1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238
|
#include <torch/csrc/utils/pybind.h>
#include <torch/csrc/utils/python_arg_parser.h>
#include <torch/csrc/jit/api/module.h>
#include <torch/csrc/jit/backends/backend_init.h>
#include <torch/csrc/jit/codegen/fuser/interface.h>
#include <torch/csrc/jit/codegen/fuser/kernel_cache.h>
#include <torch/csrc/jit/frontend/ir_emitter.h>
#include <torch/csrc/jit/frontend/tracer.h>
#include <torch/csrc/jit/ir/irparser.h>
#include <torch/csrc/jit/passes/canonicalize.h>
#include <torch/csrc/jit/passes/canonicalize_graph_fuser_ops.h>
#include <torch/csrc/jit/passes/common_subexpression_elimination.h>
#include <torch/csrc/jit/passes/constant_pooling.h>
#include <torch/csrc/jit/passes/constant_propagation.h>
#include <torch/csrc/jit/passes/create_autodiff_subgraphs.h>
#include <torch/csrc/jit/passes/create_functional_graphs.h>
#include <torch/csrc/jit/passes/cuda_graph_fuser.h>
#include <torch/csrc/jit/passes/dead_code_elimination.h>
#include <torch/csrc/jit/passes/decompose_ops.h>
#include <torch/csrc/jit/passes/erase_number_types.h>
#include <torch/csrc/jit/passes/fold_conv_bn.h>
#include <torch/csrc/jit/passes/freeze_module.h>
#include <torch/csrc/jit/passes/fuse_linear.h>
#include <torch/csrc/jit/passes/fuse_relu.h>
#include <torch/csrc/jit/passes/graph_fuser.h>
#include <torch/csrc/jit/passes/inline_fork_wait.h>
#include <torch/csrc/jit/passes/inliner.h>
#include <torch/csrc/jit/passes/loop_unrolling.h>
#include <torch/csrc/jit/passes/lower_graph.h>
#include <torch/csrc/jit/passes/lower_tuples.h>
#include <torch/csrc/jit/passes/normalize_ops.h>
#include <torch/csrc/jit/passes/onnx.h>
#include <torch/csrc/jit/passes/onnx/cast_all_constant_to_floating.h>
#include <torch/csrc/jit/passes/onnx/constant_fold.h>
#include <torch/csrc/jit/passes/onnx/eliminate_unused_items.h>
#include <torch/csrc/jit/passes/onnx/eval_peephole.h>
#include <torch/csrc/jit/passes/onnx/fixup_onnx_controlflow.h>
#include <torch/csrc/jit/passes/onnx/function_substitution.h>
#include <torch/csrc/jit/passes/onnx/peephole.h>
#include <torch/csrc/jit/passes/onnx/prepare_division_for_onnx.h>
#include <torch/csrc/jit/passes/onnx/preprocess_for_onnx.h>
#include <torch/csrc/jit/passes/onnx/remove_inplace_ops_for_onnx.h>
#include <torch/csrc/jit/passes/onnx/scalar_type_analysis.h>
#include <torch/csrc/jit/passes/onnx/shape_type_inference.h>
#include <torch/csrc/jit/passes/onnx/unpack_quantized_weights.h>
#include <torch/csrc/jit/passes/peephole.h>
#include <torch/csrc/jit/passes/quantization/dedup_module_uses.h>
#include <torch/csrc/jit/passes/quantization/finalize.h>
#include <torch/csrc/jit/passes/quantization/fusion_passes.h>
#include <torch/csrc/jit/passes/quantization/insert_observers.h>
#include <torch/csrc/jit/passes/quantization/insert_quant_dequant.h>
#include <torch/csrc/jit/passes/quantization/quantization_type.h>
#include <torch/csrc/jit/passes/reconstruct_scopes.h>
#include <torch/csrc/jit/passes/remove_dropout.h>
#include <torch/csrc/jit/passes/remove_expands.h>
#include <torch/csrc/jit/passes/remove_inplace_ops.h>
#include <torch/csrc/jit/passes/remove_mutation.h>
#include <torch/csrc/jit/passes/shape_analysis.h>
#include <torch/csrc/jit/passes/specialize_autogradzero.h>
#include <torch/csrc/jit/passes/subgraph_rewrite.h>
#include <torch/csrc/jit/passes/tensorexpr_fuser.h>
#include <torch/csrc/jit/passes/utils/check_alias_annotation.h>
#include <torch/csrc/jit/passes/vulkan_rewrite.h>
#include <torch/csrc/jit/passes/xnnpack_rewrite.h>
#include <torch/csrc/jit/python/pybind_utils.h>
#include <torch/csrc/jit/python/python_arg_flatten.h>
#include <torch/csrc/jit/python/python_custom_class.h>
#include <torch/csrc/jit/python/python_ir.h>
#include <torch/csrc/jit/python/python_tracer.h>
#include <torch/csrc/jit/python/python_tree_views.h>
#include <torch/csrc/jit/python/script_init.h>
#include <torch/csrc/jit/runtime/argument_spec.h>
#include <torch/csrc/jit/runtime/autodiff.h>
#include <torch/csrc/jit/runtime/graph_executor.h>
#include <torch/csrc/jit/runtime/jit_exception.h>
#include <torch/csrc/jit/runtime/operator.h>
#include <torch/csrc/jit/runtime/print_handler.h>
#include <torch/csrc/jit/runtime/static/init.h>
#include <torch/csrc/jit/serialization/export.h>
#include <torch/csrc/jit/serialization/import.h>
#include <torch/csrc/jit/tensorexpr/execution_counter.h>
#include <torch/csrc/jit/tensorexpr/kernel.h>
#include <c10/macros/Export.h>
#include <caffe2/serialize/inline_container.h>
#include <ATen/core/function_schema.h>
