1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
|
#include <torch/csrc/jit/passes/quantization/finalize.h>
#include <torch/csrc/jit/jit_log.h>
#include <torch/csrc/jit/passes/freeze_module.h>
#include <torch/csrc/jit/passes/prepack_folding.h>
#include <torch/csrc/jit/passes/quantization/quantization_patterns.h>
namespace torch {
namespace jit {
namespace {
void insertPrepackUnpackForLinear(std::shared_ptr<Graph>& graph) {
std::vector<QuantFusionInfo> patterns_and_replacements =
linear_prepack_unpack_patterns();
for (const auto& entry : patterns_and_replacements) {
SubgraphRewriter rewriter;
rewriter.RegisterRewritePattern(entry.pattern, entry.replacement);
rewriter.runOnGraph(graph, entry.filters);
}
}
void insertPrepackUnpackForConv(std::shared_ptr<Graph>& graph) {
std::vector<QuantFusionInfo> patterns_and_replacements =
conv_prepack_unpack_patterns();
for (const auto& entry : patterns_and_replacements) {
SubgraphRewriter rewriter;
rewriter.RegisterRewritePattern(entry.pattern, entry.replacement);
rewriter.runOnGraph(graph, entry.filters);
}
}
} // namespace
void QuantFusion(std::shared_ptr<Graph>& graph, QuantType quant_type) {
std::vector<QuantFusionInfo> patterns;
if (quant_type == QuantType::DYNAMIC) {
patterns = dynamic_quant_fusion_pattern_and_replacements();
} else {
patterns = quant_fusion_pattern_and_replacements();
}
for (const auto& info : patterns) {
SubgraphRewriter rewriter;
rewriter.RegisterRewritePattern(info.pattern, info.replacement);
rewriter.runOnGraph(graph, info.filters);
}
}
void InsertPrepackUnpack(std::shared_ptr<Graph>& graph) {
insertPrepackUnpackForLinear(graph);
insertPrepackUnpackForConv(graph);
}
void InsertPrepackUnpack(Module& module) {
for (auto& method : module.get_methods()) {
auto graph = method.graph();
InsertPrepackUnpack(graph);
}
for (Module m : module.children()) {
InsertPrepackUnpack(m);
}
}
void FoldQuantizedPrepackingOps(Module& module) {
auto filter_fn = [](const Node* n) -> bool {
return (
n->kind() == Symbol::fromQualString("quantized::linear_prepack") ||
n->kind() == Symbol::fromQualString("quantized::conv1d_prepack") ||
n->kind() == Symbol::fromQualString("quantized::conv2d_prepack") ||
n->kind() == Symbol::fromQualString("quantized::conv3d_prepack") ||
n->kind() ==
Symbol::fromQualString("quantized::conv_transpose1d_prepack") ||
n->kind() ==
Symbol::fromQualString("quantized::conv_transpose2d_prepack"));
};
PrePackingOpsFolder(module, filter_fn, "quantized");
}
Module Finalize(
Module& module,
QuantType quant_type,
const std::vector<std::string>& preserved_attrs) {
auto graph = module.get_method("forward").graph();
InsertPrepackUnpack(graph);
GRAPH_DUMP("Before QuantFusion:", graph);
QuantFusion(graph, quant_type);
auto frozen = freeze_module(module, preserved_attrs);
FoldQuantizedPrepackingOps(frozen);
return frozen;
}
} // namespace jit
} // namespace torch
|