1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
|
#include <torch/csrc/jit/passes/utils/subgraph_utils.h>
#include <torch/csrc/jit/passes/canonicalize.h>
namespace torch {
namespace jit {
namespace SubgraphUtils {
namespace {
bool hasSubgraph(Node* n) {
return n->hasAttribute(attr::Subgraph);
}
std::vector<c10::optional<const Use>> gatherLastUses(
at::ArrayRef<Value*> values) {
return fmap(values, [&](Value* v) -> c10::optional<const Use> {
return firstOrLastUse(v, /*find_first*/ false);
});
}
// When merging a node into a subgraph, we wish to preserve all of the
// aliasing properties of the node's outputs. It is difficult to track
// the node or its contained nodes through all of the ir manipulation
// involved in merging; it is pretty easy to uniquely identify the value
// based on its uses. We can identify the value by its last use in the graph.
// Values which do not have uses or which do not have a last use
// outside of the subgraph to be merged into we do not need to track.
struct ValueMapper {
ValueMapper(Node* to_merge, AliasDb& db, size_t subgraph_num_outputs) {
last_uses_ = gatherLastUses(to_merge->outputs());
subgraph_num_outputs_ = subgraph_num_outputs;
WithInsertPoint guard(to_merge);
auto g = to_merge->owningGraph();
// temporary node to put the aliasing properties of the node before its
// merged and destroyed
placeholder_node_ = g->insertNode(g->create(prim::Uninitialized, 0));
for (size_t i = 0; i < to_merge->outputs().size(); ++i) {
Value* existing = to_merge->outputs().at(i);
Value* new_value = placeholder_node_->insertOutput(i)->copyMetadata(
to_merge->outputs().at(i));
db.replaceWithNewValue(existing, new_value);
}
}
bool usesEqual(const Use& a, const Use& b) {
return a.user == b.user && a.offset == b.offset;
}
void copyAliasing(Node* merged_node, AliasDb& db) {
auto num_outputs = merged_node->outputs().size();
auto new_outputs = merged_node->outputs().slice(
subgraph_num_outputs_, num_outputs - subgraph_num_outputs_);
for (Value* v : new_outputs) {
auto maybe_last_use = firstOrLastUse(v, /*find_first*/ false);
// if it doesnt have a use it shouldnt have been added as output
TORCH_INTERNAL_ASSERT(maybe_last_use);
const Use last_use = *maybe_last_use;
size_t i = 0;
while (i < last_uses_.size() && last_uses_.at(i).has_value() &&
!usesEqual(*last_uses_.at(i), last_use)) {
++i;
}
TORCH_INTERNAL_ASSERT(i != last_uses_.size());
db.replaceWithNewValue(placeholder_node_->outputs().at(i), v);
}
placeholder_node_->destroy();
}
std::vector<c10::optional<const Use>> last_uses_;
size_t subgraph_num_outputs_;
Node* placeholder_node_;
};
Node* executeSubgraphMergeAndUpdateAliasing(
Node* to_merge,
c10::optional<Node*> existing,
AliasDb& db,
const std::function<Node*(void)>& merge_fn) {
// When we merge a node into a subgraph, the new subgraph outputs
// have the same aliasing properties as the original node's outputs.
// Here we create a placeholder node, transfer the aliasing properties
// to the placeholder, execute the merge, and transfer the aliasing
// properties to the appropriate fusion group outputs
ValueMapper vm(to_merge, db, existing ? (*existing)->outputs().size() : 0);
Node* fusion_group = merge_fn();
vm.copyAliasing(fusion_group, db);
return fusion_group;
}
// Combine the nodes in two subgraph together. The nodes will end up in
// `mergeTo`, and `mergeFrom` is destroyed.
void mergeSubgraph(
Node* mergeTo,
Node* mergeFrom,
std::unordered_map<Value*, Value*>& vmap) {
Node* nodeBeforeMergeFrom = mergeFrom->prev();
Node* nodeAfterMergeFrom = mergeFrom->next();
// will be used later to map the node outputs -> new subgraph values
std::unordered_map<Value*, Value*> node_outputs_to_subgraph_values;
for (size_t i = 0; i < mergeFrom->outputs().size(); ++i) {
node_outputs_to_subgraph_values[mergeFrom->output(i)] =
getSubgraph(mergeFrom)->outputs().at(i);
}
// unmerge_map will contain mapping from values from the mergeTo's subgraph
// (we will call them "original" values) to the corresponding values that we
// created in the main graph (we will call them "unmerged" values) as we
// unmerged the mergeTo's subgraph.
std::unordered_map<Value*, Value*> unmerge_vmap;
unmergeSubgraph(mergeFrom, unmerge_vmap);
std::vector<Node*> nodes;
const auto end_it = nodeBeforeMergeFrom->reverseIterator();
auto it = nodeAfterMergeFrom->reverseIterator();
++it;
// Now we're merging the "unmerged" nodes into the mergeFrom subgraph. That
// will give us a new map: "unmerged" -> "merged".