#include <pybind11/functional.h>
#include <pybind11/iostream.h>
#include <memory>
#include <sstream>
#include <stdexcept>
#include <string>
#include <tuple>
#include <utility>
namespace torch {
namespace jit {
using ::c10::Argument;
using ::c10::FunctionSchema;
using caffe2::serialize::PyTorchStreamReader;
using caffe2::serialize::PyTorchStreamWriter;
namespace {
using autograd::variable_list;
bool loadPythonClasses() {
// Leaving this code here, because it will likely be useful at some point
// PyObject *jit_module = PyImport_ImportModule("torch.jit");
// THPUtils_assert(jit_module, "class loader couldn't access "
//"torch.jit module");
// PyObject *jit_dict = PyModule_GetDict(jit_module);
return true;
}
} // anonymous namespace
#if !defined(__HIP_PLATFORM_HCC__)
TORCH_API void runJITCPPTests();
#endif
void initJITBindings(PyObject* module) {
auto m = py::handle(module).cast<py::module>();
py::register_exception<JITException>(m, "JITException");
py::class_<python::IODescriptor> iodescriptor(
m, "IODescriptor"); // NOLINT(bugprone-unused-raii)
m.def("_jit_init", loadPythonClasses)
.def(
"_jit_debug_fuser_num_cached_kernel_specs",
torch::jit::fuser::debugNumCachedKernelSpecs)
.def("_jit_pass_onnx_remove_print", RemovePrintOps)
.def("_jit_pass_onnx_preprocess_caffe2", PreprocessCaffe2Ops)
.def("_jit_pass_onnx", ToONNX)
.def(
"_jit_pass_onnx_assign_output_shape",
[](std::shared_ptr<Graph>& graph,
const std::vector<at::Tensor>& tensors,
bool onnx_shape_inference = false) {
ONNXAssignOutputShape(graph, tensors, onnx_shape_inference);
})
.def("_jit_pass_lower_all_tuples", LowerAllTuples)
.def("_jit_pass_onnx_function_substitution", ONNXFunctionCallSubstitution)
.def(
"_jit_pass_onnx_peephole",
[](std::shared_ptr<Graph>& graph,
int opset_version,
bool fixed_batch_size) {
return PeepholeOptimizeONNX(graph, opset_version, fixed_batch_size);
})
.def("_jit_pass_onnx_preprocess", PreprocessForONNX)
.def(
"_jit_pass_onnx_eval_peephole",
[](std::shared_ptr<Graph>& graph,
std::map<std::string, IValue>& paramsDict) {
EvalPeepholeONNX(graph->block(), paramsDict);
return paramsDict;
},
pybind11::return_value_policy::move)
.def(
"_jit_pass_onnx_cast_all_constant_to_floating",
CastAllConstantToFloating)
.def(
"_jit_pass_onnx_constant_fold",
[](std::shared_ptr<Graph>& graph,
std::map<std::string, IValue>& paramsDict,
int opset_version) {
ConstantFoldONNX(
graph->block(),
paramsDict,
opset_version); // overload resolution
return paramsDict;
},
pybind11::return_value_policy::move)
.def(
"_jit_pass_onnx_eliminate_unused_items",
[](std::shared_ptr<Graph>& graph,
std::map<std::string, IValue>& paramsDict) {
EliminateUnusedItemsONNX(
graph->block(),
paramsDict); // overload resolution
return paramsDict;
},
pybind11::return_value_policy::move)
.def("_jit_pass_onnx_scalar_type_analysis", ScalarTypeAnalysisForONNX)
.def(
"_jit_pass_onnx_remove_inplace_ops_for_onnx", RemoveInplaceOpsForONNX)
.def(
"_jit_pass_onnx_prepare_inplace_ops_for_onnx",
PrepareInplaceOpsForONNX)
.def(
"_jit_pass_onnx_node_shape_type_inference",
[](Node* n, int opset_version) {
ONNXShapeTypeInference(n, opset_version);
})
.def(
"_jit_pass_onnx_graph_shape_type_inference",
[](std::shared_ptr<Graph>& graph, int opset_version) {
ONNXShapeTypeInference(graph, opset_version);
})
.def("_jit_pass_onnx_set_dynamic_input_shape", ONNXSetDynamicInputShape)
.def("_jit_pass_fuse", FuseGraph)
.def(
"_jit_pass_dce",
[](std::shared_ptr<Graph>& g) {
return EliminateDeadCode(g->block()); // overload resolution
})
.def(
"_jit_pass_dce_allow_deleting_nodes_with_side_effects",
[](std::shared_ptr<Graph>& g) {
return EliminateDeadCode(
g->block(),
true,
DCESideEffectPolicy::
ALLOW_DELETING_NODES_WITH_SIDE_EFFECTS); // overload
// resolution
})
.def(
"_jit_pass_cse",
[](std::shared_ptr<Graph>& g) {
return EliminateCommonSubexpression(g); // overload resolution
})
.def(
"_jit_pass_fuse_quantized_add_relu",
[](std::shared_ptr<Graph>& g) {
return FuseQuantizedAddRelu(g); // overload resolution
})
.def(
"_jit_pass_insert_observers",
[](Module& module,
const std::string& method_name,
const py::dict& qconfig_dict,
bool inplace,
int quant_type_int) {
auto dict = py::cast<std::unordered_map<
std::string,
c10::optional<std::tuple<Module, Module>>>>(qconfig_dict);
auto quant_type = static_cast<QuantType>(quant_type_int);
return InsertObservers(
module, method_name, dict, inplace, quant_type);
},
py::arg("module"),
py::arg("method_name"),
py::arg("qconfig_dict"),
py::arg("inplace"),
py::arg("quant_type_int") = 1)
.def(
"_jit_pass_insert_quant_dequant",
