1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
|
#include <ATen/core/jit_type.h>
#ifdef USE_VULKAN
#include <ATen/native/vulkan/VulkanOpContext.h>
#endif
#include <torch/csrc/jit/ir/ir.h>
#include <torch/csrc/jit/ir/subgraph_matcher.h>
#include <torch/csrc/jit/passes/constant_pooling.h>
#include <torch/csrc/jit/passes/fold_conv_bn.h>
#include <torch/csrc/jit/passes/freeze_module.h>
#include <torch/csrc/jit/passes/fuse_linear.h>
#include <torch/csrc/jit/passes/graph_rewrite_helper.h>
#include <torch/csrc/jit/passes/prepack_folding.h>
#include <torch/csrc/jit/passes/remove_dropout.h>
#include <torch/csrc/jit/passes/subgraph_rewrite.h>
#include <torch/csrc/jit/passes/vulkan_rewrite.h>
namespace torch {
namespace jit {
#ifdef USE_VULKAN
namespace {
void insertPrePackedConv2dOp(std::shared_ptr<Graph>& graph) {
graph_rewrite_helper::replaceConvolutionWithAtenConv(graph);
std::string conv_2d_pattern = R"(
graph(%input, %weight, %bias, %stride:int[], %padding:int[], %dilation:int[], %groups:int):
%r = aten::conv2d(%input, %weight, %bias, %stride, %padding, %dilation, %groups)
return (%r) )";
std::string prepacked_ops_conv2d_pattern = R"(
graph(%input, %weight, %bias, %stride:int[], %padding:int[], %dilation:int[], %groups:int):
%output_min_max : None = prim::Constant()
%packed_weight_bias = vulkan_prepack::conv2d_clamp_prepack(
%weight, %bias, %stride, %padding, %dilation, %groups,
%output_min_max, %output_min_max)
%r = vulkan_prepack::conv2d_clamp_run(%input, %packed_weight_bias)
return (%r) )";
SubgraphRewriter rewriter;
rewriter.RegisterRewritePattern(
conv_2d_pattern, prepacked_ops_conv2d_pattern);
rewriter.runOnGraph(graph);
}
void fuseHardtanhWithPackedOps(std::shared_ptr<Graph>& graph) {
SubgraphRewriter rewriter;
std::string conv2d_prepack_run_hardtanh_fused = R"(
graph(%input, %weight, %bias, %stride:int[], %padding:int[],
%dilation:int[], %groups:int, %output_min, %output_max, %dummy_min_max):
%packed_weight_bias : __torch__.torch.classes.vulkan.Conv2dOpContext = vulkan_prepack::conv2d_clamp_prepack(
%weight, %bias, %stride, %padding, %dilation, %groups,
%output_min, %output_max)
%r = vulkan_prepack::conv2d_clamp_run(%input, %packed_weight_bias)
return (%r) )";
std::string conv2d_prepack_run_hardtanh = R"(
graph(%input, %weight, %bias, %stride:int[], %padding:int[],
%dilation:int[], %groups:int, %output_min, %output_max, %dummy_min_max):
%packed_weight_bias = vulkan_prepack::conv2d_clamp_prepack(
%weight, %bias, %stride, %padding, %dilation, %groups,
%dummy_min_max, %dummy_min_max)
%conv2d_res = vulkan_prepack::conv2d_clamp_run(%input, %packed_weight_bias)
%r = aten::hardtanh(%conv2d_res, %output_min, %output_max)
return (%r) )";
rewriter.RegisterRewritePattern(
conv2d_prepack_run_hardtanh, conv2d_prepack_run_hardtanh_fused);
std::string conv2d_prepack_run_hardtanh_inplace = R"(
graph(%input, %weight, %bias, %stride:int[], %padding:int[],
%dilation:int[], %groups:int, %output_min, %output_max, %dummy_min_max):
%packed_weight_bias = vulkan_prepack::conv2d_clamp_prepack(
%weight, %bias, %stride, %padding, %dilation, %groups,
%dummy_min_max, %dummy_min_max)
%conv2d_res = vulkan_prepack::conv2d_clamp_run(%input, %packed_weight_bias)
%r = aten::hardtanh_(%conv2d_res, %output_min, %output_max)
return (%r) )";
rewriter.RegisterRewritePattern(
conv2d_prepack_run_hardtanh_inplace, conv2d_prepack_run_hardtanh_fused);
rewriter.runOnGraph(graph, torch::jit::graph_rewrite_helper::isClampFusable);
}
void fuseReluWithPackedOps(std::shared_ptr<Graph>& graph) {
SubgraphRewriter rewriter;
std::string conv2d_prepack_run_relu_fused = R"(
graph(%input, %weight, %bias, %stride:int[], %padding:int[],
