1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
|
#include <torch/csrc/jit/runtime/profiling_record.h>
#include <ATen/core/interned_strings.h>
#include <torch/csrc/jit/jit_log.h>
#include <torch/csrc/jit/passes/clear_profiling.h>
#include <torch/csrc/jit/passes/constant_propagation.h>
#include <torch/csrc/jit/passes/tensorexpr_fuser.h>
#include <torch/csrc/jit/runtime/graph_executor.h>
#include <torch/csrc/jit/runtime/interpreter.h>
namespace torch {
namespace jit {
bool ShapeSymbolTable::bindSymbolicShapes(
at::IntArrayRef new_sizes,
const c10::SymbolicShape& sym_shapes) {
if (!sym_shapes.rank().has_value()) {
return true;
}
if (*sym_shapes.rank() != new_sizes.size()) {
return false;
}
for (size_t i = 0; i < new_sizes.size(); i++) {
auto symbol = (*sym_shapes.sizes())[i];
if (!symbol.is_static()) {
continue;
}
if (!isBound(symbol)) {
assign(symbol, new_sizes[i]);
continue;
}
if (getValue(symbol) != new_sizes[i]) {
return false;
}
}
return true;
}
ProfilingRecord::ProfilingRecord(std::shared_ptr<Graph> g)
: profiled_graph_(std::move(g)), profiling_count_(getNumProfiledRuns()) {}
ProfileOp* ProfilingRecord::createProfileNode(
const std::function<void(Stack&)>& fp,
at::ArrayRef<Value*> inputs) {
auto pn = new ProfileOp(profiled_graph_.get(), fp);
for (auto in : inputs) {
pn->addInput(in);
}
return pn;
}
ProfileOptionalOp* ProfilingRecord::createProfileOptionalNode(
const std::function<void(Stack&)>& fp,
at::ArrayRef<Value*> inputs) {
auto pn = new ProfileOptionalOp(profiled_graph_.get(), fp);
pn->i_(attr::num_present, 0);
pn->i_(attr::num_none, 0);
for (auto in : inputs) {
pn->addInput(in);
}
return pn;
}
static void unprofileGraphInputs(const std::shared_ptr<Graph>& graph) {
for (auto i : graph->inputs()) {
if (i->type()->isSubtypeOf(TensorType::get())) {
i->setType(unshapedType(i->type()));
}
}
}
static void unprofileBlock(Block* start_block) {
std::vector<Block*> stack;
stack.push_back(start_block);
while (!stack.empty()) {
Block* block = stack.back();
stack.pop_back();
for (auto n : block->nodes()) {
for (auto o : n->outputs()) {
if (o->type()->isSubtypeOf(TensorType::get())) {
o->setType(unshapedType(o->type()));
}
}
stack.insert(stack.end(), n->blocks().begin(), n->blocks().end());
}
}
}
c10::SymbolicShape ProfilingRecord::mergeSymbolicShapes(
const c10::SymbolicShape& new_sizes,
const c10::SymbolicShape& sym_shapes,
SetPartitioningHelper& partition_helper) {
std::vector<c10::ShapeSymbol> new_symbols;
TORCH_INTERNAL_ASSERT(
new_sizes.rank().has_value() && sym_shapes.rank().has_value() &&
*new_sizes.rank() == *sym_shapes.rank());
for (size_t i = 0; i < *new_sizes.rank(); i++) {
if (!(*sym_shapes.sizes())[i].is_static() ||
!(*new_sizes.sizes())[i].is_static()) {
new_symbols.emplace_back();
continue;
}
auto symbol = (*sym_shapes.sizes())[i];
Dimension new_size = (*new_sizes.sizes())[i].static_size();
GRAPH_DEBUG("Merging symbol ", symbol);
auto new_sym = partition_helper.partitionSetByDimension(new_size, symbol);
new_symbols.emplace_back(new_sym);
}
return c10::SymbolicShape(new_symbols);
}
void ProfilingRecord::insertShapeProfile(Node* n, size_t offset) {
Value* i = n->input(offset);
auto pn = createProfileNode(nullptr, {i});
auto pno = pn->addOutput();
pn->ty_(attr::profiled_type, TensorType::get());
pno->setType(TensorType::get());
std::function<void(Stack&)> shape_profiler = [this, pno](Stack& stack) {
