1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005
|
#include <torch/csrc/jit/passes/tensorexpr_fuser.h>
#include <ATen/record_function.h>
#include <torch/csrc/jit/codegen/fuser/interface.h>
#include <torch/csrc/jit/ir/alias_analysis.h>
#include <torch/csrc/jit/jit_log.h>
#include <torch/csrc/jit/passes/common_subexpression_elimination.h>
#include <torch/csrc/jit/passes/dead_code_elimination.h>
#include <torch/csrc/jit/passes/pass_manager.h>
#include <torch/csrc/jit/passes/remove_redundant_profiles.h>
#include <torch/csrc/jit/passes/utils/subgraph_utils.h>
#include <torch/csrc/jit/runtime/custom_operator.h>
#include <torch/csrc/jit/runtime/graph_executor.h>
#include <torch/csrc/jit/runtime/operator_options.h>
#include <torch/csrc/jit/tensorexpr/kernel.h>
#include <torch/csrc/utils/memory.h>
namespace torch {
namespace jit {
static bool texpr_reductions_enabled = false;
bool isSupportedForBlock(Node* node) {
switch (node->kind()) {
case aten::add:
case aten::mul:
return true;
default:
return false;
}
}
bool usedOnlyInSize(Value* v) {
const auto& uses = v->uses();
return std::all_of(uses.begin(), uses.end(), [](const Use& u) {
return u.user->matches("aten::size(Tensor self) -> int[]");
});
}
Value* broadcastSizes(at::ArrayRef<Value*> sizes, AliasDb* db) {
AT_ASSERT(!sizes.empty());
Graph* graph = sizes[0]->owningGraph();
Node* broadcast_n =
graph->insertNode(graph->create(prim::BroadcastSizes, sizes));
broadcast_n->output()->setType(ListType::ofInts());
db->createValue(broadcast_n->output());
return broadcast_n->output();
}
namespace tensorexpr {
bool isSupported(Node* node) {
// For Block codegen we allow limited ops.
if (tensorexpr::getTEGenerateBlockCode()) {
return isSupportedForBlock(node);
}
// clang-format off
// breaks up the schema strings so they are no longer discoverable with ctrl-F
static const OperatorSet supported_operator_set{
"aten::add.Tensor(Tensor self, Tensor other, *, Scalar alpha=1) -> Tensor",
"aten::add.Scalar(Tensor self, Scalar other, Scalar alpha=1) -> Tensor",
"aten::_cast_Float(Tensor self, bool non_blocking) -> Tensor",
"aten::type_as(Tensor self, Tensor other) -> Tensor",
"aten::sub.Tensor(Tensor self, Tensor other, *, Scalar alpha=1) -> Tensor",
"aten::sub.Scalar(Tensor self, Scalar other, Scalar alpha=1) -> Tensor",
"aten::mul.Tensor(Tensor self, Tensor other) -> Tensor",
"aten::mul.Scalar(Tensor self, Scalar other) -> Tensor",
"aten::div.Tensor(Tensor self, Tensor other) -> Tensor",
"aten::div.Scalar(Tensor self, Scalar other) -> Tensor",
"aten::eq.Tensor(Tensor self, Tensor other) -> Tensor",
"aten::eq.Scalar(Tensor self, Scalar other) -> Tensor",
"aten::ne.Tensor(Tensor self, Tensor other) -> Tensor",
"aten::ne.Scalar(Tensor self, Scalar other) -> Tensor",
"aten::ge.Tensor(Tensor self, Tensor other) -> Tensor",
"aten::ge.Scalar(Tensor self, Scalar other) -> Tensor",
"aten::gt.Tensor(Tensor self, Tensor other) -> Tensor",
"aten::gt.Scalar(Tensor self, Scalar other) -> Tensor",
"aten::le.Tensor(Tensor self, Tensor other) -> Tensor",
"aten::le.Scalar(Tensor self, Scalar other) -> Tensor",
"aten::lt.Tensor(Tensor self, Tensor other) -> Tensor",
"aten::lt.Scalar(Tensor self, Scalar other) -> Tensor",
"aten::pow.Tensor_Scalar(Tensor self, Scalar exponent) -> Tensor",
"aten::pow.Tensor_Tensor(Tensor self, Tensor exponent) -> Tensor",
// TODO : do we support pow.Scalar ?