std::unordered_map<Value*, Value*> merge_vmap;
// defer destroying nodes until after all nodes have been merged, otherwise we
// run into lifetime issues where the previous mapping of the merged nodes
// inputs/outputs can be overwritten with newly created values
std::vector<Node*> merged_nodes;
while (it != end_it) {
Node* node = *it;
++it;
merged_nodes.push_back(node);
mergeNodeIntoSubgraph(node, mergeTo, merge_vmap, /*destroyNode*/ false);
}
for (Node* n : merged_nodes) {
n->destroy();
}
// Vmap should contain "original" -> "merged" mapping, thus we basically need
// to perform the following transformation:
// vmap[x] = merge_vmap[unmerge_map[x]]
for (auto& kv : unmerge_vmap) {
if (merge_vmap.count(kv.second)) {
vmap[kv.first] = merge_vmap.at(kv.second);
} else {
vmap[kv.first] = kv.second;
}
}
// fill the value mapping with node output -> new subgraph value
for (const auto& mapping : node_outputs_to_subgraph_values) {
vmap[mapping.first] = vmap[mapping.second];
}
}
// Combine the nodes in two subgraph together. The nodes will end up in
// `mergeTo`, and `mergeFrom` is destroyed.
void mergeSubgraph(Node* mergeTo, Node* mergeFrom) {
std::unordered_map<Value*, Value*> vmap;
mergeSubgraph(mergeTo, mergeFrom, vmap);
}
} // namespace
std::shared_ptr<Graph> getSubgraph(Node* n) {
return n->g(attr::Subgraph);
}
void unmergeSubgraph(
Node* subgraphNode,
std::unordered_map<Value*, Value*>& vmap) {
// Inline the graph, replace uses of node outputs and destroy the node
auto outerGraph = subgraphNode->owningGraph();
WithInsertPoint guard(subgraphNode);
const auto subgraphOutputs = insertGraph(
*outerGraph, *getSubgraph(subgraphNode), subgraphNode->inputs(), vmap);
AT_ASSERT(subgraphOutputs.size() >= subgraphNode->outputs().size());
for (size_t i = 0; i < subgraphNode->outputs().size(); ++i) {
subgraphNode->outputs()[i]->replaceAllUsesWith(subgraphOutputs[i]);
}
subgraphNode->destroy();
}
void unmergeSubgraph(Node* subgraphNode) {
std::unordered_map<Value*, Value*> vmap;
unmergeSubgraph(subgraphNode, vmap);
}
void collectNestedUses(
std::unordered_set<Value*>& closed_over_values,
std::unordered_set<Value*>& new_values,
std::unordered_map<Value*, Value*>& inputsMap,
Node* input_node) {
for (auto input : input_node->inputs()) {
if (inputsMap.count(input) == 0 && new_values.count(input) == 0) {
closed_over_values.insert(input);
}
}
if (input_node->kind() == prim::If) {
for (Block* block : input_node->blocks()) {
for (Node* node : block->nodes()) {
collectNestedUses(closed_over_values, new_values, inputsMap, node);
}
for (Value* v : block->outputs()) {
if (inputsMap.count(v) == 0 && new_values.count(v) == 0) {
closed_over_values.insert(v);
}
}
}
} else if (input_node->kind() == prim::Loop) {
for (Value* v : input_node->inputs()) {
if (inputsMap.count(v) == 0 && new_values.count(v) == 0) {
closed_over_values.insert(v);
}
}
Block* block = input_node->blocks().at(0);
for (Value* v : block->inputs()) {
new_values.insert(v);
}
for (Node* node : block->nodes()) {
collectNestedUses(closed_over_values, new_values, inputsMap, node);
}
} else if (input_node->blocks().size() != 0) {
TORCH_INTERNAL_ASSERT(false, input_node, " kind not handled yet");
}
for (Value* output : input_node->outputs()) {
new_values.insert(output);
}
}
std::unordered_set<Value*> closedOverValues(
Node* toMerge,
std::unordered_map<Value*, Value*>& inputsMap) {
std::unordered_set<Value*> closed_over_values;
std::unordered_set<Value*> new_values;
collectNestedUses(closed_over_values, new_values, inputsMap, toMerge);
return closed_over_values;
}
void mergeNodeIntoSubgraph(
Node* toMerge,
Node* subgraphNode,
std::unordered_map<Value*, Value*>& vmap,
bool destroyNode) {
AT_ASSERT(hasSubgraph(subgraphNode) && toMerge != subgraphNode);
if (hasSubgraph(toMerge)) {
return mergeSubgraph(subgraphNode, toMerge, vmap);
}
auto subgraph = getSubgraph(subgraphNode);
// Map from values in the surrounding graph to inputs in the subgraph
std::unordered_map<Value*, Value*> inputsMap;
AT_ASSERT(subgraphNode->inputs().size() == subgraph->inputs().size());
size_t idx = 0;
for (auto input : subgraphNode->inputs()) {
inputsMap[input] = subgraph->inputs()[idx];
idx++;
}
// Add n's inputs to the group's input list if we don't already have them
