File: init.cpp

package info (click to toggle)
pytorch 1.7.1-7
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 80,340 kB
  • sloc: cpp: 670,830; python: 343,991; ansic: 67,845; asm: 5,503; sh: 2,924; java: 2,888; xml: 266; makefile: 244; ruby: 148; yacc: 144; objc: 51; lex: 44
file content (1238 lines) | stat: -rw-r--r-- 49,267 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
#include <torch/csrc/utils/pybind.h>
#include <torch/csrc/utils/python_arg_parser.h>

#include <torch/csrc/jit/api/module.h>
#include <torch/csrc/jit/backends/backend_init.h>
#include <torch/csrc/jit/codegen/fuser/interface.h>
#include <torch/csrc/jit/codegen/fuser/kernel_cache.h>
#include <torch/csrc/jit/frontend/ir_emitter.h>
#include <torch/csrc/jit/frontend/tracer.h>
#include <torch/csrc/jit/ir/irparser.h>
#include <torch/csrc/jit/passes/canonicalize.h>
#include <torch/csrc/jit/passes/canonicalize_graph_fuser_ops.h>
#include <torch/csrc/jit/passes/common_subexpression_elimination.h>
#include <torch/csrc/jit/passes/constant_pooling.h>
#include <torch/csrc/jit/passes/constant_propagation.h>
#include <torch/csrc/jit/passes/create_autodiff_subgraphs.h>
#include <torch/csrc/jit/passes/create_functional_graphs.h>
#include <torch/csrc/jit/passes/cuda_graph_fuser.h>
#include <torch/csrc/jit/passes/dead_code_elimination.h>
#include <torch/csrc/jit/passes/decompose_ops.h>
#include <torch/csrc/jit/passes/erase_number_types.h>
#include <torch/csrc/jit/passes/fold_conv_bn.h>
#include <torch/csrc/jit/passes/freeze_module.h>
#include <torch/csrc/jit/passes/fuse_linear.h>
#include <torch/csrc/jit/passes/fuse_relu.h>
#include <torch/csrc/jit/passes/graph_fuser.h>
#include <torch/csrc/jit/passes/inline_fork_wait.h>
#include <torch/csrc/jit/passes/inliner.h>
#include <torch/csrc/jit/passes/loop_unrolling.h>
#include <torch/csrc/jit/passes/lower_graph.h>
#include <torch/csrc/jit/passes/lower_tuples.h>
#include <torch/csrc/jit/passes/normalize_ops.h>
#include <torch/csrc/jit/passes/onnx.h>
#include <torch/csrc/jit/passes/onnx/cast_all_constant_to_floating.h>
#include <torch/csrc/jit/passes/onnx/constant_fold.h>
#include <torch/csrc/jit/passes/onnx/eliminate_unused_items.h>
#include <torch/csrc/jit/passes/onnx/eval_peephole.h>
#include <torch/csrc/jit/passes/onnx/fixup_onnx_controlflow.h>
#include <torch/csrc/jit/passes/onnx/function_substitution.h>
#include <torch/csrc/jit/passes/onnx/peephole.h>
#include <torch/csrc/jit/passes/onnx/prepare_division_for_onnx.h>
#include <torch/csrc/jit/passes/onnx/preprocess_for_onnx.h>
#include <torch/csrc/jit/passes/onnx/remove_inplace_ops_for_onnx.h>
#include <torch/csrc/jit/passes/onnx/scalar_type_analysis.h>
#include <torch/csrc/jit/passes/onnx/shape_type_inference.h>
#include <torch/csrc/jit/passes/onnx/unpack_quantized_weights.h>
#include <torch/csrc/jit/passes/peephole.h>
#include <torch/csrc/jit/passes/quantization/dedup_module_uses.h>
#include <torch/csrc/jit/passes/quantization/finalize.h>
#include <torch/csrc/jit/passes/quantization/fusion_passes.h>
#include <torch/csrc/jit/passes/quantization/insert_observers.h>
#include <torch/csrc/jit/passes/quantization/insert_quant_dequant.h>
#include <torch/csrc/jit/passes/quantization/quantization_type.h>
#include <torch/csrc/jit/passes/reconstruct_scopes.h>
#include <torch/csrc/jit/passes/remove_dropout.h>
#include <torch/csrc/jit/passes/remove_expands.h>
#include <torch/csrc/jit/passes/remove_inplace_ops.h>
#include <torch/csrc/jit/passes/remove_mutation.h>
#include <torch/csrc/jit/passes/shape_analysis.h>
#include <torch/csrc/jit/passes/specialize_autogradzero.h>
#include <torch/csrc/jit/passes/subgraph_rewrite.h>
#include <torch/csrc/jit/passes/tensorexpr_fuser.h>
#include <torch/csrc/jit/passes/utils/check_alias_annotation.h>
#include <torch/csrc/jit/passes/vulkan_rewrite.h>
#include <torch/csrc/jit/passes/xnnpack_rewrite.h>
#include <torch/csrc/jit/python/pybind_utils.h>
#include <torch/csrc/jit/python/python_arg_flatten.h>
#include <torch/csrc/jit/python/python_custom_class.h>
#include <torch/csrc/jit/python/python_ir.h>
#include <torch/csrc/jit/python/python_tracer.h>
#include <torch/csrc/jit/python/python_tree_views.h>
#include <torch/csrc/jit/python/script_init.h>
#include <torch/csrc/jit/runtime/argument_spec.h>
#include <torch/csrc/jit/runtime/autodiff.h>
#include <torch/csrc/jit/runtime/graph_executor.h>
#include <torch/csrc/jit/runtime/jit_exception.h>
#include <torch/csrc/jit/runtime/operator.h>
#include <torch/csrc/jit/runtime/print_handler.h>
#include <torch/csrc/jit/runtime/static/init.h>
#include <torch/csrc/jit/serialization/export.h>
#include <torch/csrc/jit/serialization/import.h>
#include <torch/csrc/jit/tensorexpr/execution_counter.h>
#include <torch/csrc/jit/tensorexpr/kernel.h>

