1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
|
#include <torch/csrc/jit/passes/onnx/unpack_quantized_weights.h>
#include <ATen/native/quantized/cpu/packed_params.h>
#include <torch/csrc/jit/ir/constants.h>
#include <torch/csrc/jit/ir/irparser.h>
#include <torch/csrc/jit/ir/subgraph_matcher.h>
#include <torch/csrc/jit/passes/onnx/helper.h>
#include <torch/csrc/jit/passes/subgraph_rewrite.h>
#include <stack>
using ::c10::Dispatcher;
using ::c10::DispatchKey;
namespace torch {
namespace jit {
namespace onnx {
using namespace ::c10::onnx;
}
// Get the scale of the input to quantized op. There are two cases here
// 1. For ops with output_scale specified in op signature, we get the output
// scale
// 2. For ops with no output scale in op signature (like quantized::relu)
// we traverse up the graph to get the scale from its input until we hit a node
// where scale is explicitly specified.
double getScaleFromInput(Node* input_node) {
c10::optional<IValue> scale;
std::string input_name = input_node->kind().toQualString();
std::unordered_set<std::string> noscale_ops = {"quantized::max_pool2d",
"aten::max_pool2d",
"aten::relu",
"prim::ListUnpack",
"aten::split_with_sizes",
"quantized::nchw2nhwc",
"quantized::nhwc2nchw",
"aten::slice",
"aten::avg_pool2d",
"quantized::cat",
"prim::ListConstruct",
"aten::upsample_nearest2d",
"aten::sigmoid",
"aten::reshape"};
if (input_name == "aten::quantize_per_tensor") {
TORCH_CHECK(
input_node->inputs().size() > 1,
"aten::quantize_per_tensor expected scale to be 2nd input");
scale = toIValue(input_node->inputs()[1]);
return scale.value().toDouble();
} else if (input_name == "quantized::linear") {
// %r = quantized::linear(%input, %packed_weight, %w_scale, %w_zero_point)
TORCH_CHECK(
input_node->inputs().size() > 2,
"quantized::linear expected scale to be 3rd input");
scale = toIValue(input_node->inputs()[2]);
return scale.value().toDouble();
} else if (input_name == "quantized::conv2d") {
// %r = quantized::conv2d(%input, %packed_weight, %w_scale, %w_zero_point)
TORCH_CHECK(
input_node->inputs().size() > 2,
"quantized::conv2d expected scale to be 3rd input");
auto num_inputs = input_node->inputs().size();
scale = toIValue(input_node->inputs()[num_inputs - 2]);
return scale.value().toDouble();
} else if (input_name == "quantized::conv2d_relu") {
// %r = quantized::conv2d_relu(%input, %packed_weight, %w_scale,
// %w_zero_point)
TORCH_CHECK(
input_node->inputs().size() > 2,
"quantized::conv2d_relu expected scale to be 3rd input");
auto num_inputs = input_node->inputs().size();
scale = toIValue(input_node->inputs()[num_inputs - 2]);
return scale.value().toDouble();
} else if (input_name == "quantized::add") {
// %r = quantized::add(%input_a, %input_b, %w_scale, %w_zero_point)
TORCH_CHECK(
input_node->inputs().size() > 2,
"quantized::add expected scale to be 3rd input");
scale = toIValue(input_node->inputs()[2]);
return scale.value().toDouble();
} else if (input_name == "aten::sigmoid") {
// For the _caffe2::Int8Sigmoid op output scale is 1.0/256
// And output zero_point is set to 0 (quint8 type).
return 1.0L / 256;
}
// For the ops below the scale is not part of the op signature, so we traverse
// up the graph to get the scale from its input when defined in the graph.