[](Module& module,
const std::string& method_name,
bool inplace,
bool debug,
int quant_type_int) {
auto quant_type = static_cast<QuantType>(quant_type_int);
return InsertQuantDeQuant(
module, method_name, inplace, debug, quant_type);
},
py::arg("module"),
py::arg("method_name"),
py::arg("inplace"),
py::arg("debug"),
py::arg("quant_type_int") = 1)
.def(
"_jit_pass_insert_prepack_unpack",
[](std::shared_ptr<Graph>& g) { return InsertPrepackUnpack(g); })
.def(
"_jit_pass_insert_prepack_unpack",
[](Module& module) { return InsertPrepackUnpack(module); })
.def(
"_jit_pass_quant_fusion",
[](std::shared_ptr<Graph>& g) { return QuantFusion(g); })
.def("_jit_pass_fold_convbn", &FoldConvBatchNorm)
.def(
"_freeze_module",
[](Module& module,
std::vector<std::string>& preservedAttrs,
bool freezeInterfaces) {
return freeze_module(module, preservedAttrs, freezeInterfaces);
},
py::arg("module"),
py::arg("preservedAttrs") = std::vector<std::string>(),
py::arg("freezeInterfaces") = true)
.def("_jit_pass_fuse_linear", &FuseLinear)
.def(
"_jit_pass_fuse_add_relu",
[](std::shared_ptr<Graph>& graph) { FuseAddRelu(graph); })
.def("_jit_pass_dedup_module_uses", &DedupModuleUses)
.def("_jit_pass_replicate_dequantize", &ReplicateDeQuant)
.def(
"_jit_pass_swap_functional_linear",
[](std::shared_ptr<Graph>& graph) { SwapFunctionalLinear(graph); })
.def(
"_jit_pass_swap_functional_linear",
[](Module& module) { SwapFunctionalLinear(module); })
.def(
"_jit_pass_quant_finalize",
[](Module& module,
int quant_type_int,
const std::vector<std::string>& preserved_attrs) {
auto quant_type = static_cast<QuantType>(quant_type_int);
return Finalize(module, quant_type, preserved_attrs);
},
py::arg("module"),
py::arg("quant_type_int") = 1,
py::arg("preserved_attrs") = std::vector<std::string>())
.def(
"_jit_pass_pattern_based_rewrite",
[](const Module& m) { return PatternBasedRewrite(m); })
.def(
"_jit_pass_custom_pattern_based_rewrite",
[](const std::string& pattern,
const std::string& fused_node_name,
const Module& m) {
SubgraphRewriter subgraph_rewriter;
subgraph_rewriter.RegisterRewritePattern(pattern, fused_node_name);
subgraph_rewriter.runOnModule(m);
})
.def(
"_jit_pass_custom_pattern_based_rewrite_graph",
[](const std::string& pattern,
const std::string& fused_node_name,
std::shared_ptr<Graph> g) {
SubgraphRewriter subgraph_rewriter;
subgraph_rewriter.RegisterRewritePattern(pattern, fused_node_name);
subgraph_rewriter.runOnGraph(g);
})
.def(
"_jit_pass_reconstruct_scopes",
[](script::Module& module,
std::shared_ptr<Graph>& g,
const std::string& prefix) {
ReconstructScopes(module, *g, prefix);
},
py::arg("module"),
py::arg("graph"),
py::arg("prefix") = "top")
.def(
"_jit_pass_remove_inplace_ops",
[](std::shared_ptr<Graph> g) { return RemoveInplaceOps(g); })
.def("_jit_pass_constant_pooling", ConstantPooling)
.def(
"_jit_pass_create_functional_graphs",
[](std::shared_ptr<Graph>& g) { return CreateFunctionalGraphs(g); })
.def(
"_jit_pass_remove_mutation",
[](std::shared_ptr<Graph>& g) {
RemoveListMutation(g);
return RemoveTensorMutation(g);
})
.def(
"_jit_pass_inline_functional_graphs",
[](std::shared_ptr<Graph>& g) { return InlineFunctionalGraphs(g); })
.def(
"_jit_pass_peephole",
[](const std::shared_ptr<Graph>& g, bool addmm_fusion_enabled) {
return PeepholeOptimize(g, addmm_fusion_enabled);
},
py::arg("graph"),
py::arg("addmm_fusion_enabled") = false)
.def(
"_jit_pass_fuse_addmm",
[](std::shared_ptr<Graph>& g) { return FuseAddMM(g); })
.def(
"_jit_pass_canonicalize",
[](const std::shared_ptr<Graph>& g) { return Canonicalize(g); })
.def("_jit_pass_lint", LintGraph)
.def(
"_jit_pass_complete_shape_analysis",
[](std::shared_ptr<Graph> graph, py::tuple inputs, bool with_grad) {
ArgumentSpecCreator arg_spec_creator(*graph);
Stack stack;
stack.reserve(inputs.size()); // captures?
for (auto& obj : inputs) {
stack.push_back(toTypeInferredIValue(obj));
}
ArgumentSpec spec = arg_spec_creator.create(with_grad, stack);
arg_spec_creator.specializeTypes(*graph, spec);
// We only get partial specialization from the arg_spec_creator, but
// we want full shape specialization. The alternative would be to
// have a "complete type inference" function in ArguemntSpecCreator.
auto g_inputs = graph->inputs();
for (size_t i = 0; i < inputs.size(); ++i) {
if (stack[i].isTensor()) {
g_inputs[i]->setType(stack[i].type());
}
}
PropagateInputShapes(graph);
})
.def(
"_jit_interpret_graph",
[](std::shared_ptr<Graph>& graph, py::tuple inputs) {
Stack stack;
stack.reserve(inputs.size()); // captures?
