be used elsewhere inside the sub-block.
return false;
}
return true;
}
// ONNX::Loop does not support Sequence type as loop-carried dependencies. Only
// tensors are supported. This pass converts Sequence loop-carried dependencies
// to scan_outputs. In opset 11, only the below pattern is supported.
//
// PTIR graph:
// ...
// %res.1 : Tensor[] = prim::ListConstruct()
// %res : Tensor[] = prim::Loop(%11, %22, %res.1)
// block0(%i.1 : Tensor, %res.6 : Tensor[]):
// ...
// %res.3 : Tensor[] = aten::append(%res.6, %17)
// -> (%22, %res.3)
// return (%res.3)
//
// ONNX graph:
// ...
// %res : Tensor = onnx::Loop(%11, %22)
// block0(%i.1 : Tensor):
// ...
// -> (%22, %17)
// %res_seq : Tensor[] = onnx::SplitToSequence[keepdims=0](%res)
// return (%res_seq)
std::vector<Value*> ConvertSequenceDependencies(Node* node, int opset_version) {
if (node->kind() != ::c10::onnx::Loop) {
return node->outputs().vec();
}
if (opset_version >= ONNX_OPSET_13) {
// Sequence type as loop-carried dependencies should be supported by ONNX
// ospet 13.
return node->outputs().vec();
}
auto* loop_node = node;
auto* graph = loop_node->owningGraph();
TORCH_INTERNAL_ASSERT(loop_node->blocks().size() == 1);
auto* sub_block = loop_node->blocks()[0];
std::vector<size_t> idx_to_remove;
std::vector<Value*> new_outputs;
// ONNX Loop node:
// sub-block inputs are (iter, cond, loop-carried dependencies)
// sub-block outputs are ( cond, loop-carried dependencies, scan outputs)
// inputs are (iter, cond, loop-carried dependencies)
// outputs are ( loop-carried dependencies, scan outputs)
for (size_t i = 2; i < sub_block->inputs().size(); ++i) {
if (IsErasableSequence(loop_node, i)) {
auto* seq_node = sub_block->outputs()[i - 1]->node();
// Replace sequence output with the inserted element.
auto inserted_value = seq_node->input(1);
sub_block->return_node()->replaceInputWith(
seq_node->output(), inserted_value);
// Split the added scan_output back to expected tensor sequence.
auto loop_output = loop_node->output(i - 2);
Node* split_node =
loop_node->owningGraph()->create(onnx::SplitToSequence);
loop_output->replaceAllUsesWith(split_node->output());
split_node->i_(attr::keepdims, 0);
split_node->addInput(loop_output);
split_node->insertAfter(loop_node);
split_node->output()->copyMetadata(loop_output);
// Update loop output metadata.
loop_output->copyMetadata(inserted_value);
loop_output->setType(c10::unshapedType(loop_output->type()));
// The node that produces sequence should be safe to remove now.
seq_node->destroy();
idx_to_remove.push_back(i);
new_outputs.push_back(split_node->output());
} else {
new_outputs.push_back(loop_node->output(i - 2));
}
}
// Remove sequence outputs, and replace with scan outputs.
for (size_t i = 0; i < idx_to_remove.size(); ++i) {
size_t idx = idx_to_remove[i] - i;
sub_block->eraseInput(idx);
loop_node->removeInput(idx);
// Swap output order. Move all scan outputs to the back.
sub_block->return_node()->addInput(
sub_block->return_node()->inputs().at(idx - 1));
sub_block->return_node()->removeInput(idx - 1);
auto loop_out = loop_node->addOutput();
loop_out->copyMetadata(loop_node->outputs().at(idx - 2));
loop_node->outputs().at(idx - 2)->replaceAllUsesWith(loop_out);
loop_node->eraseOutput(idx - 2);
}
return new_outputs;
}
void ConvertSequenceDependencies(Block* block, int opset_version) {
for (auto* node : block->nodes()) {
for (Block* block : node->blocks()) {
ConvertSequenceDependencies(block, opset_version);
}
ConvertSequenceDependencies(node, opset_version);
}
}
} // anonymous namespace
void FixupONNXLoopNodeInputs(Node* node) {
if (node->kind() != ::c10::onnx::Loop) {
return;
}
auto* graph = node->owningGraph();
// add cast to condition input outside the loop.
Value* cond_val = node->inputs()[1];
if (IsCondCastRequired(cond_val))
InsertCastForCond(cond_val, graph, node);
// Setup Loop input cond and i.
TORCH_INTERNAL_ASSERT(node->blocks().size() == 1);
auto* sub_block = node->blocks()[0];
Value* cond = sub_block->insertInput(1, "cond");
cond->setType(BoolType::create());
Value* i = sub_block->inputs()[0];
i->setType(TensorType::fromNumberType(IntType::get()));
// add cast to condition input inside the loop.
Value* next_cond_val = sub_block->outputs()[0];
if (IsCondCastRequired(next_cond_val))
InsertCastForCond(next_cond_val, graph, sub_block->return_node());
}
std::vector<Value*> FixupONNXLoopNode(Node* node, int opset_version) {
auto output_size = node->outputs().size();
FixupONNXLoopNodeInputs(node);
auto new_outputs = ConvertSequenceDependencies(node, opset_version);
TORCH_INTERNAL_ASSERT(output_size == new_outputs.size());
return new_outputs;
}
std::vector<Value*> FixupONNXIfNode(Node* node, int opset_version) {
if (node->kind() != ::c10::onnx::If) {
return node->outputs().vec();
}
GRAPH_DUMP("Graph before fixing controlflow: ", node->owningGraph());
auto* if_node = node;
auto* graph = if_node->owningGraph();
for (Block* block : node->blocks()) {
if (block->nodes().begin() == block->nodes().end()) {
// ONNX does not support empty blocks, must use some op which does
// nothing
Value* output = block->outputs()[0];
Node* id_node = graph->create(onnx::Identity);
id_node->insertBefore(block->return_node());
id_node->addInput(output);
id_node->output()->copyMetadata(output);
block->return_node()->replaceInputWith(output, id_node->output());
}
}
GRAPH_DUMP("Graph after fixing controlflow: ", node->owningGraph());
return if_node->outputs().vec();
}
std::vector<Value*> FixupONNXControlflowNode(Node* n, int opset_version) {
switch (n->kind()) {
case ::c10::onnx::Loop: {
return FixupONNXLoopNode(n, opset_version);
}
case ::c10::onnx::If: {
return FixupONNXIfNode(n, opset_version);
}
default:
return n->outputs().vec();
}
}
} // namespace jit
} // namespace torch
|