int64_t frame_id = 0;
pop(stack, frame_id);
IValue v;
pop(stack, v);
if (v.isTensor()) {
std::lock_guard<std::mutex> lock(this->mutex_);
auto& profiled_types = profiled_types_per_frame_[frame_id];
auto t = v.toTensor();
if (t.defined()) {
auto pttp = tensorTypeInCurrentExecutionContext(t);
GRAPH_DEBUG(
"In run ",
frame_id,
" annotating %",
pno->debugName(),
" with ",
*pttp);
if (profiled_types.count(pno) == 0) {
profiled_types.insert({pno, pttp});
} else {
auto type = profiled_types.at(pno);
GRAPH_DEBUG("Existing type for %", pno->debugName(), " ", *type);
pttp = type->merge(pttp);
GRAPH_DEBUG("Result for %", pno->debugName(), " ", *pttp);
profiled_types[pno] = pttp;
}
} else {
profiled_types[pno] = TensorType::get()->withUndefined();
}
}
// passing t through
push(stack, v);
};
pn->setCallback(shape_profiler);
pn->insertBefore(n);
n->replaceInput(offset, pn->output());
}
bool needsProfiledInputs(Node* n) {
if (tensorexpr::isSupported(n)) {
return true;
}
switch (n->kind()) {
// specialize_autogradzero
case prim::AutogradAdd:
case prim::AutogradAnyNonZero:
case prim::AutogradAllNonZero:
case prim::AutogradAllZero:
case prim::AutogradZero:
// peephole
case aten::dim:
case aten::size:
case aten::expand:
case prim::dtype:
case prim::device:
case prim::is_cuda:
case aten::is_floating_point:
case aten::type_as:
// TODO: hack to make `test_lstm_gates_permutations_cuda`
// pass.
case aten::t:
case aten::mm:
return true;
default:
return false;
}
}
bool needsProfiledOutput(Node* n) {
if (tensorexpr::isSupported(n)) {
return true;
}
switch (n->kind()) {
case prim::AutogradAdd:
case prim::AutogradZero:
return true;
default:
return false;
}
}
void ProfilingRecord::removeProfileCounter(Block* b) {
for (auto it = b->nodes().rbegin(); it != b->nodes().rend();) {
auto n = *it;
if (n->kind() == prim::profile && n->inputs().size() == 0) {
it.destroyCurrent();
// there is only one counter node
return;
} else {
it++;
}
}
}
bool hasGradSumToSizeUses(Value* v) {
return std::any_of(v->uses().begin(), v->uses().end(), [](const Use& use) {
return use.user->kind() == aten::_grad_sum_to_size;
});
}
void ProfilingRecord::instrumentBlock(Block* block) {
for (auto it = block->nodes().begin(); it != block->nodes().end(); ++it) {
auto n = *it;
for (size_t offset = 0; offset < n->inputs().size(); offset++) {
auto i = n->input(offset);
if (i->type()->kind() == c10::TypeKind::TensorType &&
(needsProfiledInputs(n) || needsProfiledOutput(i->node()))) {
insertShapeProfile(n, offset);
}
if (i->type()->cast<OptionalType>() && hasGradSumToSizeUses(i)) {
// here we are profile the definition instead of the use,
// because we are only optimizing in the case of a None value which is
// immutable
auto opt_pn = createProfileOptionalNode(nullptr, {i});
std::function<void(Stack&)> optional_profiler = [this,
opt_pn](Stack& stack) {
std::lock_guard<std::mutex> lock(this->mutex_);
// frame_id is unused
int64_t frame_id = 0;
pop(stack, frame_id);
IValue value;
pop(stack, value);
if (value.isNone()) {
opt_pn->i_(attr::num_none, opt_pn->i(attr::num_none) + 1);
} else {
opt_pn->i_(attr::num_present, opt_pn->i(attr::num_present) + 1);
}
push(stack, value);
};
opt_pn->setCallback(optional_profiler);
auto pno = opt_pn->addOutput();
pno->setType(i->type());
opt_pn->insertAfter(i->node());
i->replaceAllUsesAfterNodeWith(opt_pn, pno);
}
}
for (auto b : n->blocks()) {
instrumentBlock(b);
}