"aten::pow.Scalar(Scalar self, Tensor exponent) -> Tensor",
// TODO: support clamp_min, clamp_max
"aten::clamp(Tensor self, Scalar? min=None, Scalar? max=None) -> Tensor",
"aten::lerp.Scalar(Tensor self, Tensor end, Scalar weight) -> Tensor",
"aten::lerp.Tensor(Tensor self, Tensor end, Tensor weight) -> Tensor",
"aten::log10(Tensor self) -> Tensor",
"aten::log(Tensor self) -> Tensor",
"aten::log2(Tensor self) -> Tensor",
// TODO: log1p
"aten::exp(Tensor self) -> Tensor",
"aten::erf(Tensor self) -> Tensor",
"aten::erfc(Tensor self) -> Tensor",
"aten::fmod.Scalar(Tensor self, Scalar other) -> Tensor",
"aten::fmod.Tensor(Tensor self, Tensor other) -> Tensor",
"aten::cos(Tensor self) -> Tensor",
"aten::sin(Tensor self) -> Tensor",
"aten::tan(Tensor self) -> Tensor",
"aten::acos(Tensor self) -> Tensor",
"aten::asin(Tensor self) -> Tensor",
"aten::atan(Tensor self) -> Tensor",
"aten::atan2(Tensor self, Tensor other) -> Tensor",
"aten::cosh(Tensor self) -> Tensor",
"aten::sinh(Tensor self) -> Tensor",
"aten::tanh(Tensor self) -> Tensor",
"aten::sqrt(Tensor self) -> Tensor",
"aten::rsqrt(Tensor self) -> Tensor",
"aten::abs(Tensor self) -> Tensor",
"aten::floor(Tensor self) -> Tensor",
"aten::ceil(Tensor self) -> Tensor",
"aten::round(Tensor self) -> Tensor",
"aten::trunc(Tensor self) -> Tensor",
"aten::threshold(Tensor self, Scalar threshold, Scalar value) -> Tensor",
"aten::remainder.Scalar(Tensor self, Scalar other) -> Tensor",
"aten::remainder.Tensor(Tensor self, Tensor other) -> Tensor",
"aten::cat(Tensor[] tensors, int dim=0) -> Tensor",
"aten::sigmoid(Tensor self) -> Tensor",
"aten::relu(Tensor self) -> Tensor",
"aten::addcmul(Tensor self, Tensor tensor1, Tensor tensor2, *, Scalar value=1) -> Tensor",
"aten::neg(Tensor self) -> Tensor",
"aten::reciprocal(Tensor self) -> Tensor",
"aten::expm1(Tensor self) -> Tensor",
"aten::unsqueeze(Tensor(a) self, int dim) -> Tensor(a)",
"aten::frac(Tensor self) -> Tensor",
// TODO: uncomment once we can handle rand+broadcasts
// "aten::rand_like(Tensor self, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None, MemoryFormat? memory_format=None) -> Tensor",
"aten::__and__.Scalar(Tensor self, Scalar other) -> Tensor",
"aten::__and__.Tensor(Tensor self, Tensor other) -> Tensor",
"aten::__or__.Scalar(Tensor self, Scalar other) -> Tensor",
"aten::__or__.Tensor(Tensor self, Tensor other) -> Tensor",
"aten::__xor__.Scalar(Tensor self, Scalar other) -> Tensor",
"aten::__xor__.Tensor(Tensor self, Tensor other) -> Tensor",
"aten::__lshift__.Scalar(Tensor self, Scalar other) -> Tensor",
"aten::__lshift__.Tensor(Tensor self, Tensor other) -> Tensor",
"aten::__rshift__.Scalar(Tensor self, Scalar other) -> Tensor",
"aten::__rshift__.Tensor(Tensor self, Tensor other) -> Tensor",
"aten::where.self(Tensor condition, Tensor self, Tensor other) -> Tensor",
"aten::where.ScalarSelf(Tensor condition, Scalar self, Tensor other) -> Tensor",
"aten::where.ScalarOther(Tensor condition, Tensor self, Scalar other) -> Tensor",
"aten::where.Scalar(Tensor condition, Scalar self, Scalar other) -> Tensor",
// TODO: enable other min/max variants, operators that can be both
// elementwise or reductions:
"aten::min.other(Tensor self, Tensor other) -> Tensor",
"aten::max.other(Tensor self, Tensor other) -> Tensor",
// TODO: enable slice, shape inference is not implemented for this op yet
};
static const OperatorSet supported_reduction_set{
"aten::sum(Tensor self, *, ScalarType? dtype=None) -> Tensor",
"aten::sum.dim_IntList(Tensor self, int[1] dim, bool keepdim=False, *, ScalarType? dtype=None) -> Tensor",
};
// clang-format on
if (node->isMemberOf(supported_operator_set) ||
(texpr_reductions_enabled && node->isMemberOf(supported_reduction_set))) {
// We only insert guards on Tensor types, so we rely on the output
// of a node being uniquely determined by its input types.