#include <c10/macros/Export.h>
#include <caffe2/serialize/inline_container.h>

#include <ATen/core/function_schema.h>

#include <pybind11/functional.h>
#include <pybind11/iostream.h>

#include <memory>
#include <sstream>
#include <stdexcept>
#include <string>
#include <tuple>
#include <utility>

namespace torch {
namespace jit {

using ::c10::Argument;
using ::c10::FunctionSchema;
using caffe2::serialize::PyTorchStreamReader;
using caffe2::serialize::PyTorchStreamWriter;

namespace {

using autograd::variable_list;

bool loadPythonClasses() {
  // Leaving this code here, because it will likely be useful at some point
  // PyObject *jit_module = PyImport_ImportModule("torch.jit");
  // THPUtils_assert(jit_module, "class loader couldn't access "
  //"torch.jit module");
  // PyObject *jit_dict = PyModule_GetDict(jit_module);

  return true;
}
} // anonymous namespace

#if !defined(__HIP_PLATFORM_HCC__)
TORCH_API void runJITCPPTests();
#endif

void initJITBindings(PyObject* module) {
  auto m = py::handle(module).cast<py::module>();

  py::register_exception<JITException>(m, "JITException");

  py::class_<python::IODescriptor> iodescriptor(
      m, "IODescriptor"); // NOLINT(bugprone-unused-raii)