else if (noscale_ops.find(input_name) != noscale_ops.end()) {
return getScaleFromInput(input_node->inputs()[0]->node());
}
TORCH_INTERNAL_ASSERT(
false,
"Unrecognized quantized operator while trying to compute q_scale for operator ",
input_name);
}
Node* CreateQuantizedWeights(
std::string data,
std::shared_ptr<Graph>& graph,
std::vector<int64_t> shapes,
double scale,
int64_t zero_point) {
Node* const_node = graph->create(Symbol::caffe2("Int8GivenTensorFill"));
const_node->is_(Symbol::attr("shape"), shapes);
const_node->i_(Symbol::attr("Y_zero_point"), zero_point);
const_node->f_(Symbol::attr("Y_scale"), scale);
const_node->s_(Symbol::attr("values"), data);
return const_node;
}
Node* CreateQuantizedBias(
std::vector<int64_t> data,
std::shared_ptr<Graph>& graph,
std::vector<int64_t> shapes,
double scale,
int64_t zero_point) {
Node* const_node = graph->create(Symbol::caffe2("Int8GivenIntTensorFill"));
const_node->is_(Symbol::attr("shape"), shapes);
const_node->i_(Symbol::attr("Y_zero_point"), zero_point);
const_node->f_(Symbol::attr("Y_scale"), scale);
const_node->is_(Symbol::attr("values"), data);
return const_node;
}
Node* createIntTuple(
const std::vector<int64_t>& is,
std::shared_ptr<Graph>& graph) {
Node* const_node = graph->create(Symbol::onnx("Constant"));
const_node->is_(Symbol::attr("value"), is);
return const_node;
}
Node* createInt(int64_t i, std::shared_ptr<Graph>& graph) {
Node* const_node = graph->create(Symbol::onnx("Constant"));
const_node->i_(Symbol::attr("value"), i);
return const_node;
}
enum class QuantizedParamsType { CONV, LINEAR };
// This is called before the onnx pass. Using pattern matching we
// find the relevant nodes and extract the packed_params. The packed_params are
// passed to the appropriate unpack function using c10::Dispatcher. We insert
// the unpacked weights and bias into the graph using
// caffe2::Int8GivenTensorFill nodes.
void unpackQuantizedWeightsHelper(
std::shared_ptr<Graph>& graph,
std::map<std::string, IValue>& paramsDict,
const std::string& pattern,
const std::string& unpack_fn,
QuantizedParamsType params_type) {
Graph pattern_graph;
std::unordered_map<std::string, Value*> vmap;
parseIR(pattern, &pattern_graph, vmap);
const auto& matches = findPatternMatches(pattern_graph, *graph);
for (const auto& match : matches) {
auto match_vmap = match.values_map;
auto qlinear_node = match_vmap.at(vmap.at("r"))->node();
std::string quantized_weight =
match_vmap.at(vmap.at("r"))->node()->inputs()[1]->debugName();
auto itr = paramsDict.find(quantized_weight);
if (itr == paramsDict.end()) {
throw std::runtime_error(
"getValues: Quantized weight value not found amongst constant parameters.");
}
at::Tensor unpacked_weight;
c10::optional<at::Tensor> bias;
constexpr int64_t stride_idx = 2;
constexpr int64_t padding_idx = 3;
constexpr int64_t dilation_idx = 4;
constexpr int64_t groups_idx = 5;
c10::optional<torch::List<int64_t>> stride, padding, dilation,
output_padding;
c10::optional<int64_t> groups;
c10::optional<int64_t> transpose;
torch::List<int64_t> stride_int, padding_int, dilation_int,
output_padding_int;
int64_t groups_int;
int64_t transpose_int;
if (itr->second.isTuple()) {
// Pre-unpacked weights. Comes from Conv/Linear weights which are
// stored as bound C++ classes.