// bail if any non-Tensor input affects the output type
// and cannot be reasoned about statically
// Value is either an int or a float (can occur from .item())
for (Value* v : node->inputs()) {
if (v->type()->cast<NumberType>()) {
return false;
}
}
// non-const dtype / device
for (auto arg_name : {"dtype", "device"}) {
if (auto index = node->schema().argumentIndexWithName(arg_name)) {
if (!toIValue(node->input(*index))) {
return false;
}
}
}
return true;
}
// unschematized ops
switch (node->kind()) {
case prim::ConstantChunk:
case prim::ListConstruct:
case prim::TensorExprGroup:
return true;
}
return false;
}
} // namespace tensorexpr
static bool texpr_fuser_enabled_ = true;
void setTensorExprFuserEnabled(bool val) {
texpr_fuser_enabled_ = val;
}
bool tensorExprFuserEnabled() {
static const char* enable_c_str = std::getenv("PYTORCH_TENSOREXPR");
if (!enable_c_str) {
return texpr_fuser_enabled_;
}
if (std::string(enable_c_str) == "0") {
return false;
}
return true;
}
bool setTexprReductionsEnabled(bool value) {
bool old_value = texpr_reductions_enabled;
texpr_reductions_enabled = value;
return old_value;
}
bool texprReductionsEnabled() {
return texpr_reductions_enabled;
}
// TODO: if a value has differently typed uses, temporarily insert a node
// specializing the type for each use and later remove, instead of bailing
bool profiledWithDifferentTypes(Value* v) {
std::vector<TypePtr> types;
for (const auto& use : v->uses()) {
if (use.user->kind() == prim::profile) {
types.push_back(use.user->ty(attr::profiled_type));
}
}
for (size_t i = 1; i < types.size(); ++i) {
if (types.at(i - 1) != types.at(i)) {
return true;
}
}
return false;
}
void removeProfileNodesAndSpecializeTypes(Block* b) {
for (auto it = b->nodes().begin(); it != b->nodes().end(); it++) {
if (it->kind() == prim::profile) {
GRAPH_DEBUG("Removing prim::profile: %", it->output()->debugName());
it->output()->replaceAllUsesWith(it->input());
if (!profiledWithDifferentTypes(it->input())) {
it->input()->setType(it->ty(attr::profiled_type));
} else {
GRAPH_DEBUG(
"Ignoring value with differently typed profiles :%",
it->output()->debugName());
}
it.destroyCurrent();
} else {
for (Block* ib : it->blocks()) {
removeProfileNodesAndSpecializeTypes(ib);
}
}
}
}
void RemoveProfileNodesAndSpecializeTypes(std::shared_ptr<Graph>& graph) {
GRAPH_DEBUG("Before removeProfileNodesAndSpecializeTypes", *graph);
removeProfileNodesAndSpecializeTypes(graph->block());
GRAPH_DEBUG("After removeProfileNodesAndSpecializeTypes", *graph);
}
void removeTensorTypeSpecialization(Value* v) {
if (!v->type()->cast<TensorType>()) {
return;
}
// Constants & TensorExprGroup will always produce specialized tensor type,
// TypeCheck are inserted by this pass and only used by fusion groups that
// insert proper guards
if (v->node()->kind() == prim::Constant ||
v->node()->kind() == prim::TypeCheck ||
v->node()->kind() == prim::TensorExprGroup) {
return;
}
v->setType(TensorType::get());
}
void removeTensorTypeSpecializations(Block* block) {
for (Value* v : block->inputs()) {
removeTensorTypeSpecialization(v);
}
for (Node* n : block->nodes()) {
for (Block* b : n->blocks()) {
removeTensorTypeSpecializations(b);
}
for (Value* v : n->outputs()) {
removeTensorTypeSpecialization(v);
}
}
}
void RemoveTensorTypeSpecializations(std::shared_ptr<Graph>& graph) {
removeTensorTypeSpecializations(graph->block());
}
class TensorExprFuser {
public:
TensorExprFuser(
std::shared_ptr<Graph> graph,
size_t min_group_size,
bool disable_shape_checks)
: graph_(std::move(graph)),
min_group_size_(min_group_size),
disable_shape_checks_(disable_shape_checks) {}
// Builds up expressions that compute shapes of all intermediates (and
// outputs) of the fusion group, based on the sizes of inputs. You should run
// DCE to remove those that you end up not using.
std::unordered_map<Value*, Value*> buildShapeExpressions(Node* fusion_group) {
GRAPH_DUMP("buildShapeExpressions for ", fusion_group->g(attr::Subgraph));
WithInsertPoint insert_guard{fusion_group->next()};
std::unordered_map<Value*, Value*> shape_of;
Graph* graph = fusion_group->owningGraph();
auto subgraph = fusion_group->g(attr::Subgraph);
auto inputs = fusion_group->inputs();
auto sinputs = subgraph->inputs();
AT_ASSERT(inputs.size() == sinputs.size());
for (size_t i = 0; i < inputs.size(); ++i) {
if (inputs[i]->type()->isSubtypeOf(TensorType::get())) {
Value* soutput = graph->insert(aten::size, {inputs[i]});
aliasDb_->createValue(soutput);
GRAPH_DEBUG(
"Adding a mapping for %",
sinputs[i]->debugName(),
" ",
getHeader(soutput->node()));
shape_of[sinputs[i]] = soutput;
}
}
// When we have a guarantee that an output won't be removed, because it's
// used in expressions that don't involve size checks, we can use its size
// instead of computing a long chain of broadcasts, starting from the
// beginning of the kernel.