  m.def("_jit_init", loadPythonClasses)
      .def(
          "_jit_debug_fuser_num_cached_kernel_specs",
          torch::jit::fuser::debugNumCachedKernelSpecs)
      .def("_jit_pass_onnx_remove_print", RemovePrintOps)
      .def("_jit_pass_onnx_preprocess_caffe2", PreprocessCaffe2Ops)
      .def("_jit_pass_onnx", ToONNX)
      .def(
          "_jit_pass_onnx_assign_output_shape",
          [](std::shared_ptr<Graph>& graph,
             const std::vector<at::Tensor>& tensors,
             bool onnx_shape_inference = false) {
            ONNXAssignOutputShape(graph, tensors, onnx_shape_inference);
          })
      .def("_jit_pass_lower_all_tuples", LowerAllTuples)
      .def("_jit_pass_onnx_function_substitution", ONNXFunctionCallSubstitution)
      .def(
          "_jit_pass_onnx_peephole",
          [](std::shared_ptr<Graph>& graph,
             int opset_version,
             bool fixed_batch_size) {
            return PeepholeOptimizeONNX(graph, opset_version, fixed_batch_size);
          })
      .def("_jit_pass_onnx_preprocess", PreprocessForONNX)
      .def(
          "_jit_pass_onnx_eval_peephole",
          [](std::shared_ptr<Graph>& graph,
             std::map<std::string, IValue>& paramsDict) {
            EvalPeepholeONNX(graph->block(), paramsDict);
            return paramsDict;
          },
          pybind11::return_value_policy::move)
      .def(
          "_jit_pass_onnx_cast_all_constant_to_floating",
          CastAllConstantToFloating)
      .def(
          "_jit_pass_onnx_constant_fold",
          [](std::shared_ptr<Graph>& graph,
             std::map<std::string, IValue>& paramsDict,
             int opset_version) {
            ConstantFoldONNX(
                graph->block(),
                paramsDict,
                opset_version); // overload resolution
            return paramsDict;
          },
          pybind11::return_value_policy::move)
      .def(
          "_jit_pass_onnx_eliminate_unused_items",
          [](std::shared_ptr<Graph>& graph,
             std::map<std::string, IValue>& paramsDict) {
            EliminateUnusedItemsONNX(
                graph->block(),
                paramsDict); // overload resolution
            return paramsDict;
          },
          pybind11::return_value_policy::move)
      .def("_jit_pass_onnx_scalar_type_analysis", ScalarTypeAnalysisForONNX)
      .def(
          "_jit_pass_onnx_remove_inplace_ops_for_onnx", RemoveInplaceOpsForONNX)
      .def(
          "_jit_pass_onnx_prepare_inplace_ops_for_onnx",
          PrepareInplaceOpsForONNX)
      .def(
          "_jit_pass_onnx_node_shape_type_inference",
          [](Node* n, int opset_version) {
            ONNXShapeTypeInference(n, opset_version);
          })
      .def(
          "_jit_pass_onnx_graph_shape_type_inference",
          [](std::shared_ptr<Graph>& graph, int opset_version) {
            ONNXShapeTypeInference(graph, opset_version);
          })
      .def("_jit_pass_onnx_set_dynamic_input_shape", ONNXSetDynamicInputShape)
      .def("_jit_pass_fuse", FuseGraph)
      .def(
          "_jit_pass_dce",
          [](std::shared_ptr<Graph>& g) {
            return EliminateDeadCode(g->block()); // overload resolution
          })
      .def(
          "_jit_pass_dce_allow_deleting_nodes_with_side_effects",
          [](std::shared_ptr<Graph>& g) {
            return EliminateDeadCode(
                g->block(),
                true,
                DCESideEffectPolicy::
                    ALLOW_DELETING_NODES_WITH_SIDE_EFFECTS); // overload
                                                             // resolution
          })
      .def(
          "_jit_pass_cse",
          [](std::shared_ptr<Graph>& g) {
            return EliminateCommonSubexpression(g); // overload resolution
          })
      .def(
          "_jit_pass_fuse_quantized_add_relu",
          [](std::shared_ptr<Graph>& g) {
            return FuseQuantizedAddRelu(g); // overload resolution
          })
      .def(
          "_jit_pass_insert_observers",
          [](Module& module,
             const std::string& method_name,
             const py::dict& qconfig_dict,
             bool inplace,
             int quant_type_int) {
            auto dict = py::cast<std::unordered_map<
                std::string,
                c10::optional<std::tuple<Module, Module>>>>(qconfig_dict);
            auto quant_type = static_cast<QuantType>(quant_type_int);
            return InsertObservers(
                module, method_name, dict, inplace, quant_type);
          },
          py::arg("module"),
          py::arg("method_name"),
          py::arg("qconfig_dict"),
          py::arg("inplace"),
          py::arg("quant_type_int") = 1)
      .def(
          "_jit_pass_insert_quant_dequant",
          [](Module& module,
             const std::string& method_name,
             bool inplace,
             bool debug,
             int quant_type_int) {
            auto quant_type = static_cast<QuantType>(quant_type_int);
            return InsertQuantDeQuant(
                module, method_name, inplace, debug, quant_type);
          },
          py::arg("module"),
          py::arg("method_name"),
          py::arg("inplace"),
          py::arg("debug"),
          py::arg("quant_type_int") = 1)
      .def(
          "_jit_pass_insert_prepack_unpack",
          [](std::shared_ptr<Graph>& g) { return InsertPrepackUnpack(g); })
      .def(
          "_jit_pass_insert_prepack_unpack",
          [](Module& module) { return InsertPrepackUnpack(module); })
      .def(
          "_jit_pass_quant_fusion",
          [](std::shared_ptr<Graph>& g) { return QuantFusion(g); })
      .def("_jit_pass_fold_convbn", &FoldConvBatchNorm)
      .def(
          "_freeze_module",
          [](Module& module,
             std::vector<std::string>& preservedAttrs,
             bool freezeInterfaces) {
            return freeze_module(module, preservedAttrs, freezeInterfaces);
          },
          py::arg("module"),
          py::arg("preservedAttrs") = std::vector<std::string>(),
          py::arg("freezeInterfaces") = true)
      .def("_jit_pass_fuse_linear", &FuseLinear)
      .def(
          "_jit_pass_fuse_add_relu",
          [](std::shared_ptr<Graph>& graph) { FuseAddRelu(graph); })
      .def("_jit_pass_dedup_module_uses", &DedupModuleUses)
      .def("_jit_pass_replicate_dequantize", &ReplicateDeQuant)
      .def(
          "_jit_pass_swap_functional_linear",
          [](std::shared_ptr<Graph>& graph) { SwapFunctionalLinear(graph); })
      .def(
          "_jit_pass_swap_functional_linear",
          [](Module& module) { SwapFunctionalLinear(module); })
      .def(
          "_jit_pass_quant_finalize",
          [](Module& module,
             int quant_type_int,
             const std::vector<std::string>& preserved_attrs) {
            auto quant_type = static_cast<QuantType>(quant_type_int);
            return Finalize(module, quant_type, preserved_attrs);
          },
          py::arg("module"),
          py::arg("quant_type_int") = 1,
          py::arg("preserved_attrs") = std::vector<std::string>())
      .def(
          "_jit_pass_pattern_based_rewrite",
          [](const Module& m) { return PatternBasedRewrite(m); })
      .def(
          "_jit_pass_custom_pattern_based_rewrite",
          [](const std::string& pattern,
             const std::string& fused_node_name,
             const Module& m) {
            SubgraphRewriter subgraph_rewriter;
            subgraph_rewriter.RegisterRewritePattern(pattern, fused_node_name);
            subgraph_rewriter.runOnModule(m);
          })
      .def(
          "_jit_pass_custom_pattern_based_rewrite_graph",
          [](const std::string& pattern,
             const std::string& fused_node_name,
             std::shared_ptr<Graph> g) {