for (auto& obj : inputs) {
stack.push_back(toTypeInferredIValue(obj));
}
auto g_inputs = graph->inputs();
for (size_t i = 0; i < inputs.size(); ++i) {
if (stack[i].isTensor()) {
g_inputs[i]->setType(stack[i].type());
}
}
Code code(graph, "<on-demand-func>");
InterpreterState(code).run(stack);
return createPyObjectForStack(std::move(stack));
},
py::doc(
"Interpret a JIT graph with given inputs without running any optimization passes on it"))
.def("_jit_pass_remove_expands", RemoveExpands)
.def("_jit_pass_erase_number_types", EraseNumberTypes)
.def("_jit_pass_inline_fork_wait", InlineForkWait)
.def("_jit_pass_inline", Inline)
.def("_jit_pass_prepare_division_for_onnx", PrepareDivisionForONNX)
.def(
"_jit_pass_lower_graph",
[](std::shared_ptr<Graph>& graph, const Module& self) {
return LowerGraph(*graph, self._ivalue());
})
.def("_jit_pass_loop_unrolling", UnrollLoops)
.def(
"_jit_pass_constant_propagation_immutable_types",
[](std::shared_ptr<Graph>& g) {
return ConstantPropagationImmutableTypes(g);
})
.def(
"_jit_pass_constant_propagation",
[](std::shared_ptr<Graph>& g) { return ConstantPropagation(g); })
.def("_jit_pass_erase_shape_information", EraseShapeInformation)
.def(
"_jit_pass_create_autodiff_subgraphs",
[](std::shared_ptr<Graph> graph) { CreateAutodiffSubgraphs(graph); })
#if defined(BUILDING_TESTS) && !defined(__HIP_PLATFORM_HCC__)
.def(
"_jit_run_cpp_tests",
[]() {
// We have to release the GIL inside this method, because if we
// happen to initialize the autograd engine in these tests, the
// newly spawned worker threads will try to initialize their
// PyThreadState*, and they need the GIL for this.
pybind11::gil_scoped_release _no_gil;
return runJITCPPTests();
})
.def("_jit_has_cpp_tests", []() { return true; })
.def("_has_tensorexpr_cpp_tests", []() { return true; })
#else
.def("_jit_run_cpp_tests", []() { throw std::exception(); })
.def("_jit_has_cpp_tests", []() { return false; })
.def("_run_tensorexpr_cpp_tests", []() { throw std::exception(); })
.def("_has_tensorexpr_cpp_tests", []() { return false; })
#endif
.def(
"_jit_flatten",
[](py::handle& obj) {
auto res = python::flatten(obj);
return std::make_pair(res.vars, res.desc);
})
.def(
"_jit_unflatten",
[](autograd::variable_list vars, python::IODescriptor& desc) {
return py::reinterpret_steal<py::object>(
python::unflatten(vars, desc));
})
.def("_jit_pass_onnx_block", BlockToONNX)
.def("_jit_pass_fixup_onnx_controlflow_node", FixupONNXControlflowNode)
.def("_jit_pass_fixup_onnx_loop_node_inputs", FixupONNXLoopNodeInputs)
.def("_jit_pass_canonicalize_graph_fuser_ops", CanonicalizeOps)
.def("_jit_pass_decompose_ops", DecomposeOps)
.def("_jit_pass_specialize_autogradzero", specializeAutogradZero)
.def("_jit_override_can_fuse_on_cpu", &overrideCanFuseOnCPU)
.def("_jit_override_can_fuse_on_gpu", &overrideCanFuseOnGPU)
.def("_jit_can_fuse_on_cpu", &canFuseOnCPU)
.def("_jit_can_fuse_on_gpu", &canFuseOnGPU)
.def(
"_jit_differentiate",
[](Graph& g) {
// the python binding slightly differs in semantics
// it makes a copy of the input Graph, and works on that
// jit::differentiate mutates the input Graph
auto g_clone = g.copy();
return differentiate(g_clone);
})
.def(
"_jit_check_alias_annotation",
[](std::shared_ptr<Graph> g,
py::tuple args,
const std::string& unqualified_op_name) {
auto stack = toTraceableStack(args);
checkAliasAnnotation(g, std::move(stack), unqualified_op_name);
})
.def("_jit_set_nvfuser_enabled", &RegisterCudaFuseGraph::registerPass)
.def("_jit_nvfuser_enabled", &RegisterCudaFuseGraph::isRegistered)
.def(
"_jit_set_profiling_mode",
[](bool profiling_flag) {
bool oldState = getProfilingMode();
getProfilingMode() = profiling_flag;
return oldState;
})
.def(
"_jit_set_profiling_executor",
[](bool profiling_flag) {
bool oldState = getExecutorMode();
getExecutorMode() = profiling_flag;
return oldState;
})
.def(
"_jit_set_num_profiled_runs",
[](size_t num) {
size_t old_num = getNumProfiledRuns();
getNumProfiledRuns() = num;
return old_num;
})
.def(
"_jit_set_bailout_depth",
[](size_t depth) {
size_t old_depth = getBailoutDepth();
getBailoutDepth() = depth;
return old_depth;
})
.def(
"_jit_set_inline_everything_mode",
[](bool enabled) { getInlineEverythingMode() = enabled; })
.def(
"_jit_get_inline_everything_mode",
[]() { return getInlineEverythingMode(); })
.def(
"_jit_try_infer_type",
[](py::object obj) -> TypePtr {
auto match = tryToInferType(obj);
if (match.success()) {
return match.type();
}
return nullptr;
})
.def(
"_jit_get_trigger_value",
[](const std::string& trigger_name) -> int {
using namespace torch::jit::tensorexpr;
ExecutionTrigger* trigger =
ExecutionTriggerList::GetInstance().FindByName(trigger_name);
return trigger->value();