auto outputs = fusion_group->outputs();
auto soutputs = subgraph->outputs();
AT_ASSERT(outputs.size() == soutputs.size());
for (size_t i = 0; i < outputs.size(); ++i) {
if (usedOnlyInSize(outputs[i]))
continue;
Value* soutput = graph->insert(aten::size, {outputs[i]});
aliasDb_->createValue(soutput);
shape_of[soutputs[i]] = soutput;
}
for (Node* n : subgraph->nodes()) {
// XXX: Use of shape_of.emplace is crucial to the output shape
// optimization!
if (n->kind() == aten::cat) {
// This is a bit more involved, because we have to account for the case
// when inputs have different shapes, but fortunately those tensors are
// always outputs, and so we can simply avoid replacing their queries,
// because it won't help us.
continue;
}
if (n->kind() == prim::Constant) {
continue;
}
if (n->kind() == prim::ConstantChunk) {
Node* sizes_node = graph->insertNode(
graph->create(prim::ChunkSizes, shape_of.at(n->input()), 2));
sizes_node->i_(attr::dim, n->i(attr::dim));
sizes_node->i_(attr::chunks, n->i(attr::chunks));
for (Value* output : sizes_node->outputs()) {
aliasDb_->createValue(output);
}
Value* regular_size = sizes_node->outputs().at(0);
Value* last_size = sizes_node->outputs().at(1);
regular_size->setType(ListType::ofInts());
last_size->setType(ListType::ofInts());
auto outputs = n->outputs();
for (Value* o : outputs.slice(0, outputs.size() - 1)) {
shape_of.emplace(o, regular_size);
}
shape_of.emplace(outputs.at(outputs.size() - 1), last_size);
continue;
}
auto tensor_inputs = filter(n->inputs(), [](Value* v) {
return v->type()->isSubtypeOf(TensorType::get());
});
GRAPH_DEBUG("Building sizes for ", getHeader(n));
bool all_inputs_have_sizes = true;
auto shapes = fmap(tensor_inputs, [&](Value* v) {
GRAPH_DEBUG("Getting aten::size for %", v->debugName());
all_inputs_have_sizes &= shape_of.count(v);
return shape_of.count(v) != 0 ? shape_of.at(v) : nullptr;
});
if (!all_inputs_have_sizes) {
GRAPH_DEBUG(
"Not all tensor arguments have sizes available to compute the broadcasted size",
getHeader(n));
continue;
}
shape_of.emplace(
n->output(),
shapes.size() == 1 ? shapes[0]
: broadcastSizes(shapes, aliasDb_.get()));
}
return shape_of;
}
void removeOutputsUsedOnlyInSize(Node* fusion_group) {
if (fusion_group->kind() != prim::TensorExprGroup)
return;
auto subgraph = fusion_group->g(attr::Subgraph);
auto shape_of = buildShapeExpressions(fusion_group);
auto outputs = fusion_group->outputs().vec();
auto soutputs = subgraph->outputs().vec();
// XXX: Iterating in this order is not only good for performance reasons!
// It is also crucial for correctness (i has to reflect the current true
// index of outputs[i])!
for (int64_t i = static_cast<int64_t>(outputs.size()) - 1; i >= 0; --i) {
auto output = outputs[i];
auto soutput = soutputs[i];
if (usedOnlyInSize(output) && shape_of.count(soutput) > 0) {
auto uses = output->uses();
for (Use u : uses) {
AT_ASSERT(u.user->matches("aten::size(Tensor self) -> int[]"));
u.user->output()->replaceAllUsesWith(shape_of.at(soutput));
u.user->destroy();
}
fusion_group->eraseOutput(i);
subgraph->eraseOutput(i);
}
}
}
void run() {
aliasDb_ = torch::make_unique<AliasDb>(graph_);
RemoveRedundantProfiles(graph_);
GRAPH_DUMP("After removing redundant profile nodes: ", graph_);
createFusionGroups(graph_->block());
GRAPH_DUMP("After creating fusion groups: ", graph_);
// we maintain alias db correctness during initial fusion, but it is
// difficult to maintain correctness after inlining so inline only after
// fusion is done.