            SubgraphRewriter subgraph_rewriter;
            subgraph_rewriter.RegisterRewritePattern(pattern, fused_node_name);
            subgraph_rewriter.runOnGraph(g);
          })
      .def(
          "_jit_pass_reconstruct_scopes",
          [](script::Module& module,
             std::shared_ptr<Graph>& g,
             const std::string& prefix) {
            ReconstructScopes(module, *g, prefix);
          },
          py::arg("module"),
          py::arg("graph"),
          py::arg("prefix") = "top")
      .def(
          "_jit_pass_remove_inplace_ops",
          [](std::shared_ptr<Graph> g) { return RemoveInplaceOps(g); })
      .def("_jit_pass_constant_pooling", ConstantPooling)
      .def(
          "_jit_pass_create_functional_graphs",
          [](std::shared_ptr<Graph>& g) { return CreateFunctionalGraphs(g); })
      .def(
          "_jit_pass_remove_mutation",
          [](std::shared_ptr<Graph>& g) {
            RemoveListMutation(g);
            return RemoveTensorMutation(g);
          })
      .def(
          "_jit_pass_inline_functional_graphs",
          [](std::shared_ptr<Graph>& g) { return InlineFunctionalGraphs(g); })
      .def(
          "_jit_pass_peephole",
          [](const std::shared_ptr<Graph>& g, bool addmm_fusion_enabled) {
            return PeepholeOptimize(g, addmm_fusion_enabled);
          },
          py::arg("graph"),
          py::arg("addmm_fusion_enabled") = false)
      .def(
          "_jit_pass_fuse_addmm",
          [](std::shared_ptr<Graph>& g) { return FuseAddMM(g); })
      .def(
          "_jit_pass_canonicalize",
          [](const std::shared_ptr<Graph>& g) { return Canonicalize(g); })
      .def("_jit_pass_lint", LintGraph)
      .def(
          "_jit_pass_complete_shape_analysis",
          [](std::shared_ptr<Graph> graph, py::tuple inputs, bool with_grad) {
            ArgumentSpecCreator arg_spec_creator(*graph);
            Stack stack;
            stack.reserve(inputs.size()); // captures?
            for (auto& obj : inputs) {
              stack.push_back(toTypeInferredIValue(obj));
            }
            ArgumentSpec spec = arg_spec_creator.create(with_grad, stack);
            arg_spec_creator.specializeTypes(*graph, spec);
            // We only get partial specialization from the arg_spec_creator, but
            // we want full shape specialization. The alternative would be to
            // have a "complete type inference" function in ArguemntSpecCreator.
            auto g_inputs = graph->inputs();
            for (size_t i = 0; i < inputs.size(); ++i) {
              if (stack[i].isTensor()) {
                g_inputs[i]->setType(stack[i].type());
              }
            }
            PropagateInputShapes(graph);
          })
      .def(
          "_jit_interpret_graph",
          [](std::shared_ptr<Graph>& graph, py::tuple inputs) {
            Stack stack;
            stack.reserve(inputs.size()); // captures?
            for (auto& obj : inputs) {
              stack.push_back(toTypeInferredIValue(obj));
            }
            auto g_inputs = graph->inputs();
            for (size_t i = 0; i < inputs.size(); ++i) {
              if (stack[i].isTensor()) {
                g_inputs[i]->setType(stack[i].type());
              }
            }
            Code code(graph, "<on-demand-func>");
            InterpreterState(code).run(stack);
            return createPyObjectForStack(std::move(stack));
          },
          py::doc(
              "Interpret a JIT graph with given inputs without running any optimization passes on it"))
      .def("_jit_pass_remove_expands", RemoveExpands)
      .def("_jit_pass_erase_number_types", EraseNumberTypes)
      .def("_jit_pass_inline_fork_wait", InlineForkWait)
      .def("_jit_pass_inline", Inline)
      .def("_jit_pass_prepare_division_for_onnx", PrepareDivisionForONNX)
      .def(
          "_jit_pass_lower_graph",
          [](std::shared_ptr<Graph>& graph, const Module& self) {
            return LowerGraph(*graph, self._ivalue());
          })
      .def("_jit_pass_loop_unrolling", UnrollLoops)
      .def(
          "_jit_pass_constant_propagation_immutable_types",
          [](std::shared_ptr<Graph>& g) {
            return ConstantPropagationImmutableTypes(g);
          })
      .def(
          "_jit_pass_constant_propagation",
          [](std::shared_ptr<Graph>& g) { return ConstantPropagation(g); })
      .def("_jit_pass_erase_shape_information", EraseShapeInformation)
      .def(
          "_jit_pass_create_autodiff_subgraphs",
          [](std::shared_ptr<Graph> graph) { CreateAutodiffSubgraphs(graph); })
#if defined(BUILDING_TESTS) && !defined(__HIP_PLATFORM_HCC__)
      .def(
          "_jit_run_cpp_tests",
          []() {
            // We have to release the GIL inside this method, because if we
            // happen to initialize the autograd engine in these tests, the
            // newly spawned worker threads will try to initialize their
            // PyThreadState*, and they need the GIL for this.
            pybind11::gil_scoped_release _no_gil;
            return runJITCPPTests();
          })
      .def("_jit_has_cpp_tests", []() { return true; })
      .def("_has_tensorexpr_cpp_tests", []() { return true; })
#else
      .def("_jit_run_cpp_tests", []() { throw std::exception(); })
      .def("_jit_has_cpp_tests", []() { return false; })
      .def("_run_tensorexpr_cpp_tests", []() { throw std::exception(); })
      .def("_has_tensorexpr_cpp_tests", []() { return false; })
#endif
      .def(
          "_jit_flatten",
          [](py::handle& obj) {
            auto res = python::flatten(obj);
            return std::make_pair(res.vars, res.desc);
          })
      .def(
          "_jit_unflatten",
          [](autograd::variable_list vars, python::IODescriptor& desc) {
            return py::reinterpret_steal<py::object>(
                python::unflatten(vars, desc));
          })
      .def("_jit_pass_onnx_block", BlockToONNX)
      .def("_jit_pass_fixup_onnx_controlflow_node", FixupONNXControlflowNode)
      .def("_jit_pass_fixup_onnx_loop_node_inputs", FixupONNXLoopNodeInputs)
      .def("_jit_pass_canonicalize_graph_fuser_ops", CanonicalizeOps)
      .def("_jit_pass_decompose_ops", DecomposeOps)
      .def("_jit_pass_specialize_autogradzero", specializeAutogradZero)
      .def("_jit_override_can_fuse_on_cpu", &overrideCanFuseOnCPU)
      .def("_jit_override_can_fuse_on_gpu", &overrideCanFuseOnGPU)
      .def("_jit_can_fuse_on_cpu", &canFuseOnCPU)
      .def("_jit_can_fuse_on_gpu", &canFuseOnGPU)
      .def(
          "_jit_differentiate",
          [](Graph& g) {
            // the python binding slightly differs in semantics
            // it makes a copy of the input Graph, and works on that
            // jit::differentiate mutates the input Graph
            auto g_clone = g.copy();
            return differentiate(g_clone);
          })
      .def(
          "_jit_check_alias_annotation",
          [](std::shared_ptr<Graph> g,
             py::tuple args,
             const std::string& unqualified_op_name) {
            auto stack = toTraceableStack(args);
            checkAliasAnnotation(g, std::move(stack), unqualified_op_name);
          })
      .def("_jit_set_nvfuser_enabled", &RegisterCudaFuseGraph::registerPass)
      .def("_jit_nvfuser_enabled", &RegisterCudaFuseGraph::isRegistered)
      .def(
          "_jit_set_profiling_mode",
          [](bool profiling_flag) {
            bool oldState = getProfilingMode();
            getProfilingMode() = profiling_flag;
            return oldState;
          })
      .def(
          "_jit_set_profiling_executor",
          [](bool profiling_flag) {
            bool oldState = getExecutorMode();
            getExecutorMode() = profiling_flag;
            return oldState;
          })
      .def(