})
.def(
"_jit_get_te_cuda_pointwise_loop_levels",
[]() -> int {
using namespace torch::jit::tensorexpr;
return getTECudaPointwiseLoopLevels();
})
.def(
"_jit_set_te_cuda_pointwise_loop_levels",
[](int level) {
using namespace torch::jit::tensorexpr;
return getTECudaPointwiseLoopLevels() = level;
})
.def(
"_jit_get_te_cuda_pointwise_block_count",
[]() -> int {
using namespace torch::jit::tensorexpr;
return getTECudaPointwiseBlockCount();
})
.def(
"_jit_set_te_cuda_pointwise_block_count",
[](int block_count) {
using namespace torch::jit::tensorexpr;
return getTECudaPointwiseBlockCount() = block_count;
})
.def(
"_jit_get_te_cuda_pointwise_block_size",
[]() -> int {
using namespace torch::jit::tensorexpr;
return getTECudaPointwiseBlockSize();
})
.def(
"_jit_set_te_cuda_pointwise_block_size",
[](int block_size) {
using namespace torch::jit::tensorexpr;
return getTECudaPointwiseBlockSize() = block_size;
})
.def("_jit_set_texpr_fuser_enabled", &setTensorExprFuserEnabled)
.def("_jit_texpr_fuser_enabled", &tensorExprFuserEnabled)
.def("_jit_texpr_fallback_allowed", &tensorexpr::fallbackAllowed)
.def("_jit_texpr_set_fallback_allowed", &tensorexpr::setFallbackAllowed)
.def("_jit_set_texpr_reductions_enabled", &setTexprReductionsEnabled)
.def("_jit_texpr_reductions_enabled", &texprReductionsEnabled)
.def(
"_jit_set_te_generate_block_code",
[](bool gen_block_code) {
using namespace torch::jit::tensorexpr;
return getTEGenerateBlockCode() = gen_block_code;
})
.def(
"_jit_get_te_generate_block_code",
[]() -> bool {
using namespace torch::jit::tensorexpr;
return getTEGenerateBlockCode();
})
.def(
"_jit_pass_fuse_tensorexprs",
[](std::shared_ptr<Graph>& g) { return FuseTensorExprs(g); })
.def(
"_jit_fuser_get_fused_kernel_code",
[](Graph& g, std::vector<at::Tensor> inps) {
return debugGetFusedKernelCode(g, inps);
})
.def(
"_jit_pass_remove_dropout",
[](script::Module& module) { return removeDropout(module); })
.def(
"_jit_pass_transform_conv1d_to_conv2d",
[](std::shared_ptr<Graph>& graph) {
return transformConv1dToConv2d(graph);
})
.def(
"_jit_pass_transform_conv1d_to_conv2d",
[](script::Module& module) {
return transformConv1dToConv2d(module);
})
.def(
"_jit_pass_insert_prepacked_ops",
[](std::shared_ptr<Graph>& graph) {
return insertPrePackedOps(graph);
})
.def(
"_jit_pass_insert_prepacked_ops",
[](script::Module& module) { return insertPrePackedOps(module); })
.def(
"_jit_pass_fuse_clamp_w_prepacked_linear_conv",
[](script::Module& module) {
return fusePrePackedLinearConvWithClamp(module);
})
.def(
"_jit_pass_fold_prepacking_ops",
[](script::Module& module) { return FoldPrePackingOps(module); })
.def(
"_jit_pass_optimize_for_mobile",
[](script::Module& module,
std::set<MobileOptimizerType>& optimization_blocklist,
std::vector<std::string>& preserved_methods) {
return optimizeForMobile(
module, optimization_blocklist, preserved_methods);
})
.def(
"_jit_pass_vulkan_insert_prepacked_ops",
[](std::shared_ptr<Graph>& graph) {
return vulkanInsertPrePackedOps(graph);
})
.def(
"_jit_pass_vulkan_insert_prepacked_ops",
[](script::Module& module) {
return vulkanInsertPrePackedOps(module);
})
.def(
"_jit_pass_vulkan_fuse_clamp_w_prepacked_conv",
[](script::Module& module) {
return vulkanFusePrePackedConvWithClamp(module);
})
.def(
"_jit_pass_vulkan_fold_prepacking_ops",
[](script::Module& module) {
return vulkanFoldPrePackingOps(module);
})
.def(
"_jit_pass_vulkan_optimize_for_mobile",
[](script::Module& module,
std::vector<std::string>& preserved_methods) {
return vulkanOptimizeForMobile(module, preserved_methods);
})
.def(
"_jit_pass_onnx_unpack_quantized_weights",
[](std::shared_ptr<Graph>& graph,
std::map<std::string, IValue>& paramsDict) {
UnpackQuantizedWeights(graph, paramsDict);
return paramsDict;
},
pybind11::return_value_policy::move)
.def(
"_jit_pass_onnx_quantization_insert_permutes",
[](std::shared_ptr<Graph>& graph,
std::map<std::string, IValue>& paramsDict) {
insertPermutes(graph, paramsDict);
return paramsDict;
},
pybind11::return_value_policy::move)
.def(
"_jit_pass_filter_non_tensor_arguments",
[](std::map<std::string, IValue> params) {
std::map<std::string, at::Tensor> retval;
for (auto& kv : params) {
if (kv.second.isTensor()) {
retval[kv.first] = std::move(kv.second).toTensor();
}
}
return retval;
})
.def("_jit_decay_packed_param_input_types", [](Graph& g) {
for (Value* i : g.inputs()) {
if (i->type() ==
getCustomClass(
"__torch__.torch.classes.quantized.Conv2dPackedParamsBase") ||
i->type() ==
getCustomClass(
"__torch__.torch.classes.quantized.Conv3dPackedParamsBase") ||
i->type() ==
getCustomClass(
"__torch__.torch.classes.quantized.LinearPackedParamsBase")) {
// Dummy CompleteTensorType to appease ONNX validator.