inlineSmallFusionGroups(graph_->block());
GRAPH_DUMP("After inlining small fusion groups: ", graph_);
guardFusionGroupsAndRemoveOutputs(graph_->block());
GRAPH_DUMP("After guarding fusion groups: ", graph_);
removeTensorTypeSpecializations(graph_->block());
GRAPH_DUMP("After removing tensor type specializations: ", graph_);
}
private:
Node* getOrCreateTensorExprSubgraph(Node* n) {
if (n->hasAttribute(attr::Subgraph) && n->kind() == prim::TensorExprGroup) {
return n;
}
GRAPH_UPDATE("Creating a tensorexpr::Group node from: ", *n);
return SubgraphUtils::createSingletonSubgraphAndUpdateAliasing(
n, prim::TensorExprGroup, *aliasDb_);
}
value_list sortReverseTopological(ArrayRef<Value*> inputs, Block* b) {
value_list result;
for (auto i : inputs) {
if (i->node()->owningBlock() == b) {
result.push_back(i);
}
}
// Sort in reverse topological order
std::sort(result.begin(), result.end(), [&](Value* a, Value* b) {
return a->node()->isAfter(b->node());
});
return result;
}
// Create a fusion group starting from the node N.
// We then try to pull inputs into the fusion group and repeat that process
// until there is nothing we can pull in.
std::pair<graph_node_list::iterator, bool> createFusionGroup(
Node* fusion_node) {
if (min_group_size_ == 1) {
fusion_node = getOrCreateTensorExprSubgraph(fusion_node);
}
GRAPH_DEBUG("Iteratively pull input nodes into the fusion group...\n");
auto inputs = sortReverseTopological(
fusion_node->inputs(), fusion_node->owningBlock());
for (auto input : inputs) {
debugDumpFusionGroup("Current fusion group: ", fusion_node);
GRAPH_DEBUG("Trying to merge: ", *input->node());
if (auto maybe_fusion_group = tryMerge(fusion_node, input->node())) {
// we successfully merged, so the new group's `inputs` may have
// changed. So rescan the new group for more merging opportunities.
return std::make_pair(
maybe_fusion_group.value()->reverseIterator(), true);
}
}
return std::make_pair(++fusion_node->reverseIterator(), false);
}
static void debugDumpFusionGroup(const std::string& msg, Node* n) {
GRAPH_DEBUG(msg, *n);
if (n->kind() == prim::TensorExprGroup) {
GRAPH_DEBUG(*n->g(attr::Subgraph));
}
}
std::pair<graph_node_list::iterator, bool> scanNode(Node* n) {
GRAPH_DEBUG("Considering node:", *n)
if (!canHandle(n)) {
return std::make_pair(++n->reverseIterator(), false);
}
// There are some nodes that we can support, but we don't want to start a
// fusion group from - skip them.
if (n->kind() == prim::ListConstruct || n->kind() == aten::slice ||
n->kind() == aten::unsqueeze || n->kind() == prim::ConstantChunk ||
n->kind() == prim::Constant) {
return std::make_pair(++n->reverseIterator(), false);
}
return createFusionGroup(n);
}
// Merge fusible nodes into subgraphs in prim::TensorExprGroup nodes.
void createFusionGroups(Block* block) {
bool any_changed = true;
while (any_changed) {
any_changed = false;
for (auto it = block->nodes().rbegin(); it != block->nodes().rend();) {
bool changed;
std::tie(it, changed) = scanNode(*it);
any_changed |= changed;
}
}
for (Node* n : block->nodes()) {
for (Block* b : n->blocks()) {
createFusionGroups(b);
}
}
// Try to merge adjacent fusion groups together. Because we have only merged
// by looking at graph inputs, without this we would not attempt to merge
// adjacent fusion groups that don't have a depdency on each other
std::vector<Node*> initial_fusion_groups;
for (Node* n : block->nodes()) {
if (n->kind() == prim::TensorExprGroup) {
initial_fusion_groups.push_back(n);
}
}
Node* prev_fusion_group =
initial_fusion_groups.size() ? initial_fusion_groups[0] : nullptr;
for (size_t i = 1; i < initial_fusion_groups.size(); ++i) {
// Try merging the just created fusion group into the previous one.
// If it did not work, then put the previous fusion group into
// fusion_groups vector - we will not touch it anymore in this loop.
// If merging suceeded, save the merged group as the "previous" fusion
// group so that we can try to merge the next one into it.
