1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
|
#include <torch/csrc/jit/passes/onnx/preprocess_for_onnx.h>
#include <torch/csrc/jit/jit_log.h>
#include <torch/csrc/jit/passes/onnx/helper.h>
namespace torch {
namespace jit {
namespace onnx {
using namespace ::c10::onnx;
}
namespace {
at::optional<Node*> FindFusibleListUnpack(Node* n) {
// 1. number of outputs is restricted to 1.
// 2. output is only used by prim::ListUnpack.
if (n->outputs().size() != 1) {
return at::nullopt;
}
if (n->output()->uses().size() != 1) {
return at::nullopt;
}
auto listUnpackNode = n->output()->uses()[0].user;
if (listUnpackNode->kind() != prim::ListUnpack) {
return at::nullopt;
}
return listUnpackNode;
}
// Fuse node + ListUnpack
// Node such as split/unbind produces tensor[] of static size,
// that is later unpacked by ListUnpack.
// This pass fuses the two nodes, and adds an additional input "_outputs" such
// that the symbolic function is aware of the number of outputs.
//
// Example IR
// split.Tensor(Tensor(a) self, int split_size, int dim=0) -> Tensor(a)[]
// split_with_sizes(Tensor self, int[] split_sizes, int dim=0) -> Tensor[]
//
// graph(%input : Float(5:12, 4:3, 3:1)):
// %13 : int[] = prim::Constant[value=[2, 1, 2]]()
// %7 : int = prim::Constant[value=0]()
// %8 : Tensor[] = aten::split_with_sizes(%input, %13, %7)
// %9 : Float(2:12, 4:3, 3:1), %10 : Float(1:12, 4:3, 3:1), %11 : Float(2:12,
// 4:3, 3:1) = prim::ListUnpack(%8) return (%9, %10, %11)
//
// After fusion
// graph(%input : Float(5:12, 4:3, 3:1)):
// %13 : int[] = prim::Constant[value=[2, 1, 2]]()
// %7 : int = prim::Constant[value=0]()
// %8 : int = prim::Constant[value=3]() # Adding addtional input of value 3
// representing the number of outputs.
// %14 : Float(2:12, 4:3, 3:1), %15 : Float(1:12, 4:3, 3:1), %16 : Float(2:12,
// 4:3, 3:1) = aten::split_with_sizes(%input, %13, %7, %8)
// return (%14, %15, %16)
void FuseWithListUnpack(Node* n) {
auto found_listUnpack = FindFusibleListUnpack(n);
if (!found_listUnpack) {
return;
}
auto listUnpack_node = found_listUnpack.value();
TORCH_INTERNAL_ASSERT(n->outputs().size() == 1);
// 1. Add internal input "_outputs" to node, so that later symbolic function
// conversion
// is aware of the number of outputs.
// 2. Add the exact number of outputs to n, copy metadata and replace uses of
// listUnpack outputs.
n->i_(
Symbol::fromQualString("attr::_outputs"),
static_cast<int64_t>(listUnpack_node->outputs().size()));
for (auto i = 0; i < listUnpack_node->outputs().size(); ++i) {
auto new_output = n->addOutput();
new_output->copyMetadata(listUnpack_node->output(i));
}
listUnpack_node->removeAllInputs();
// remove original output, which is input to listUnpack node.
n->eraseOutput(0);
listUnpack_node->replaceAllUsesWith(n);
}
static void FuseWithListUnpack(Block* b) {
for (auto it = b->nodes().begin(), end = b->nodes().end(); it != end; ++it) {
for (auto* child_block : it->blocks()) {
FuseWithListUnpack(child_block);
}
auto n_kind = it->kind();
switch (n_kind) {
case aten::split:
case aten::split_with_sizes:
case aten::unsafe_split:
case aten::unsafe_split_with_sizes:
case aten::unbind:
case aten::unsafe_chunk:
case aten::where:
FuseWithListUnpack(*it);
break;
default:
break;
}
}
}
// Replace aten::add with onnx::Concat
// when inputs to the add node are two int lists
//
// before the pass:
// graph(%x.1 : Float(2:12, 3:4, 4:1, requires_grad=0, device=cpu),
// %y.1 : Float(1:6, 2:3, 3:1, requires_grad=0, device=cpu)):
// %2 : None = prim::Constant()
// %3 : int[] = aten::size(%x.1)
// %l1.1 : int[] = aten::list(%3
// %5 : int[] = aten::size(%y.1)
// %l2.1 : int[] = aten::list(%5)
// %7 : int[] = aten::add(%l1.1, %l2.1)
// %8 : Tensor = aten::new_zeros(%x.1, %7, %2, %2, %2, %2)
// return (%8)
//
// after the pass:
// graph(%x.1 : Float(2:12, 3:4, 4:1, requires_grad=0, device=cpu),
// %y.1 : Float(1:6, 2:3, 3:1, requires_grad=0, device=cpu)):
// %2 : None = prim::Constant()
// %3 : int[] = aten::size(%x.1)
// %l1.1 : int[] = aten::list(%3)
// %5 : int[] = aten::size(%y.1)
// %l2.1 : int[] = aten::list(%5)
// %9 : Tensor = onnx::Concat[axis=0](%l1.1, %l2.1)
// %8 : Tensor = aten::new_zeros(%x.1, %9, %2, %2, %2, %2)
// return (%8)
static void ReplaceAddWithConcat(Block* b) {
for (auto it = b->nodes().begin(), end = b->nodes().end(); it != end; ++it) {
for (auto* child_block : it->blocks()) {
ReplaceAddWithConcat(child_block);
}
if (it->kind() == aten::add) {
if (!it->input(0)->type()->cast<ListType>() ||
!it->input(1)->type()->cast<ListType>()) {
continue;
}
TypePtr elem = it->input(0)->type()->cast<ListType>()->getElementType();
if (elem->cast<IntType>()) {
Node* concat_node = b->owningGraph()->create(onnx::Concat, 1);
concat_node->i_(attr::axis, 0);
concat_node->insertBefore(*it);
concat_node->addInput(it->input(0));
concat_node->addInput(it->input(1));
concat_node->outputs()[0]->setType(
TensorType::fromNumberType(std::move(elem)));
it->replaceAllUsesWith(concat_node);
it->removeAllInputs();
it.destroyCurrent();
}
}
}
}
} // namespace
void PreprocessForONNX(std::shared_ptr<Graph>& graph) {
FuseWithListUnpack(graph->block());
ReplaceAddWithConcat(graph->block());
}
} // namespace jit
} // namespace torch
|