%dilation:int[], %groups:int, %dummy_min_max):
%output_min: float = prim::Constant[value=0.0]()
%output_max: None = prim::Constant()
%packed_weight_bias : __torch__.torch.classes.vulkan.Conv2dOpContext = vulkan_prepack::conv2d_clamp_prepack(
%weight, %bias, %stride, %padding, %dilation, %groups,
%output_min, %output_max)
%r = vulkan_prepack::conv2d_clamp_run(%input, %packed_weight_bias)
return (%r) )";
std::string conv2d_prepack_run_relu = R"(
graph(%input, %weight, %bias, %stride:int[], %padding:int[],
%dilation:int[], %groups:int, %dummy_min_max):
%packed_weight_bias = vulkan_prepack::conv2d_clamp_prepack(
%weight, %bias, %stride, %padding, %dilation, %groups,
%dummy_min_max, %dummy_min_max)
%conv2d_res = vulkan_prepack::conv2d_clamp_run(%input, %packed_weight_bias)
%r = aten::relu(%conv2d_res)
return (%r) )";
rewriter.RegisterRewritePattern(
conv2d_prepack_run_relu, conv2d_prepack_run_relu_fused);
std::string conv2d_prepack_run_relu_inplace = R"(
graph(%input, %weight, %bias, %stride:int[], %padding:int[],
%dilation:int[], %groups:int, %dummy_min_max):
%packed_weight_bias = vulkan_prepack::conv2d_clamp_prepack(
%weight, %bias, %stride, %padding, %dilation, %groups,
%dummy_min_max, %dummy_min_max)
%conv2d_res = vulkan_prepack::conv2d_clamp_run(%input, %packed_weight_bias)
%r = aten::relu_(%conv2d_res)
return (%r) )";
rewriter.RegisterRewritePattern(
conv2d_prepack_run_relu_inplace, conv2d_prepack_run_relu_fused);
rewriter.runOnGraph(graph, torch::jit::graph_rewrite_helper::isClampFusable);
}
} // namespace
void vulkanInsertPrePackedOps(std::shared_ptr<Graph>& graph) {
insertPrePackedConv2dOp(graph);
}
void vulkanInsertPrePackedOps(script::Module& module) {
for (auto& method : module.get_methods()) {
auto graph = method.graph();
vulkanInsertPrePackedOps(graph);
}
for (script::Module m : module.children()) {
vulkanInsertPrePackedOps(m);
}
}
void vulkanFusePrePackedConvWithClamp(script::Module& module) {
auto graph = module.get_method("forward").graph();
fuseReluWithPackedOps(graph);
fuseHardtanhWithPackedOps(graph);
}
void vulkanFoldPrePackingOps(script::Module& m) {
PrePackingOpsFilterFn filter_fn = [](const Node* n) -> bool {
return (
n->kind() ==
Symbol::fromQualString("vulkan_prepack::conv2d_clamp_prepack"));
};
PrePackingOpsFolder(m, filter_fn, "prepack_folding");
}
script::Module vulkanOptimizeForMobile(
const script::Module& m,
const std::vector<std::string>& preserved_methods) {
auto cloned_module = m.clone();
cloned_module.eval();
cloned_module = FoldConvBatchNorm(cloned_module);
vulkanInsertPrePackedOps(cloned_module);
cloned_module = freeze_module(cloned_module, preserved_methods);
vulkanFusePrePackedConvWithClamp(cloned_module);
vulkanFoldPrePackingOps(cloned_module);
removeDropout(cloned_module);
return cloned_module;
}
#else
void vulkanInsertPrePackedOps(std::shared_ptr<Graph>& graph) {
TORCH_INTERNAL_ASSERT(
"Vulkan is not enabled. Please build with USE_VULKAN=1");
}
void vulkanInsertPrePackedOps(script::Module& module) {
TORCH_INTERNAL_ASSERT(
"Vulkan is not enabled. Please build with USE_VULKAN=1");
}
void vulkanFusePrePackedConvWithClamp(script::Module& module) {
TORCH_INTERNAL_ASSERT(
"Vulkan is not enabled. Please build with USE_VULKAN=1");
}
void vulkanFoldPrePackingOps(script::Module& m) {
TORCH_INTERNAL_ASSERT(
"Vulkan is not enabled. Please build with USE_VULKAN=1");
}
script::Module vulkanOptimizeForMobile(
const script::Module& module,
const std::vector<std::string>& preserved_methods) {
TORCH_INTERNAL_ASSERT(
"Mobile optimizaiton only available with Vulkan at the moment. "
"Vulkan is not enabled. Please build with USE_VULKAN=1");
return module;
}
#endif
} // namespace jit
} // namespace torch
|