Node* fusion_group = initial_fusion_groups[i];
debugDumpFusionGroup(
"Trying to merge into the previous fusion group: ",
prev_fusion_group);
if (auto merged_fusion_group =
tryMerge(prev_fusion_group, fusion_group)) {
prev_fusion_group = *merged_fusion_group;
debugDumpFusionGroup(
"Successfully merged into the previous fusion group: ",
prev_fusion_group);
} else {
GRAPH_DEBUG("Cannot merge into the previous fusion group");
prev_fusion_group = fusion_group;
}
}
}
size_t blockSize(Block* block) {
size_t num = 0;
for (Node* n : block->nodes()) {
// Don't count prim::Constants and prim::ListConstructs as these are nodes
// we only pull in along with another, "main", node. E.g. the
// ListConstruct nodes would also be pulled into a fusion group if they
// are inputs of an aten::cat node.
if (n->kind() == prim::Constant || n->kind() == prim::ListConstruct) {
continue;
}
for (Block* b : n->blocks()) {
num += blockSize(b);
}
num++;
}
return num;
}
bool inlineIfTooSmall(Node* n) {
if (n->kind() != prim::TensorExprGroup) {
return false;
}
auto subgraph = SubgraphUtils::getSubgraph(n);
size_t num_modes = blockSize(subgraph->block());
if (num_modes < min_group_size_) {
GRAPH_UPDATE("Fusion group is too small, unmerging: ", *n);
SubgraphUtils::unmergeSubgraph(n);
return true;
}
return false;
}
void inlineSmallFusionGroups(Block* block) {
for (auto it = block->nodes().begin(); it != block->nodes().end();) {
Node* n = *it;
it++;
for (Block* b : n->blocks()) {
inlineSmallFusionGroups(b);
}
inlineIfTooSmall(n);
}
}
c10::optional<Node*> tryMerge(Node* fusion_group, Node* to_merge) {
if (!canMerge(fusion_group, to_merge)) {
return c10::nullopt;
}
std::vector<Node*> nodes_to_merge = {to_merge};
if (to_merge->kind() == aten::cat) {
Node* listconstruct = to_merge->input(0)->node();
nodes_to_merge.push_back(listconstruct);
}
// First, try to move all the nodes we want to fuse next to the fusion
// group.
Node* move_point = fusion_group;
for (auto n : nodes_to_merge) {
GRAPH_UPDATE("Trying to move node next to fusion group: ", getHeader(n));
if (!aliasDb_->moveBeforeTopologicallyValid(n, move_point)) {
GRAPH_UPDATE("Failed to move because of AliasDB checks!");
return c10::nullopt;
}
move_point = n;
}
// Now all the nodes that we're going to fuse are moved next to the fusion
// group, so we can safely merge them into the fusion group subgraph.
fusion_group = getOrCreateTensorExprSubgraph(fusion_group);
for (auto n : nodes_to_merge) {
GRAPH_UPDATE("Merging ", getHeader(n));
SubgraphUtils::mergeNodeIntoSubgraphAndUpdateAliasing(
n, fusion_group, *aliasDb_);
}
return fusion_group;
}
bool shapeIsKnown(Value* v) {
if (v->type()->cast<TensorType>()) {
if (!v->isCompleteTensor()) {
return false;
}
if (*v->type()->cast<TensorType>()->dim() == 0) {
return false;
}
}
return true;
}
bool allShapesAreKnown(Node* node) {
// TODO: Relax the checks to support dynamic shapes
for (Value* input : node->inputs()) {
if (!shapeIsKnown(input)) {
return false;
}
}
for (Value* output : node->outputs()) {
if (!shapeIsKnown(output)) {
return false;
}
}
return true;
}
bool canFuseOnDevice(Value* v) {
auto type = v->type()->cast<TensorType>();
if (!type) {
return true;
}
auto device = type->device();
if (!device) {
return false;
}
if (device->is_cpu()) {
return canFuseOnCPU();
} else if (device->is_cuda()) {
return canFuseOnGPU();
}
throw std::runtime_error("Unknown device");
}
bool isFusableOnDevice(Node* node) {
for (const auto& input : node->inputs()) {
if (!canFuseOnDevice(input)) {
return false;
}
}
return true;
}
#define REQ(cond) \
if (!(cond)) { \
GRAPH_DEBUG("Failed cond " #cond "\n"); \
return false; \
}
bool canHandle(Node* node) {
REQ(node->kind() != prim::Constant);
REQ(disable_shape_checks_ || allShapesAreKnown(node));
REQ(isFusableOnDevice(node));
// Don't include nodes whose inputs are tensor constants - we cannot handle
// them at the moment.