auto ser_tup = itr->second.toTuple();
if (params_type == QuantizedParamsType::CONV &&
ser_tup->elements()[0].isString()) {
auto elements = ser_tup->elements();
auto version = elements[0].toStringRef();
TORCH_INTERNAL_ASSERT(version == "2", "Unknown serialization version");
std::vector<at::Tensor> non_optional = elements[1].toTensorVector();
at::Tensor conv_params_packed = non_optional[0];
unpacked_weight = non_optional[1];
const int64_t kSpatialDim = conv_params_packed[0].item<int64_t>();
// skip kSpatialDim
int64_t idx = 1;
for (int i = 0; i < kSpatialDim; ++i) {
stride_int.emplace_back(conv_params_packed[idx].item<int64_t>());
idx++;
}
for (int i = 0; i < kSpatialDim; ++i) {
padding_int.emplace_back(conv_params_packed[idx].item<int64_t>());
idx++;
}
for (int i = 0; i < kSpatialDim; ++i) {
dilation_int.emplace_back(conv_params_packed[idx].item<int64_t>());
idx++;
}
for (int i = 0; i < kSpatialDim; ++i) {
output_padding_int.emplace_back(
conv_params_packed[idx].item<int64_t>());
idx++;
}
groups_int = conv_params_packed[idx].item<int64_t>();
idx++;
transpose_int = conv_params_packed[idx].item<int64_t>();
idx++;
TORCH_INTERNAL_ASSERT(
idx == conv_params_packed.numel(),
"Unexpected length of conv_params_packed, expected ",
idx,
" got ",
conv_params_packed.numel());
torch::List<c10::IValue> optional = elements[2].toList();
bias = optional.get(0).toOptional<at::Tensor>();
stride = stride_int;
padding = padding_int;
dilation = dilation_int;
groups = groups_int;
transpose = transpose_int;
} else { // Legacy
unpacked_weight = ser_tup->elements()[0].toTensor();
bias = ser_tup->elements()[1].toOptional<at::Tensor>();
// conv only parameters
if (ser_tup->elements().size() > 2) {
auto stride_ivalue = ser_tup->elements()[stride_idx].toListRef();
auto padding_ivalue = ser_tup->elements()[padding_idx].toListRef();
auto dilation_ivalue = ser_tup->elements()[dilation_idx].toListRef();
auto groups_ivalue = ser_tup->elements()[groups_idx];
for (const auto& s : stride_ivalue) {
stride_int.emplace_back(s.toTensor()[0].item<int64_t>());
}
for (const auto& p : padding_ivalue) {
padding_int.emplace_back(p.toTensor()[0].item<int64_t>());
}
for (const auto& d : dilation_ivalue) {
dilation_int.emplace_back(d.toTensor()[0].item<int64_t>());
}
groups_int = groups_ivalue.toTensor()[0].item<int64_t>();
stride = stride_int;
padding = padding_int;
dilation = dilation_int;
groups = groups_int;
}
}
} else {
TORCH_INTERNAL_ASSERT(itr->second.isTensor());
at::Tensor packed_weight = itr->second.toTensor();
auto op = Dispatcher::singleton()
.findSchemaOrThrow(unpack_fn.c_str(), "")
.typed<std::tuple<at::Tensor, c10::optional<at::Tensor>>(
at::Tensor)>();
std::tie(unpacked_weight, bias) = op.call(packed_weight);
}
// Permute weights
std::vector<int64_t> wt_sizes = unpacked_weight.sizes().vec();
if (unpacked_weight.ndimension() == 4) {
unpacked_weight.permute({0, 2, 3, 1});
wt_sizes = {unpacked_weight.size(0),
unpacked_weight.size(2),
unpacked_weight.size(3),
unpacked_weight.size(1)};
}
// Remove packed_params
qlinear_node->removeInput(1);
// Convert from int8 to uint8
int8_t* inp_data =
reinterpret_cast<int8_t*>(unpacked_weight.data_ptr<c10::qint8>());
const int64_t weight_zp = unpacked_weight.q_zero_point() + 128;
const int64_t wt_numel = unpacked_weight.numel();
// Create caffe2::Int8GivenTensorFill node
std::ostringstream os;
for (int64_t i = 0; i < wt_numel; ++i) {
os << static_cast<char>(inp_data[i] + 128);
}
Node* c2_weight = CreateQuantizedWeights(
os.str(), graph, wt_sizes, unpacked_weight.q_scale(), weight_zp);
graph->setInsertPoint(qlinear_node);
c2_weight->insertBefore(qlinear_node);
qlinear_node->insertInput(1, c2_weight->output());
// Add bias
at::Tensor original_bias;
if (bias.has_value()) {
original_bias = bias.value();
original_bias.set_requires_grad(false);
} else {
// Caffe2 ops always expect bias tensor so if not present create empty
// tensor.