WithInsertPoint guard(*subgraph->nodes().begin());
std::unordered_set<Value*> closedValues =
closedOverValues(toMerge, inputsMap);
// There are currently downstream usage that relies on a fixed ordering
// of graph inputs. TODO: remove
std::vector<Value*> orderedClosedValues;
std::unordered_set<Value*> orderedSeenValues;
for (Value* input : toMerge->inputs()) {
orderedClosedValues.push_back(input);
orderedSeenValues.insert(input);
}
for (Value* closedValue : closedValues) {
if (!orderedSeenValues.count(closedValue)) {
orderedClosedValues.push_back(closedValue);
orderedSeenValues.insert(closedValue);
}
}
for (auto input : orderedClosedValues) {
if (inputsMap.count(input) == 0) {
// Clone constants inside the subgraph instead of referencing them, to
// enable more optimizations
if (auto value = toIValue(input)) {
auto nv = subgraph->insertConstant(*value);
nv->setType(input->type()); // Need to retain type information on Nones
inputsMap[input] = nv;
} else {
// The common case: this is a regular input, so just register it with
// the group node and inner subgraph
subgraphNode->addInput(input);
auto inputToGraph = subgraph->addInput();
inputToGraph->setType(input->type());
inputsMap[input] = inputToGraph;
}
}
}
// Merge the node into the graph
auto mergedNode = subgraph->insertNode(
subgraph->createClone(toMerge, [&](Value* v) { return inputsMap[v]; }));
for (size_t idx = 0; idx < toMerge->outputs().size(); idx++) {
vmap[toMerge->output(idx)] = mergedNode->output(idx);
}
for (size_t idx = 0; idx < toMerge->inputs().size(); idx++) {
vmap[toMerge->input(idx)] = mergedNode->input(idx);
}
// If n's outputs were inputs to `group`, remove them since we just merged
// n in.
//
// i.e.,
// x = f(w); group(x, y, z) becomes group(w, y, z).
// x, y, z = f(w); group(x, y, z) becomes group(w).
auto inputs = subgraphNode->inputs();
for (size_t i = 0; i < toMerge->outputs().size(); ++i) {
auto it = std::find(inputs.begin(), inputs.end(), toMerge->outputs()[i]);
if (it != inputs.end()) {
size_t p = it - inputs.begin();
subgraphNode->removeInput(p);
subgraph->inputs()[p]->replaceAllUsesWith(mergedNode->outputs()[i]);
vmap[subgraph->inputs()[p]] = mergedNode->output(i);
subgraph->eraseInput(p);
}
}
// Add n's outputs to the group node and inner subgraph outputs.
for (size_t i = 0; i < toMerge->outputs().size(); i++) {
auto oldOutput = toMerge->outputs()[i];
// Only register the output in the group node if it's actually used
// outside the subgraph.
const auto hasUsesOutsideSubgraph = std::any_of(
oldOutput->uses().cbegin(),
oldOutput->uses().cend(),
[&](const Use& use) { return use.user->isAfter(subgraphNode); });
if (hasUsesOutsideSubgraph) {
auto newOutput = mergedNode->outputs()[i];
subgraph->registerOutput(newOutput);
auto groupOutput = subgraphNode->addOutput();
groupOutput->copyMetadata(oldOutput);
oldOutput->replaceAllUsesWith(groupOutput);
}
}
// Remove the original node now that the merge is complete
if (destroyNode) {
toMerge->destroy();
}
}
void mergeNodeIntoSubgraph(
Node* toMerge,
Node* subgraphNode,
bool destroyNode) {
std::unordered_map<Value*, Value*> vmap;
mergeNodeIntoSubgraph(toMerge, subgraphNode, vmap, destroyNode);
}
Node* createSingletonSubgraph(
Node* n,
Symbol subgraphKind,
std::unordered_map<Value*, Value*>& vmap) {
auto graph = n->owningGraph();
auto subgraph = graph->create(subgraphKind, 0);
subgraph->g_(attr::Subgraph, std::make_shared<Graph>(graph->current_scope()));
subgraph->insertBefore(n);
mergeNodeIntoSubgraph(n, subgraph, vmap);
return subgraph;
}
Node* createSingletonSubgraph(Node* n, Symbol subgraphKind) {
std::unordered_map<Value*, Value*> vmap;
return createSingletonSubgraph(n, subgraphKind, vmap);
}
void mergeNodeIntoSubgraphAndUpdateAliasing(
Node* to_merge,
Node* subgraphNode,
AliasDb& db) {
executeSubgraphMergeAndUpdateAliasing(to_merge, subgraphNode, db, [&]() {
mergeNodeIntoSubgraph(to_merge, subgraphNode);
return subgraphNode;
});
}
Node* createSingletonSubgraphAndUpdateAliasing(
Node* to_merge,
Symbol subgraphKind,
AliasDb& db) {
return executeSubgraphMergeAndUpdateAliasing(
to_merge, c10::nullopt, db, [&]() {
return createSingletonSubgraph(to_merge, subgraphKind);
});
}
} // namespace SubgraphUtils
} // namespace jit
} // namespace torch
|