          "_jit_set_num_profiled_runs",
          [](size_t num) {
            size_t old_num = getNumProfiledRuns();
            getNumProfiledRuns() = num;
            return old_num;
          })
      .def(
          "_jit_set_bailout_depth",
          [](size_t depth) {
            size_t old_depth = getBailoutDepth();
            getBailoutDepth() = depth;
            return old_depth;
          })
      .def(
          "_jit_set_inline_everything_mode",
          [](bool enabled) { getInlineEverythingMode() = enabled; })
      .def(
          "_jit_get_inline_everything_mode",
          []() { return getInlineEverythingMode(); })
      .def(
          "_jit_try_infer_type",
          [](py::object obj) -> TypePtr {
            auto match = tryToInferType(obj);
            if (match.success()) {
              return match.type();
            }
            return nullptr;
          })
      .def(
          "_jit_get_trigger_value",
          [](const std::string& trigger_name) -> int {
            using namespace torch::jit::tensorexpr;
            ExecutionTrigger* trigger =
                ExecutionTriggerList::GetInstance().FindByName(trigger_name);
            return trigger->value();
          })
      .def(
          "_jit_get_te_cuda_pointwise_loop_levels",
          []() -> int {
            using namespace torch::jit::tensorexpr;
            return getTECudaPointwiseLoopLevels();
          })
      .def(
          "_jit_set_te_cuda_pointwise_loop_levels",
          [](int level) {
            using namespace torch::jit::tensorexpr;
            return getTECudaPointwiseLoopLevels() = level;
          })
      .def(
          "_jit_get_te_cuda_pointwise_block_count",
          []() -> int {
            using namespace torch::jit::tensorexpr;
            return getTECudaPointwiseBlockCount();
          })
      .def(
          "_jit_set_te_cuda_pointwise_block_count",
          [](int block_count) {
            using namespace torch::jit::tensorexpr;
            return getTECudaPointwiseBlockCount() = block_count;
          })
      .def(
          "_jit_get_te_cuda_pointwise_block_size",
          []() -> int {
            using namespace torch::jit::tensorexpr;
            return getTECudaPointwiseBlockSize();
          })
      .def(
          "_jit_set_te_cuda_pointwise_block_size",
          [](int block_size) {
            using namespace torch::jit::tensorexpr;
            return getTECudaPointwiseBlockSize() = block_size;
          })
      .def("_jit_set_texpr_fuser_enabled", &setTensorExprFuserEnabled)
      .def("_jit_texpr_fuser_enabled", &tensorExprFuserEnabled)
      .def("_jit_texpr_fallback_allowed", &tensorexpr::fallbackAllowed)
      .def("_jit_texpr_set_fallback_allowed", &tensorexpr::setFallbackAllowed)
      .def("_jit_set_texpr_reductions_enabled", &setTexprReductionsEnabled)
      .def("_jit_texpr_reductions_enabled", &texprReductionsEnabled)
      .def(
          "_jit_set_te_generate_block_code",
          [](bool gen_block_code) {
            using namespace torch::jit::tensorexpr;
            return getTEGenerateBlockCode() = gen_block_code;
          })
      .def(
          "_jit_get_te_generate_block_code",
          []() -> bool {
            using namespace torch::jit::tensorexpr;
            return getTEGenerateBlockCode();
          })
      .def(
          "_jit_pass_fuse_tensorexprs",
          [](std::shared_ptr<Graph>& g) { return FuseTensorExprs(g); })
      .def(
          "_jit_fuser_get_fused_kernel_code",
          [](Graph& g, std::vector<at::Tensor> inps) {
            return debugGetFusedKernelCode(g, inps);
          })
      .def(
          "_jit_pass_remove_dropout",
          [](script::Module& module) { return removeDropout(module); })
      .def(
          "_jit_pass_transform_conv1d_to_conv2d",
          [](std::shared_ptr<Graph>& graph) {
            return transformConv1dToConv2d(graph);
          })
      .def(
          "_jit_pass_transform_conv1d_to_conv2d",
          [](script::Module& module) {
            return transformConv1dToConv2d(module);
          })
      .def(
          "_jit_pass_insert_prepacked_ops",
          [](std::shared_ptr<Graph>& graph) {
            return insertPrePackedOps(graph);
          })
      .def(
          "_jit_pass_insert_prepacked_ops",
          [](script::Module& module) { return insertPrePackedOps(module); })
      .def(
          "_jit_pass_fuse_clamp_w_prepacked_linear_conv",
          [](script::Module& module) {
            return fusePrePackedLinearConvWithClamp(module);
          })
      .def(
          "_jit_pass_fold_prepacking_ops",
          [](script::Module& module) { return FoldPrePackingOps(module); })
      .def(
          "_jit_pass_optimize_for_mobile",
          [](script::Module& module,
             std::set<MobileOptimizerType>& optimization_blocklist,
             std::vector<std::string>& preserved_methods) {
            return optimizeForMobile(
                module, optimization_blocklist, preserved_methods);
          })
      .def(
          "_jit_pass_vulkan_insert_prepacked_ops",
          [](std::shared_ptr<Graph>& graph) {
            return vulkanInsertPrePackedOps(graph);
          })
      .def(
          "_jit_pass_vulkan_insert_prepacked_ops",
          [](script::Module& module) {
            return vulkanInsertPrePackedOps(module);
          })
      .def(
          "_jit_pass_vulkan_fuse_clamp_w_prepacked_conv",
          [](script::Module& module) {
            return vulkanFusePrePackedConvWithClamp(module);
          })
      .def(
          "_jit_pass_vulkan_fold_prepacking_ops",
          [](script::Module& module) {
            return vulkanFoldPrePackingOps(module);
          })
      .def(
          "_jit_pass_vulkan_optimize_for_mobile",
          [](script::Module& module,
             std::vector<std::string>& preserved_methods) {
            return vulkanOptimizeForMobile(module, preserved_methods);
          })
      .def(
          "_jit_pass_onnx_unpack_quantized_weights",
          [](std::shared_ptr<Graph>& graph,
             std::map<std::string, IValue>& paramsDict) {
            UnpackQuantizedWeights(graph, paramsDict);
            return paramsDict;
          },
          pybind11::return_value_policy::move)
      .def(
          "_jit_pass_onnx_quantization_insert_permutes",
          [](std::shared_ptr<Graph>& graph,
             std::map<std::string, IValue>& paramsDict) {
            insertPermutes(graph, paramsDict);
            return paramsDict;
          },
          pybind11::return_value_policy::move)
      .def(
          "_jit_pass_filter_non_tensor_arguments",
          [](std::map<std::string, IValue> params) {
            std::map<std::string, at::Tensor> retval;
            for (auto& kv : params) {
              if (kv.second.isTensor()) {
                retval[kv.first] = std::move(kv.second).toTensor();
              }
            }
            return retval;
          })
      .def("_jit_decay_packed_param_input_types", [](Graph& g) {
        for (Value* i : g.inputs()) {
          if (i->type() ==
                  getCustomClass(
                      "__torch__.torch.classes.quantized.Conv2dPackedParamsBase") ||
              i->type() ==
                  getCustomClass(
                      "__torch__.torch.classes.quantized.Conv3dPackedParamsBase") ||
              i->type() ==
                  getCustomClass(
                      "__torch__.torch.classes.quantized.LinearPackedParamsBase")) {
            // Dummy CompleteTensorType to appease ONNX validator.
            i->setType(TensorType::create(
                at::kQInt8,
                c10::kCPU,
                std::vector<int64_t>{1},
                std::vector<int64_t>{1},
                c10::nullopt));
          }
        }
      });