i->setType(TensorType::create(
at::kQInt8,
c10::kCPU,
std::vector<int64_t>{1},
std::vector<int64_t>{1},
c10::nullopt));
}
}
});
// NOLINTNEXTLINE(bugprone-unused-raii)
py::class_<CompleteArgumentSpec>(m, "CompleteArgumentSpec")
.def("__repr__", [](CompleteArgumentSpec& self) {
std::ostringstream s;
s << self;
return s.str();
});
// NOLINTNEXTLINE(bugprone-unused-raii)
py::class_<ArgumentSpec>(m, "ArgumentSpec");
py::class_<Code>(m, "Code")
.def(
"grad_executor_states",
[](Code& c) {
std::vector<GraphExecutorState> states;
for (auto& e : c.grad_executors()) {
states.emplace_back(e->getDebugState());
}
return states;
})
.def("num_bailouts", [](Code& c) { return c.num_bailouts(); })
.def("request_bailout", [](Code& c, size_t index) {
c.request_bailout(index);
});
py::class_<ExecutionPlan>(m, "ExecutionPlan")
.def_property_readonly("graph", [](ExecutionPlan& s) { return s.graph; })
.def_property_readonly("code", [](ExecutionPlan& s) { return s.code; });
py::class_<Gradient>(m, "Gradient")
.def_property_readonly("f", [](Gradient& m) { return m.f; })
.def_property_readonly("df", [](Gradient& m) { return m.df; })
.def_property_readonly(
"f_real_outputs", [](Gradient& m) { return m.f_real_outputs; })
.def_property_readonly(
"df_input_vjps", [](Gradient& m) { return m.df_input_vjps; })
.def_property_readonly(
"df_input_captured_inputs",
[](Gradient& m) { return m.df_input_captured_inputs; })
.def_property_readonly(
"df_input_captured_outputs",
[](Gradient& m) { return m.df_input_captured_outputs; })
.def_property_readonly(
"df_output_vjps", [](Gradient& m) { return m.df_output_vjps; });
py::class_<GraphExecutorState>(m, "GraphExecutorState")
.def_property_readonly(
"graph", [](GraphExecutorState& s) { return s.graph; })
.def_property_readonly(
"execution_plans",
[](GraphExecutorState& s) { return s.execution_plans; })
.def_property_readonly(
"fallback", [](GraphExecutorState& s) { return s.fallback; });
py::class_<PyTorchStreamWriter>(m, "PyTorchFileWriter")
.def(py::init<std::string>())
.def(py::init([](const py::object& buffer) {
auto writer_func = [=](const void* data, size_t size) {
auto bytes = py::bytes(reinterpret_cast<const char*>(data), size);
buffer.attr("write")(std::move(bytes));
return size;
};
return std::make_unique<PyTorchStreamWriter>(std::move(writer_func));
}))
.def(py::init<const std::function<size_t(const void*, size_t)>&>())
.def(
"write_record",
[](PyTorchStreamWriter& self,
const std::string& name,
const char* data,
size_t size) { return self.writeRecord(name, data, size); })
.def("write_end_of_file", &PyTorchStreamWriter::writeEndOfFile)
.def(
"write_record",
[](PyTorchStreamWriter& self,
const std::string& name,
uintptr_t data,
size_t size) {
return self.writeRecord(
name, reinterpret_cast<const char*>(data), size);
});
py::enum_<MobileOptimizerType>(m, "MobileOptimizerType")
.value("CONV_BN_FUSION", MobileOptimizerType::CONV_BN_FUSION)
.value(
"INSERT_FOLD_PREPACK_OPS",
MobileOptimizerType::INSERT_FOLD_PREPACK_OPS)
.value("REMOVE_DROPOUT", MobileOptimizerType::REMOVE_DROPOUT)
.value("FUSE_ADD_RELU", MobileOptimizerType::FUSE_ADD_RELU)
.value(
"HOIST_CONV_PACKED_PARAMS",
MobileOptimizerType::HOIST_CONV_PACKED_PARAMS)
.export_values();
// This allows PyTorchStreamReader to read from a Python buffer. It requires
// that the buffer implement `seek()`, `tell()`, and `read()`.
class BufferAdapter : public caffe2::serialize::ReadAdapterInterface {
public:
BufferAdapter(const py::object& buffer) : buffer_(buffer) {
// Jump to the end of the buffer to get its size
auto current = buffer.attr("tell")();
start_offset_ = py::cast<size_t>(current);
buffer.attr("seek")(current, py::module::import("os").attr("SEEK_END"));
size_ = py::cast<size_t>(buffer.attr("tell")()) - start_offset_;
buffer.attr("seek")(current);
// If we can read directly into a buffer, do that instead of an extra copy
use_readinto_ = py::hasattr(buffer, "readinto");
}
size_t size() const override {
return size_;
}
THPObjectPtr getMemview(void* buf, size_t n) const {
THPObjectPtr memview(PyMemoryView_FromMemory(
reinterpret_cast<char*>(buf), n, PyBUF_WRITE));
if (!memview) {
throw python_error();
}
return memview;
}
size_t read(uint64_t pos, void* buf, size_t n, const char* what)
const override {
// Seek to desired position (NB: this has to be a Py_ssize_t or Python
// throws a weird error)
Py_ssize_t absolute_pos = start_offset_ + pos;
buffer_.attr("seek")(absolute_pos);
if (use_readinto_) {
auto memview = getMemview(buf, n);
auto res =
PyObject_CallMethod(buffer_.ptr(), "readinto", "O", memview.get());
if (res) {
int64_t i = static_cast<int64_t>(PyLong_AsLongLong(res));
if (i > 0) {
return i;
}
}
}
// Read bytes into `buf` from the buffer
std::string bytes = py::cast<std::string>(buffer_.attr("read")(n));
std::copy(
bytes.data(),
bytes.data() + bytes.size(),
reinterpret_cast<char*>(buf));
return bytes.size();
}
py::object buffer_;
size_t size_;
size_t start_offset_;
bool use_readinto_;
};
py::class_<PyTorchStreamReader>(m, "PyTorchFileReader")
.def(py::init<std::string>())
.def(py::init([](const py::object& buffer) {
auto adapter = std::make_unique<BufferAdapter>(std::move(buffer));
return std::make_unique<PyTorchStreamReader>(std::move(adapter));
}))
.def(
"get_record",
[](PyTorchStreamReader& self, const std::string& key) {
at::DataPtr data;
size_t size;
std::tie(data, size) = self.getRecord(key);
return py::bytes(reinterpret_cast<const char*>(data.get()), size);
})
.def(
"get_storage_from_record",
[](PyTorchStreamReader& self,
const std::string& key,
size_t numel,
py::object data_type_obj) {
at::DataPtr data(std::get<0>(self.getRecord(key)));
auto scalar_type =
reinterpret_cast<THPDtype*>(data_type_obj.ptr())->scalar_type;
c10::Storage storage(
c10::Storage::use_byte_size_t(),
numel * elementSize(scalar_type),
std::move(data),
/*allocator=*/nullptr,
/*resizable=*/false);
auto ptr =
c10::make_intrusive<at::TensorImpl, at::UndefinedTensorImpl>(