}
// inserting profile nodes on block outputs
// allows us to eliminate more guards as
// the use of a guard is now in the same
// block as opposed to being separated from
// the definition by block boundaries
for (size_t offset = 0; offset < block->return_node()->inputs().size();
offset++) {
auto i = block->return_node()->input(offset);
if (i->type()->isSubtypeOf(TensorType::get())) {
insertShapeProfile(block->return_node(), offset);
}
}
}
void ProfilingRecord::removeProfilingNodes(Block* b) {
for (auto it = b->nodes().begin(); it != b->nodes().end(); it++) {
if (it->kind() == prim::profile || it->kind() == prim::profile_optional) {
it->output()->replaceAllUsesWith(it->input());
it.destroyCurrent();
} else {
for (Block* ib : it->blocks()) {
removeProfilingNodes(ib);
}
}
}
}
std::unique_ptr<ProfilingRecord> ProfilingRecord::instrumentGraph(
const std::shared_ptr<Graph>& graph) {
auto new_g = graph->copy();
auto pr = std::unique_ptr<ProfilingRecord>(new ProfilingRecord(new_g));
auto raw_pr = pr.get();
unprofileGraphInputs(new_g);
unprofileBlock(new_g->block());
pr->instrumentBlock(new_g->block());
std::function<void(Stack&)> counter = [raw_pr](Stack& stack) {
int64_t frame_id = 0;
pop(stack, frame_id);
std::lock_guard<std::mutex> lock(raw_pr->mutex_);
if (raw_pr->profiling_count_ > 0) {
raw_pr->profiling_count_--;
}
// merge profiling information from all runs
if (raw_pr->profiling_count_ == 0) {
GRAPH_DEBUG(
"Collected ",
raw_pr->profiled_types_per_frame_.size(),
" records for run ",
frame_id);
if (raw_pr->profiled_types_per_frame_.size() == 0) {
return;
}
// the key is a frame id
// the value is a mapping from a Value in a graph
// to a profiled TensorType
// we make a copy of profiling information from the very first run
// and use it for building the symbol sets
auto profiled_types_iter = raw_pr->profiled_types_per_frame_.begin();
auto merged_profiled_types = profiled_types_iter->second;
profiled_types_iter++;
// merge profiling information from next runs into the first one
for (; profiled_types_iter != raw_pr->profiled_types_per_frame_.end();
profiled_types_iter++) {
SetPartitioningHelper partition_helper;
for (const auto& val_type_pair : profiled_types_iter->second) {
if (merged_profiled_types.count(val_type_pair.first) == 0) {
merged_profiled_types[val_type_pair.first] = val_type_pair.second;
} else {
auto type = merged_profiled_types[val_type_pair.first];
auto merged_type = type->merge(val_type_pair.second);
if (merged_type->sizes().size().has_value()) {
auto new_shape = raw_pr->mergeSymbolicShapes(
val_type_pair.second->symbolic_sizes(),
type->symbolic_sizes(),
partition_helper);
GRAPH_DEBUG(
"Merging ",
*val_type_pair.second,
" of run ",
profiled_types_iter->first,
" into ",
*type);
merged_type = type->withSymbolicShapes(new_shape);
GRAPH_DEBUG("Result : ", *merged_type);
merged_profiled_types[val_type_pair.first] = merged_type;
} else {
// reset symbolic shapes when ranks are different
type = type->merge(val_type_pair.second);
merged_profiled_types[val_type_pair.first] = type;
}
}
}
}
// update types in the graph
for (auto val_type_pair : merged_profiled_types) {
val_type_pair.first->node()->ty_(
attr::profiled_type, val_type_pair.second);
}
}
};
auto pop = pr->createProfileNode(counter, {});
new_g->appendNode(pop);
GRAPH_DUMP("Instrumented Graph: ", new_g);
return pr;
}
} // namespace jit
} // namespace torch
|