int64_t bias_size = unpacked_weight.size(0);
original_bias =
at::zeros(bias_size, unpacked_weight.options().dtype(at::kFloat));
}
auto weight_scale = unpacked_weight.q_scale();
auto input_val = match_vmap.at(vmap.at("r"))->node()->inputs()[0];
TORCH_INTERNAL_ASSERT(
input_val->type()->isSubtypeOf(TensorType::get()),
"Unsupported input type. Expected TensorType, got ",
input_val->type()->str());
auto input_node = match_vmap.at(vmap.at("r"))->node()->inputs()[0]->node();
auto input_scale = getScaleFromInput(input_node);
auto q_bias = at::quantize_per_tensor(
original_bias, weight_scale * input_scale, 0, at::kQInt32);
std::vector<int64_t> bias_values;
bias_values.reserve(q_bias.numel());
auto bias_data = (int32_t*)q_bias.data_ptr<c10::qint32>();
for (int64_t i = 0; i < q_bias.numel(); ++i) {
bias_values.push_back(bias_data[i]);
}
Node* c2_bias = CreateQuantizedBias(
bias_values,
graph,
q_bias.sizes().vec(),
q_bias.q_scale(),
q_bias.q_zero_point());
c2_bias->insertBefore(qlinear_node);
qlinear_node->insertInput(2, c2_bias->output());
// add conv arguments: stride, padding, dilation, groups
if (stride.has_value() && padding.has_value() && dilation.has_value() &&
groups.has_value()) {
std::vector<c10::optional<torch::List<int64_t>>> conv_ints_args;
conv_ints_args.push_back(stride);
conv_ints_args.push_back(padding);
conv_ints_args.push_back(dilation);
const size_t arg_offset = 3;
for (size_t i = 0; i < conv_ints_args.size(); ++i) {
Node* ints_node =
createIntTuple(conv_ints_args[i].value().vec(), graph);
ints_node->insertBefore(qlinear_node);
qlinear_node->insertInput(arg_offset + i, ints_node->output());
}
Node* groups_node = createInt(groups.value(), graph);
groups_node->insertBefore(qlinear_node);
qlinear_node->insertInput(groups_idx + 1, groups_node->output());
}
auto b = graph->block();
auto valsToParamsMap = buildValueToParamsMap(b, paramsDict);
eraseUnusedValuesFromMap(valsToParamsMap);
}
}
void UnpackQuantizedWeights(
std::shared_ptr<Graph>& graph,
std::map<std::string, IValue>& paramsDict) {
std::string qlinear = R"(
graph(%input, %packed_weight, %w_scale, %w_zero_point):
%r = quantized::linear(%input, %packed_weight, %w_scale, %w_zero_point)
return (%r) )";
std::string qconv2d = R"(
graph(%input, %packed_params, %scale, %zero_point):
%r = quantized::conv2d(%input, %packed_params, %scale, %zero_point)
return (%r) )";
std::string qconv2d_relu = R"(
graph(%input, %packed_params, %scale, %zero_point):
%r = quantized::conv2d_relu(%input, %packed_params, %scale, %zero_point)
return (%r) )";
std::string qconv3d = R"(
graph(%input, %packed_params, %scale, %zero_point):
%r = quantized::conv3d(%input, %packed_params, %scale, %zero_point)
return (%r) )";
std::string qconv3d_relu = R"(
graph(%input, %packed_params, %scale, %zero_point):
%r = quantized::conv3d_relu(%input, %packed_params, %scale, %zero_point)
return (%r) )";
unpackQuantizedWeightsHelper(
graph,
paramsDict,
qlinear,