// TODO: actually support tensor constants and remove this.
for (Value* input : node->inputs()) {
if (input->node()->kind() == prim::Constant) {
REQ(!input->type()->cast<TensorType>())
}
if (auto const& tt = input->type()->cast<TensorType>()) {
auto st = tt->scalarType();
if (!st) {
// All tensor types should be known.
return false;
}
if (c10::isComplexType(*st) || c10::isQIntType(*st) ||
*st == c10::ScalarType::BFloat16) {
return false;
}
}
}
if (node->kind() == aten::cat) {
REQ(node->input(0)->node()->kind() == prim::ListConstruct);
REQ(node->input(0)->uses().size() == 1);
REQ(node->input(1)->node()->kind() == prim::Constant);
auto const& listconstruct = node->input(0)->node();
REQ(tensorexpr::pickDeviceType(listconstruct->inputs()));
} else {
REQ(tensorexpr::pickDeviceType(node->inputs()));
}
REQ(tensorexpr::isSupported(node));
return true;
}
bool canMerge(Node* consumer, Node* producer) {
// Only fuse within a block
REQ(consumer->owningBlock() == producer->owningBlock());
// Symbolic checks
REQ(canHandle(producer) || producer->kind() == prim::TensorExprGroup);
TORCH_INTERNAL_ASSERT(
consumer->kind() == prim::TensorExprGroup || canHandle(consumer));
// Device checks
if (consumer->kind() != aten::cat && producer->kind() != aten::cat) {
// aten::cat needs a special handling because it takes a Tensor[] as its
// input We deal with that in the code below.
auto consumer_device = tensorexpr::pickDeviceType(consumer->inputs());
REQ(consumer_device);
auto producer_device = tensorexpr::pickDeviceType(producer->inputs());
REQ(producer_device);
REQ(*consumer_device == *producer_device);
}
// Alias checks
REQ(aliasDb_->couldMoveBeforeTopologically(producer, consumer));
// Ops that return aliases can only be folded if this is the only use.
if (producer->kind() == aten::slice ||
producer->kind() == aten::unsqueeze ||
producer->kind() == prim::ConstantChunk) {
for (auto& use : producer->output(0)->uses()) {
REQ(use.user == consumer);
}
}
if (!consumer->hasAttribute(attr::Subgraph) &&
consumer->kind() != prim::TensorExprGroup) {
// Don't initiate a fusion group from prim::ListConstruct
REQ(consumer->kind() != prim::ListConstruct);
REQ(consumer->kind() != aten::slice);
REQ(consumer->kind() != aten::unsqueeze);
REQ(consumer->kind() != prim::ConstantChunk);
// Don't initiate a fusion group just for a constant operand
REQ(producer->kind() != prim::Constant);
}
if (producer->kind() == aten::cat) {
REQ(producer->input(0)->node()->kind() == prim::ListConstruct);
REQ(producer->input(0)->uses().size() == 1);
REQ(producer->input(1)->node()->kind() == prim::Constant);
auto const& listConstruct = producer->input(0)->node();
// We're merging listconstruct->cat->consumer. cat is the producer here
// and we cannot determine its device type - we should use device of the
// listconstruct instead
auto listconstruct_device =
tensorexpr::pickDeviceType(listConstruct->inputs());
auto consumer_device = tensorexpr::pickDeviceType(consumer->inputs());
REQ(listconstruct_device);
REQ(consumer_device);
REQ(*listconstruct_device == *consumer_device);
for (auto const& input : listConstruct->inputs()) {
REQ(isFusableOnDevice(input->node()));
}
} else if (consumer->kind() == aten::cat) {
REQ(consumer->input(0)->node()->kind() == prim::ListConstruct);
REQ(consumer->input(0)->uses().size() == 1);
REQ(consumer->input(1)->node()->kind() == prim::Constant);
auto const& listConstruct = consumer->input(0)->node();
// We're merging listconstruct->cat. cat is the consumer and listconstruct
// is the producer. cat doesn't have its device type and thus the only
// thing we should check is that listconstruct's device is well defined
// (e.g. all its inputs has the same device).
auto listconstruct_device =
tensorexpr::pickDeviceType(listConstruct->inputs());
REQ(listconstruct_device);
} else {
REQ(isFusableOnDevice(producer));
}
return true;
}
#undef REQ
void guardFusionGroup(Node* fusion_group) {
GRAPH_DEBUG("Inserting a typecheck guard for a node", *fusion_group);
auto subgraph = SubgraphUtils::getSubgraph(fusion_group);
// Fixup types of the subgraph inputs
std::vector<Value*> inputs_to_check;
for (Value* input : fusion_group->inputs()) {
// We only check inputs of the fusion group and expect NNC to infer
// intermediates and outputs shapes
if (!input->type()->cast<TensorType>()) {
continue;
}
// fusion outputs are already guarded
if (input->node()->kind() == prim::Constant ||
input->node()->kind() == prim::FusionGroup) {
continue;
}
inputs_to_check.push_back(input);
}
if (!inputs_to_check.size()) {
return;
}
// Add prim::TypeCheck node
//
// TypeCheck nodes look like the following:
// %out1 : Float(2, 3), %out2 : Int(10, 30), %types_match : bool =
// prim::TypeCheck(%inp1 : Tensor, %inp2 : Tensor)
//
// They have N inputs whose types we are going to check and N+1 outputs. The
// first N outputs specify expected types and N+1-th output holds the result
// of the check (bool).