std::move(storage),
at::DispatchKeySet(),
at::CPU(scalar_type).typeMeta());
return at::Tensor(std::move(ptr));
})
.def("get_all_records", [](PyTorchStreamReader& self) {
return self.getAllRecords();
});
m.def(
"_jit_get_operation",
[](const std::string& op_name) {
try {
auto symbol = Symbol::fromQualString(op_name);
auto operations = getAllOperatorsFor(symbol);
TORCH_CHECK(!operations.empty(), "No such operator ", op_name);
std::ostringstream docstring;
docstring << "Automatically bound operator '" << op_name
<< "' with schema(s):\n";
for (const auto& op : operations) {
docstring << " " << op->schema() << "\n";
}
auto func = py::cpp_function(
[operations, symbol](py::args args, py::kwargs kwargs) {
std::vector<py::handle> overloaded_args;
size_t total_arg_num = args.size() + kwargs.size();
for (size_t i = 0; i < args.size(); ++i) {
is_tensor_and_append_overloaded(
args[i].ptr(), &overloaded_args);
is_tensor_list_and_append_overloaded(
args[i].ptr(),
&overloaded_args,
static_cast<int>(total_arg_num),
false /* throw_error */);
}
// NB: for kwargs, we cannot guarantee the order of appending
// is the same as the argument order in operator's schema.
// This is suboptimal, but should be fine. Later when we have
// better schema matching and argument parsing, we could
// match the operator in `operations` first, then the order will
// be guaranteed.
for (auto item : kwargs) {
is_tensor_and_append_overloaded(
item.second.ptr(), &overloaded_args);
is_tensor_list_and_append_overloaded(
item.second.ptr(),
&overloaded_args,
total_arg_num,
false /* throw_error */);
}
if (overloaded_args.size() > 0) {
std::vector<py::object> overloaded_types;
overloaded_types.reserve(overloaded_args.size());
for (auto& oarg : overloaded_args) {
overloaded_types.push_back(
py::reinterpret_borrow<py::object>(
(PyObject*)Py_TYPE(oarg.ptr())));
}
py::tuple py_types = py::cast(overloaded_types);
py::object ret;
std::string ns = symbol.ns().toUnqualString();
std::string method_name = symbol.toUnqualString();
auto self_func = py::module::import("torch")
.attr("ops")
.attr(ns.c_str())
.attr(method_name.c_str());
std::string module_name("torch.ops");
module_name.append(ns);
return pybind11::reinterpret_steal<py::object>(
handle_torch_function_no_python_arg_parser(
overloaded_args,
args.ptr(),
kwargs.ptr(),
method_name.c_str(),
self_func.ptr(),
module_name.c_str()));
}
return invokeOperatorFromPython(
operations, std::move(args), std::move(kwargs));
},
py::name(symbol.toUnqualString()),
py::doc(docstring.str().c_str()));
return func;
} catch (const c10::Error& error) {
throw std::runtime_error(error.what_without_backtrace());
}
},
py::arg("qualified_name"));
m.def("parse_ir", [](const std::string& input) {
auto graph = std::make_shared<Graph>();
parseIR(input, &*graph);
return graph;
});
m.def("parse_schema", parseSchema);
m.def("unify_type_list", [](const std::vector<TypePtr>& types) {
std::ostringstream s;
auto type = unifyTypeList(types, s);
if (!type) {
throw std::runtime_error(s.str());
}
return type.value();
});
py::class_<FunctionSchema>(m, "FunctionSchema")
.def_property_readonly(
"name", [](FunctionSchema& self) { return self.name(); })
.def_property_readonly(
"overload_name",
[](FunctionSchema& self) { return self.overload_name(); })
.def_property_readonly(
"arguments", [](FunctionSchema& self) { return self.arguments(); })
.def_property_readonly(
"returns", [](FunctionSchema& self) { return self.returns(); })
.def(
"is_backward_compatible_with",
[](const FunctionSchema& self, const FunctionSchema& old_schema) {
return self.isBackwardCompatibleWith(old_schema);
})
.def(
"__eq__",
[](const FunctionSchema& self, const FunctionSchema& other) {
return self == other;
})
.def("__str__", [](FunctionSchema& self) {
std::stringstream ss;
ss << self;
return ss.str();
});
py::class_<Argument>(m, "Argument")
.def_property_readonly("name", [](Argument& self) { return self.name(); })
.def_property_readonly("type", [](Argument& self) { return self.type(); })
.def_property_readonly(
"N",
[](Argument& self) -> py::object {
return (self.N()) ? py::cast(*self.N()) : py::none();
})
.def_property_readonly(
"default_value",
[](Argument& self) -> py::object {
if (!self.default_value()) {
return py::none();
}
IValue v = *self.default_value();
return toPyObject(std::move(v));
})
.def("has_default_value", [](Argument& self) -> py::bool_ {
return self.default_value().has_value();
});
m.def("_jit_get_all_schemas", []() {
const std::vector<std::shared_ptr<Operator>>& operations =
getAllOperators();
return fmap(operations, [](const std::shared_ptr<Operator>& op) {
return op->schema();
});
});
m.def("_jit_get_custom_class_schemas", customClassSchemasForBCCheck);
m.def("_jit_get_schemas_for_operator", [](const std::string& qualified_name) {
auto symbol = Symbol::fromQualString(qualified_name);
auto operations = getAllOperatorsFor(symbol);
return fmap(operations, [](const std::shared_ptr<Operator>& op) {
return op->schema();
});
});
m.def("_is_tracing", []() { return jit::tracer::isTracing(); });
py::class_<PythonFutureWrapper, std::shared_ptr<PythonFutureWrapper>>(
m, "Future")
.def(py::init([]() {
return std::make_shared<PythonFutureWrapper>(
c10::make_intrusive<c10::ivalue::Future>(PyObjectType::get()));
}))
.def(
"done",
// Intentionally not releasing GIL
&PythonFutureWrapper::done)
.def(
"value",
&PythonFutureWrapper::value,
py::call_guard<py::gil_scoped_release>())
.def(
"wait",
&PythonFutureWrapper::wait,
py::call_guard<py::gil_scoped_release>())
.def(
"then",
&PythonFutureWrapper::then,
py::call_guard<py::gil_scoped_release>())
.def(
"set_result",
// Intentionally not releasing GIL
&PythonFutureWrapper::markCompleted)
.def(
py::pickle(
/* __getstate__ */
[](const PythonFutureWrapper& /* unused */) {
TORCH_CHECK(false, "Can not pickle torch.futures.Future");
// Note that this return has no meaning since we always
// throw, it's only here to satisfy Pybind API's
// requirement.
