File: prepack_folding.cpp

package info (click to toggle)
pytorch 1.7.1-7
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 80,340 kB
  • sloc: cpp: 670,830; python: 343,991; ansic: 67,845; asm: 5,503; sh: 2,924; java: 2,888; xml: 266; makefile: 244; ruby: 148; yacc: 144; objc: 51; lex: 44
file content (66 lines) | stat: -rw-r--r-- 2,279 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
#include <stack>

#include <torch/csrc/jit/api/module.h>
#include <torch/csrc/jit/passes/constant_pooling.h>
#include <torch/csrc/jit/passes/constant_propagation.h>
#include <torch/csrc/jit/passes/prepack_folding.h>

namespace torch {
namespace jit {

// Must run this pass after constant folding.
void PrePackingOpsFolder(
    script::Module& m,
    const PrePackingOpsFilterFn& is_foldable_op,
    const std::string& attr_prefix) {
  int64_t uid = 0;
  auto method = m.get_method("forward");
  auto graph = method.graph();
  std::stack<Block*> blocks_to_visit;
  std::unordered_set<Node*> nodes_to_delete;
  blocks_to_visit.push(graph->block());
  std::string attr_name_base = attr_prefix + "._jit_pass_packed_weight_";
  while (!blocks_to_visit.empty()) {
    Block* b = blocks_to_visit.top();
    blocks_to_visit.pop();
    for (Node* n : b->nodes()) {
      if (is_foldable_op(n)) {
        auto optional_outputs = runNodeIfInputsAreConstant(n);
        if (optional_outputs) {
          auto outputs = optional_outputs.value();
          TORCH_CHECK(outputs.size() == 1, "Prepack ops have single output");
          auto attr_name = attr_name_base + c10::to_string(uid++);
          TORCH_CHECK(
              !(m.type()->findAttributeSlot(attr_name)),
              "Attribute name ",
              attr_name,
              " already exist in",
              " module of type:",
              m.type()->name()->qualifiedName(),
              ". Please make sure that",
              " FoldPrePackingOps is run at the top level module only.");
          m.register_attribute(attr_name, n->output(0)->type(), outputs[0]);
          Value* prepack_op_value = n->output(0);
          WithInsertPoint ins(prepack_op_value->node());
          Value* packed_weight_attr =
              graph->insertGetAttr(graph->inputs()[0], attr_name)
                  ->setType(n->output(0)->type());
          prepack_op_value->replaceAllUsesWith(packed_weight_attr);
          nodes_to_delete.insert(n);
        }
      }
      for (Block* subblock : n->blocks()) {
        blocks_to_visit.push(subblock);
      }
    }
  }
  for (auto n : nodes_to_delete) {
    n->removeAllInputs();
  }
  for (auto n : nodes_to_delete) {
    n->destroy();
  }
}

} // namespace jit
} // namespace torch