  // NOLINTNEXTLINE(bugprone-unused-raii)
  py::class_<CompleteArgumentSpec>(m, "CompleteArgumentSpec")
      .def("__repr__", [](CompleteArgumentSpec& self) {
        std::ostringstream s;
        s << self;
        return s.str();
      });
  // NOLINTNEXTLINE(bugprone-unused-raii)
  py::class_<ArgumentSpec>(m, "ArgumentSpec");
  py::class_<Code>(m, "Code")
      .def(
          "grad_executor_states",
          [](Code& c) {
            std::vector<GraphExecutorState> states;
            for (auto& e : c.grad_executors()) {
              states.emplace_back(e->getDebugState());
            }
            return states;
          })
      .def("num_bailouts", [](Code& c) { return c.num_bailouts(); })
      .def("request_bailout", [](Code& c, size_t index) {
        c.request_bailout(index);
      });

  py::class_<ExecutionPlan>(m, "ExecutionPlan")
      .def_property_readonly("graph", [](ExecutionPlan& s) { return s.graph; })
      .def_property_readonly("code", [](ExecutionPlan& s) { return s.code; });

  py::class_<Gradient>(m, "Gradient")
      .def_property_readonly("f", [](Gradient& m) { return m.f; })
      .def_property_readonly("df", [](Gradient& m) { return m.df; })
      .def_property_readonly(
          "f_real_outputs", [](Gradient& m) { return m.f_real_outputs; })
      .def_property_readonly(
          "df_input_vjps", [](Gradient& m) { return m.df_input_vjps; })
      .def_property_readonly(
          "df_input_captured_inputs",
          [](Gradient& m) { return m.df_input_captured_inputs; })
      .def_property_readonly(
          "df_input_captured_outputs",
          [](Gradient& m) { return m.df_input_captured_outputs; })
      .def_property_readonly(
          "df_output_vjps", [](Gradient& m) { return m.df_output_vjps; });

  py::class_<GraphExecutorState>(m, "GraphExecutorState")
      .def_property_readonly(
          "graph", [](GraphExecutorState& s) { return s.graph; })
      .def_property_readonly(
          "execution_plans",
          [](GraphExecutorState& s) { return s.execution_plans; })
      .def_property_readonly(
          "fallback", [](GraphExecutorState& s) { return s.fallback; });

  py::class_<PyTorchStreamWriter>(m, "PyTorchFileWriter")
      .def(py::init<std::string>())
      .def(py::init([](const py::object& buffer) {
        auto writer_func = [=](const void* data, size_t size) {
          auto bytes = py::bytes(reinterpret_cast<const char*>(data), size);
          buffer.attr("write")(std::move(bytes));
          return size;
        };
        return std::make_unique<PyTorchStreamWriter>(std::move(writer_func));
      }))
      .def(py::init<const std::function<size_t(const void*, size_t)>&>())
      .def(
          "write_record",
          [](PyTorchStreamWriter& self,
             const std::string& name,
             const char* data,
             size_t size) { return self.writeRecord(name, data, size); })
      .def("write_end_of_file", &PyTorchStreamWriter::writeEndOfFile)
      .def(
          "write_record",
          [](PyTorchStreamWriter& self,
             const std::string& name,
             uintptr_t data,
             size_t size) {
            return self.writeRecord(
                name, reinterpret_cast<const char*>(data), size);
          });

  py::enum_<MobileOptimizerType>(m, "MobileOptimizerType")
      .value("CONV_BN_FUSION", MobileOptimizerType::CONV_BN_FUSION)
      .value(
          "INSERT_FOLD_PREPACK_OPS",
          MobileOptimizerType::INSERT_FOLD_PREPACK_OPS)
      .value("REMOVE_DROPOUT", MobileOptimizerType::REMOVE_DROPOUT)
      .value("FUSE_ADD_RELU", MobileOptimizerType::FUSE_ADD_RELU)
      .value(
          "HOIST_CONV_PACKED_PARAMS",
          MobileOptimizerType::HOIST_CONV_PACKED_PARAMS)
      .export_values();

  // This allows PyTorchStreamReader to read from a Python buffer. It requires
  // that the buffer implement `seek()`, `tell()`, and `read()`.
  class BufferAdapter : public caffe2::serialize::ReadAdapterInterface {
   public:
    BufferAdapter(const py::object& buffer) : buffer_(buffer) {
      // Jump to the end of the buffer to get its size
      auto current = buffer.attr("tell")();
      start_offset_ = py::cast<size_t>(current);
      buffer.attr("seek")(current, py::module::import("os").attr("SEEK_END"));
      size_ = py::cast<size_t>(buffer.attr("tell")()) - start_offset_;
      buffer.attr("seek")(current);

      // If we can read directly into a buffer, do that instead of an extra copy
      use_readinto_ = py::hasattr(buffer, "readinto");
    }

    size_t size() const override {
      return size_;
    }

    THPObjectPtr getMemview(void* buf, size_t n) const {
      THPObjectPtr memview(PyMemoryView_FromMemory(
          reinterpret_cast<char*>(buf), n, PyBUF_WRITE));
      if (!memview) {
        throw python_error();
      }
      return memview;
    }

    size_t read(uint64_t pos, void* buf, size_t n, const char* what)
        const override {
      // Seek to desired position (NB: this has to be a Py_ssize_t or Python
      // throws a weird error)
      Py_ssize_t absolute_pos = start_offset_ + pos;
      buffer_.attr("seek")(absolute_pos);

      if (use_readinto_) {
        auto memview = getMemview(buf, n);
        auto res =
            PyObject_CallMethod(buffer_.ptr(), "readinto", "O", memview.get());
        if (res) {
          int64_t i = static_cast<int64_t>(PyLong_AsLongLong(res));
          if (i > 0) {
            return i;
          }
        }
      }