return py::make_tuple();
},
/* __setstate__ */
[](const py::tuple& /* unused */) { // NOLINT
TORCH_CHECK(false, "Can not unpickle torch.futures.Future");
// Note that this return has no meaning since we always
// throw, it's only here to satisfy PyBind's API
// requirement.
return nullptr;
}),
py::call_guard<py::gil_scoped_release>());
m.def("fork", [](const py::args& args, const py::kwargs& kwargs) {
AT_ASSERT(args.size() >= 1);
py::function f = py::cast<py::function>(args[0]);
py::tuple args_tup(args.size() - 1);
for (size_t i = 1; i < args.size(); ++i) {
args_tup[i - 1] = args[i];
}
if (jit::tracer::isTracing()) {
auto graph = jit::tracer::getTracingState()->graph;
auto fork_node = graph->insertNode(graph->create(prim::TracedFork, 1));
auto body_block = fork_node->addBlock();
Value* node_output;
py::object py_func_output;
// Insert new trace ops into the fork op's sub-block
WithInsertPoint guard(body_block);
IValue output_ivalue;
{
tracer::WithNestedTracingFrame env_guard;
// Run the user-supplied function
py_func_output = f(*args_tup, **kwargs);
// Convert the output of the user-supplied function to IValue. The type
// information of this IValue is used both to record the correct type in
// the trace.
output_ivalue = toTypeInferredIValue(py_func_output);
Value* out_val = jit::tracer::getValueTrace(output_ivalue);
body_block->registerOutput(out_val);
node_output =
fork_node->output()->setType(FutureType::create(out_val->type()));
}
auto retval =
c10::make_intrusive<c10::ivalue::Future>(output_ivalue.type());
// Record the ivalue in the tracer
jit::tracer::setValueTrace(retval, node_output);
// stuff the ivalue output in the Future
retval->markCompleted(output_ivalue);
return std::make_shared<PythonFutureWrapper>(retval);
} else {
auto result = toTypeInferredIValue(f(*args_tup, **kwargs));
auto retval = c10::make_intrusive<c10::ivalue::Future>(result.type());
retval->markCompleted(std::move(result));
return std::make_shared<PythonFutureWrapper>(retval);
}
});
m.def("wait", [](const std::shared_ptr<PythonFutureWrapper>& fut) {
return fut->wait();
});
m.def(
"_collect_all",
[](const std::vector<std::shared_ptr<jit::PythonFutureWrapper>>& futures)
-> std::shared_ptr<jit::PythonFutureWrapper> {
auto typePtr =
futures.empty() ? AnyType::get() : futures[0]->fut->elementType();
c10::List<c10::intrusive_ptr<c10::ivalue::Future>> asList(
c10::FutureType::create(typePtr));
asList.reserve(futures.size());
for (const auto& f : futures) {
asList.push_back(f->fut);
}
return std::make_shared<jit::PythonFutureWrapper>(
c10::collectAll(asList),
/* unwrap_func */ [futures](const py::object& /*unused*/) {
// Throw errors when calling wait() on the returned Future if
// any of the original futures would throw.
// NB: PythonFutureWrapper takes an unwrap_func which serves as a
// callback to evalute the value in the Future. RPC uses this
// unwrap_func to check whether the returned py::object is a
// RemoteException object, and re-throw the exception if it is.
// By extracting the c10::ivalue::Future from PythonFutureWrapper
// the unwrap_func on the original PythonFutureWrapper objects are
// discarded, and hence it will return the RemoteException as an
// object instead of re-throwing it.
for (auto& fut : futures) {
fut->wait();
}
});
});
m.def("_jit_assert_is_instance", [](py::object obj, TypePtr type) {
toIValue(obj, type);
});
initPythonCustomClassBindings(module);
initPythonIRBindings(module);
tracer::initPythonTracerBindings(module);
initTreeViewBindings(module);
initJitScriptBindings(module);
initJitBackendBindings(module);
initStaticRuntimeBindings(module);
setPrintHandler([](const std::string& str) {
py::gil_scoped_acquire acquire;
try {
auto _stdout = py::module::import("sys").attr("stdout");
_stdout.attr("write")(str);
} catch (py::error_already_set& e) {
throw std::runtime_error(e.what());
}
});
}
} // namespace jit
} // namespace torch
|