Node* typecheck_node =
fusion_group->owningGraph()
->create(
prim::TypeCheck, inputs_to_check, inputs_to_check.size() + 1)
->insertBefore(fusion_group);
Value* typecheck_result = typecheck_node->output(inputs_to_check.size());
std::unordered_map<Value*, Value*> typechecked_inputs;
for (size_t i = 0; i < typecheck_node->inputs().size(); ++i) {
typechecked_inputs[typecheck_node->input(i)] = typecheck_node->output(i);
}
// Fixup types of the typecheck node outputs, which are used by the op in
// execution
typecheck_node->output(inputs_to_check.size())->setType(BoolType::get());
for (size_t i = 0; i < typecheck_node->inputs().size(); ++i) {
typecheck_node->output(i)->setType(typecheck_node->input(i)->type());
}
// Insert if
auto versioning_if =
fusion_group->owningGraph()
->create(
prim::If, {typecheck_result}, fusion_group->outputs().size())
->insertAfter(typecheck_node);
for (size_t idx = 0; idx < fusion_group->outputs().size(); ++idx) {
versioning_if->output(idx)->setType(fusion_group->output(idx)->type());
fusion_group->output(idx)->replaceAllUsesWith(versioning_if->output(idx));
}
auto true_block = versioning_if->addBlock();
auto false_block = versioning_if->addBlock();
// Fill in the false block. It should contain the unoptimized
// copy of the fused subgraph.
WithInsertPoint guard(false_block->return_node());
const auto subgraph_outputs = insertGraph(
*fusion_group->owningGraph(), *subgraph, fusion_group->inputs());
for (Value* output : subgraph_outputs) {
false_block->registerOutput(output);
}
// types get copied to the fallback graph, so remove specializations before
// replacing
removeTensorTypeSpecializations(false_block);
replaceBlockWithFallbackGraph(false_block, fusion_group->inputs());
// Fill in the true block. It has all inputs type-checked and its
// body should be the fusion group node.
fusion_group->moveBefore(true_block->return_node());
for (size_t idx = 0; idx < fusion_group->inputs().size(); ++idx) {
if (typechecked_inputs.count(fusion_group->input(idx))) {
fusion_group->replaceInput(
idx, typechecked_inputs.at(fusion_group->input(idx)));
}
}
for (Value* output : fusion_group->outputs()) {
true_block->registerOutput(output);
}
}
void guardFusionGroupsAndRemoveOutputs(Block* block) {
std::vector<Node*> fusion_groups;
for (Node* n : block->nodes()) {
for (Block* b : n->blocks()) {
guardFusionGroupsAndRemoveOutputs(b);
}
if (n->kind() == prim::TensorExprGroup) {
fusion_groups.push_back(n);
}
}
for (Node* fusion_group : fusion_groups) {
removeOutputsUsedOnlyInSize(fusion_group);
guardFusionGroup(fusion_group);
}
}
std::shared_ptr<Graph> graph_;
std::unique_ptr<AliasDb> aliasDb_ = nullptr;
// Minimal size of a fusion group
size_t min_group_size_;
// If true, shapes are ignored
bool disable_shape_checks_;
};
void FuseTensorExprs(
std::shared_ptr<Graph>& graph,
size_t min_group_size,
bool disable_shape_checks) {
GRAPH_DUMP("Before TExprFuser: ", graph);
// Temporary change for Block code generation.
if (tensorexpr::getTEGenerateBlockCode()) {
min_group_size = 1;
}
// Get rid of dead code so that we don't waste effort fusing it.
EliminateDeadCode(graph);
TensorExprFuser fuser(graph, min_group_size, disable_shape_checks);
fuser.run();
EliminateCommonSubexpression(graph);
EliminateDeadCode(graph);
GRAPH_DUMP("After TExprFuser: ", graph);
}
Operation createTensorExprOp(const Node* node) {
auto kernel =
std::make_shared<tensorexpr::TensorExprKernel>(node->g(attr::Subgraph));
return [kernel](Stack* stack) {
RECORD_FUNCTION("TensorExpr", std::vector<c10::IValue>());
if (!tensorexpr::fallbackAllowed()) {
kernel->run(*stack);
return 0;
}
try {
kernel->run(*stack);
} catch (const std::runtime_error& e) {
kernel->fallback(*stack);
}
return 0;
};
}
RegisterOperators TensorExprOps({
torch::jit::Operator(
prim::TensorExprGroup,
createTensorExprOp,
AliasAnalysisKind::INTERNAL_SPECIAL_CASE),
});
} // namespace jit
} // namespace torch
|