      // Read bytes into `buf` from the buffer
      std::string bytes = py::cast<std::string>(buffer_.attr("read")(n));
      std::copy(
          bytes.data(),
          bytes.data() + bytes.size(),
          reinterpret_cast<char*>(buf));
      return bytes.size();
    }

    py::object buffer_;
    size_t size_;
    size_t start_offset_;
    bool use_readinto_;
  };

  py::class_<PyTorchStreamReader>(m, "PyTorchFileReader")
      .def(py::init<std::string>())
      .def(py::init([](const py::object& buffer) {
        auto adapter = std::make_unique<BufferAdapter>(std::move(buffer));
        return std::make_unique<PyTorchStreamReader>(std::move(adapter));
      }))
      .def(
          "get_record",
          [](PyTorchStreamReader& self, const std::string& key) {
            at::DataPtr data;
            size_t size;
            std::tie(data, size) = self.getRecord(key);
            return py::bytes(reinterpret_cast<const char*>(data.get()), size);
          })
      .def(
          "get_storage_from_record",
          [](PyTorchStreamReader& self,
             const std::string& key,
             size_t numel,
             py::object data_type_obj) {
            at::DataPtr data(std::get<0>(self.getRecord(key)));
            auto scalar_type =
                reinterpret_cast<THPDtype*>(data_type_obj.ptr())->scalar_type;

            c10::Storage storage(
                c10::Storage::use_byte_size_t(),
                numel * elementSize(scalar_type),
                std::move(data),
                /*allocator=*/nullptr,
                /*resizable=*/false);
            auto ptr =
                c10::make_intrusive<at::TensorImpl, at::UndefinedTensorImpl>(
                    std::move(storage),
                    at::DispatchKeySet(),
                    at::CPU(scalar_type).typeMeta());
            return at::Tensor(std::move(ptr));
          })
      .def("get_all_records", [](PyTorchStreamReader& self) {
        return self.getAllRecords();
      });

  m.def(
      "_jit_get_operation",
      [](const std::string& op_name) {
        try {
          auto symbol = Symbol::fromQualString(op_name);
          auto operations = getAllOperatorsFor(symbol);
          TORCH_CHECK(!operations.empty(), "No such operator ", op_name);
          std::ostringstream docstring;
          docstring << "Automatically bound operator '" << op_name
                    << "' with schema(s):\n";

          for (const auto& op : operations) {
            docstring << "  " << op->schema() << "\n";
          }

          auto func = py::cpp_function(
              [operations, symbol](py::args args, py::kwargs kwargs) {
                std::vector<py::handle> overloaded_args;
                size_t total_arg_num = args.size() + kwargs.size();
                for (size_t i = 0; i < args.size(); ++i) {
                  is_tensor_and_append_overloaded(
                      args[i].ptr(), &overloaded_args);
                  is_tensor_list_and_append_overloaded(
                      args[i].ptr(),
                      &overloaded_args,
                      static_cast<int>(total_arg_num),
                      false /* throw_error */);
                }
                // NB: for kwargs, we cannot guarantee the order of appending
                // is the same as the argument order in operator's schema.
                // This is suboptimal, but should be fine. Later when we have
                // better schema matching and argument parsing, we could
                // match the operator in `operations` first, then the order will
                // be guaranteed.
                for (auto item : kwargs) {
                  is_tensor_and_append_overloaded(
                      item.second.ptr(), &overloaded_args);
                  is_tensor_list_and_append_overloaded(
                      item.second.ptr(),
                      &overloaded_args,
                      total_arg_num,
                      false /* throw_error */);
                }
                if (overloaded_args.size() > 0) {
                  std::vector<py::object> overloaded_types;
                  overloaded_types.reserve(overloaded_args.size());
                  for (auto& oarg : overloaded_args) {
                    overloaded_types.push_back(
                        py::reinterpret_borrow<py::object>(
                            (PyObject*)Py_TYPE(oarg.ptr())));
                  }
                  py::tuple py_types = py::cast(overloaded_types);
                  py::object ret;
                  std::string ns = symbol.ns().toUnqualString();
                  std::string method_name = symbol.toUnqualString();
                  auto self_func = py::module::import("torch")
                                       .attr("ops")
                                       .attr(ns.c_str())
                                       .attr(method_name.c_str());
                  std::string module_name("torch.ops");
                  module_name.append(ns);
                  return pybind11::reinterpret_steal<py::object>(
                      handle_torch_function_no_python_arg_parser(
                          overloaded_args,
                          args.ptr(),
                          kwargs.ptr(),
                          method_name.c_str(),
                          self_func.ptr(),
                          module_name.c_str()));
                }
                return invokeOperatorFromPython(
                    operations, std::move(args), std::move(kwargs));
              },
              py::name(symbol.toUnqualString()),
              py::doc(docstring.str().c_str()));
          return func;
        } catch (const c10::Error& error) {
          throw std::runtime_error(error.what_without_backtrace());
        }
      },
      py::arg("qualified_name"));

  m.def("parse_ir", [](const std::string& input) {
    auto graph = std::make_shared<Graph>();
    parseIR(input, &*graph);
    return graph;
  });
  m.def("parse_schema", parseSchema);
  m.def("unify_type_list", [](const std::vector<TypePtr>& types) {
    std::ostringstream s;
    auto type = unifyTypeList(types, s);
    if (!type) {
      throw std::runtime_error(s.str());
    }
    return type.value();
  });

  py::class_<FunctionSchema>(m, "FunctionSchema")
      .def_property_readonly(
          "name", [](FunctionSchema& self) { return self.name(); })
      .def_property_readonly(
          "overload_name",
          [](FunctionSchema& self) { return self.overload_name(); })
      .def_property_readonly(
          "arguments", [](FunctionSchema& self) { return self.arguments(); })
      .def_property_readonly(
          "returns", [](FunctionSchema& self) { return self.returns(); })
      .def(
          "is_backward_compatible_with",
          [](const FunctionSchema& self, const FunctionSchema& old_schema) {
            return self.isBackwardCompatibleWith(old_schema);
          })
      .def(
          "__eq__",
          [](const FunctionSchema& self, const FunctionSchema& other) {
            return self == other;
          })
      .def("__str__", [](FunctionSchema& self) {
        std::stringstream ss;
        ss << self;
        return ss.str();
      });
  py::class_<Argument>(m, "Argument")
      .def_property_readonly("name", [](Argument& self) { return self.name(); })
      .def_property_readonly("type", [](Argument& self) { return self.type(); })
      .def_property_readonly(
          "N",
          [](Argument& self) -> py::object {
            return (self.N()) ? py::cast(*self.N()) : py::none();
          })
      .def_property_readonly(
          "default_value",
          [](Argument& self) -> py::object {
            if (!self.default_value()) {
              return py::none();
            }
            IValue v = *self.default_value();
            return toPyObject(std::move(v));
          })
      .def("has_default_value", [](Argument& self) -> py::bool_ {
        return self.default_value().has_value();
      });
  m.def("_jit_get_all_schemas", []() {
    const std::vector<std::shared_ptr<Operator>>& operations =
        getAllOperators();
    return fmap(operations, [](const std::shared_ptr<Operator>& op) {
      return op->schema();
    });
  });
  m.def("_jit_get_custom_class_schemas", customClassSchemasForBCCheck);
  m.def("_jit_get_schemas_for_operator", [](const std::string& qualified_name) {
    auto symbol = Symbol::fromQualString(qualified_name);
    auto operations = getAllOperatorsFor(symbol);
    return fmap(operations, [](const std::shared_ptr<Operator>& op) {
      return op->schema();
    });
  });
  m.def("_is_tracing", []() { return jit::tracer::isTracing(); });