"quantized::linear_unpack",
QuantizedParamsType::LINEAR);
unpackQuantizedWeightsHelper(
graph,
paramsDict,
qconv2d,
"quantized::conv2d_unpack",
QuantizedParamsType::CONV);
unpackQuantizedWeightsHelper(
graph,
paramsDict,
qconv2d_relu,
"quantized::conv2d_unpack",
QuantizedParamsType::CONV);
unpackQuantizedWeightsHelper(
graph,
paramsDict,
qconv3d,
"quantized::conv3d_unpack",
QuantizedParamsType::CONV);
unpackQuantizedWeightsHelper(
graph,
paramsDict,
qconv3d_relu,
"quantized::conv3d_unpack",
QuantizedParamsType::CONV);
}
// Caffe2 expects quantized ops to be in NHWC format while pytorch inputs are in
// NCHW. This pass inserts permutes to convert from NCHW to NHWC before each
// conv op and add another permute from NHWC to NCHW after the conv op.
void insertPermutesHelper(
std::shared_ptr<Graph>& graph,
std::map<std::string, IValue>& paramsDict,
const std::string& pattern) {
Graph pattern_graph;
std::unordered_map<std::string, Value*> vmap;
parseIR(pattern, &pattern_graph, vmap);
const auto& matches = findPatternMatches(pattern_graph, *graph);
for (const auto& match : matches) {
auto match_vmap = match.values_map;
auto op_node = match_vmap.at(vmap.at("r"))->node();
auto input_node = match_vmap.at(vmap.at("r"))->node()->inputs()[0]->node();
Node* permute_node_before = graph->create(
Symbol::fromQualString("quantized::nchw2nhwc"), {input_node->output()});
permute_node_before->insertBefore(op_node);
op_node->removeInput(0);
op_node->insertInput(0, permute_node_before->output());
Node* permute_node_after = graph->create(
Symbol::fromQualString("quantized::nhwc2nchw"),
{op_node->outputs()[0]});
permute_node_after->insertAfter(op_node);
auto v = op_node->outputs().at(0);
v->replaceAllUsesWith(permute_node_after->outputs().at(0));
permute_node_after->removeInput(0);
permute_node_after->addInput(v);
}
}
void insertPermutes(
std::shared_ptr<Graph>& graph,
std::map<std::string, IValue>& paramsDict) {
std::string qconv = R"(
graph(%input, %weight, %bias, %stride, %padding, %dilation, %groups, %w_scale, %w_zero_point):
%r = quantized::conv2d(%input, %weight, %bias, %stride, %padding, %dilation, %groups, %w_scale, %w_zero_point)
return (%r) )";
std::string qconv_relu = R"(
graph(%input, %weight, %bias, %stride, %padding, %dilation, %groups, %w_scale, %w_zero_point):
%r = quantized::conv2d_relu(%input, %weight, %bias, %stride, %padding, %dilation, %groups, %w_scale, %w_zero_point)
return (%r) )";
std::string qconv_transpose = R"(
graph(%input, %weight, %bias, %stride, %padding, %dilation, %output_padding, %groups, %w_scale, %w_zero_point):
%r = quantized::conv_transpose2d(%input, %weight, %bias, %stride, %padding, %output_padding, %dilation, %groups, %w_scale, %w_zero_point)
return (%r) )";
insertPermutesHelper(graph, paramsDict, qconv);
insertPermutesHelper(graph, paramsDict, qconv_relu);
insertPermutesHelper(graph, paramsDict, qconv_transpose);
}
} // namespace jit
} // namespace torch
|