  py::class_<PythonFutureWrapper, std::shared_ptr<PythonFutureWrapper>>(
      m, "Future")
      .def(py::init([]() {
        return std::make_shared<PythonFutureWrapper>(
            c10::make_intrusive<c10::ivalue::Future>(PyObjectType::get()));
      }))
      .def(
          "done",
          // Intentionally not releasing GIL
          &PythonFutureWrapper::done)
      .def(
          "value",
          &PythonFutureWrapper::value,
          py::call_guard<py::gil_scoped_release>())
      .def(
          "wait",
          &PythonFutureWrapper::wait,
          py::call_guard<py::gil_scoped_release>())
      .def(
          "then",
          &PythonFutureWrapper::then,
          py::call_guard<py::gil_scoped_release>())
      .def(
          "set_result",
          // Intentionally not releasing GIL
          &PythonFutureWrapper::markCompleted)
      .def(
          py::pickle(
              /* __getstate__ */
              [](const PythonFutureWrapper& /* unused */) {
                TORCH_CHECK(false, "Can not pickle torch.futures.Future");
                // Note that this return has no meaning since we always
                // throw, it's only here to satisfy Pybind API's
                // requirement.
                return py::make_tuple();
              },
              /* __setstate__ */
              [](const py::tuple& /* unused */) { // NOLINT
                TORCH_CHECK(false, "Can not unpickle torch.futures.Future");
                // Note that this return has no meaning since we always
                // throw, it's only here to satisfy PyBind's API
                // requirement.
                return nullptr;
              }),
          py::call_guard<py::gil_scoped_release>());

  m.def("fork", [](const py::args& args, const py::kwargs& kwargs) {
    AT_ASSERT(args.size() >= 1);

    py::function f = py::cast<py::function>(args[0]);
    py::tuple args_tup(args.size() - 1);

    for (size_t i = 1; i < args.size(); ++i) {
      args_tup[i - 1] = args[i];
    }

    if (jit::tracer::isTracing()) {
      auto graph = jit::tracer::getTracingState()->graph;
      auto fork_node = graph->insertNode(graph->create(prim::TracedFork, 1));
      auto body_block = fork_node->addBlock();

      Value* node_output;
      py::object py_func_output;
      // Insert new trace ops into the fork op's sub-block
      WithInsertPoint guard(body_block);
      IValue output_ivalue;
      {
        tracer::WithNestedTracingFrame env_guard;

        // Run the user-supplied function
        py_func_output = f(*args_tup, **kwargs);

        // Convert the output of the user-supplied function to IValue. The type
        // information of this IValue is used both to record the correct type in
        // the trace.
        output_ivalue = toTypeInferredIValue(py_func_output);
        Value* out_val = jit::tracer::getValueTrace(output_ivalue);
        body_block->registerOutput(out_val);
        node_output =
            fork_node->output()->setType(FutureType::create(out_val->type()));
      }

      auto retval =
          c10::make_intrusive<c10::ivalue::Future>(output_ivalue.type());

      // Record the ivalue in the tracer
      jit::tracer::setValueTrace(retval, node_output);

      // stuff the ivalue output in the Future
      retval->markCompleted(output_ivalue);

      return std::make_shared<PythonFutureWrapper>(retval);
    } else {
      auto result = toTypeInferredIValue(f(*args_tup, **kwargs));
      auto retval = c10::make_intrusive<c10::ivalue::Future>(result.type());
      retval->markCompleted(std::move(result));
      return std::make_shared<PythonFutureWrapper>(retval);
    }
  });

  m.def("wait", [](const std::shared_ptr<PythonFutureWrapper>& fut) {
    return fut->wait();
  });

  m.def(
      "_collect_all",
      [](const std::vector<std::shared_ptr<jit::PythonFutureWrapper>>& futures)
          -> std::shared_ptr<jit::PythonFutureWrapper> {
        auto typePtr =
            futures.empty() ? AnyType::get() : futures[0]->fut->elementType();
        c10::List<c10::intrusive_ptr<c10::ivalue::Future>> asList(
            c10::FutureType::create(typePtr));
        asList.reserve(futures.size());
        for (const auto& f : futures) {
          asList.push_back(f->fut);
        }
        return std::make_shared<jit::PythonFutureWrapper>(
            c10::collectAll(asList),
            /* unwrap_func */ [futures](const py::object& /*unused*/) {
              // Throw errors when calling wait() on the returned Future if
              // any of the original futures would throw.
              // NB: PythonFutureWrapper takes an unwrap_func which serves as a
              // callback to evalute the value in the Future. RPC uses this
              // unwrap_func to check whether the returned py::object is a
              // RemoteException object, and re-throw the exception if it is.
              // By extracting the c10::ivalue::Future from PythonFutureWrapper
              // the unwrap_func on the original PythonFutureWrapper objects are
              // discarded, and hence it will return the RemoteException as an
              // object instead of re-throwing it.
              for (auto& fut : futures) {
                fut->wait();
              }
            });
      });

  m.def("_jit_assert_is_instance", [](py::object obj, TypePtr type) {
    toIValue(obj, type);
  });

  initPythonCustomClassBindings(module);
  initPythonIRBindings(module);
  tracer::initPythonTracerBindings(module);
  initTreeViewBindings(module);
  initJitScriptBindings(module);
  initJitBackendBindings(module);
  initStaticRuntimeBindings(module);

  setPrintHandler([](const std::string& str) {
    py::gil_scoped_acquire acquire;
    try {
      auto _stdout = py::module::import("sys").attr("stdout");
      _stdout.attr("write")(str);
    } catch (py::error_already_set& e) {
      throw std::runtime_error(e.what());
    }
  });
}
} // namespace jit
} // namespace torch