File: profiling_record.cpp

package info (click to toggle)
pytorch 1.7.1-7
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 80,340 kB
  • sloc: cpp: 670,830; python: 343,991; ansic: 67,845; asm: 5,503; sh: 2,924; java: 2,888; xml: 266; makefile: 244; ruby: 148; yacc: 144; objc: 51; lex: 44
file content (389 lines) | stat: -rw-r--r-- 11,971 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
#include <torch/csrc/jit/runtime/profiling_record.h>
#include <ATen/core/interned_strings.h>
#include <torch/csrc/jit/jit_log.h>
#include <torch/csrc/jit/passes/clear_profiling.h>
#include <torch/csrc/jit/passes/constant_propagation.h>
#include <torch/csrc/jit/passes/tensorexpr_fuser.h>
#include <torch/csrc/jit/runtime/graph_executor.h>
#include <torch/csrc/jit/runtime/interpreter.h>

namespace torch {
namespace jit {

bool ShapeSymbolTable::bindSymbolicShapes(
    at::IntArrayRef new_sizes,
    const c10::SymbolicShape& sym_shapes) {
  if (!sym_shapes.rank().has_value()) {
    return true;
  }
  if (*sym_shapes.rank() != new_sizes.size()) {
    return false;
  }
  for (size_t i = 0; i < new_sizes.size(); i++) {
    auto symbol = (*sym_shapes.sizes())[i];
    if (!symbol.is_static()) {
      continue;
    }

    if (!isBound(symbol)) {
      assign(symbol, new_sizes[i]);
      continue;
    }

    if (getValue(symbol) != new_sizes[i]) {
      return false;
    }
  }
  return true;
}

ProfilingRecord::ProfilingRecord(std::shared_ptr<Graph> g)
    : profiled_graph_(std::move(g)), profiling_count_(getNumProfiledRuns()) {}

ProfileOp* ProfilingRecord::createProfileNode(
    const std::function<void(Stack&)>& fp,
    at::ArrayRef<Value*> inputs) {
  auto pn = new ProfileOp(profiled_graph_.get(), fp);

  for (auto in : inputs) {
    pn->addInput(in);
  }
  return pn;
}

ProfileOptionalOp* ProfilingRecord::createProfileOptionalNode(
    const std::function<void(Stack&)>& fp,
    at::ArrayRef<Value*> inputs) {
  auto pn = new ProfileOptionalOp(profiled_graph_.get(), fp);
  pn->i_(attr::num_present, 0);
  pn->i_(attr::num_none, 0);

  for (auto in : inputs) {
    pn->addInput(in);
  }
  return pn;
}

static void unprofileGraphInputs(const std::shared_ptr<Graph>& graph) {
  for (auto i : graph->inputs()) {
    if (i->type()->isSubtypeOf(TensorType::get())) {
      i->setType(unshapedType(i->type()));
    }
  }
}

static void unprofileBlock(Block* start_block) {
  std::vector<Block*> stack;
  stack.push_back(start_block);

  while (!stack.empty()) {
    Block* block = stack.back();
    stack.pop_back();

    for (auto n : block->nodes()) {
      for (auto o : n->outputs()) {
        if (o->type()->isSubtypeOf(TensorType::get())) {
          o->setType(unshapedType(o->type()));
        }
      }
      stack.insert(stack.end(), n->blocks().begin(), n->blocks().end());
    }
  }
}

c10::SymbolicShape ProfilingRecord::mergeSymbolicShapes(
    const c10::SymbolicShape& new_sizes,
    const c10::SymbolicShape& sym_shapes,
    SetPartitioningHelper& partition_helper) {
  std::vector<c10::ShapeSymbol> new_symbols;
  TORCH_INTERNAL_ASSERT(
      new_sizes.rank().has_value() && sym_shapes.rank().has_value() &&
      *new_sizes.rank() == *sym_shapes.rank());

  for (size_t i = 0; i < *new_sizes.rank(); i++) {
    if (!(*sym_shapes.sizes())[i].is_static() ||
        !(*new_sizes.sizes())[i].is_static()) {
      new_symbols.emplace_back();
      continue;
    }
    auto symbol = (*sym_shapes.sizes())[i];
    Dimension new_size = (*new_sizes.sizes())[i].static_size();
    GRAPH_DEBUG("Merging symbol ", symbol);
    auto new_sym = partition_helper.partitionSetByDimension(new_size, symbol);
    new_symbols.emplace_back(new_sym);
  }

  return c10::SymbolicShape(new_symbols);
}

void ProfilingRecord::insertShapeProfile(Node* n, size_t offset) {
  Value* i = n->input(offset);
  auto pn = createProfileNode(nullptr, {i});
  auto pno = pn->addOutput();
  pn->ty_(attr::profiled_type, TensorType::get());
  pno->setType(TensorType::get());
  std::function<void(Stack&)> shape_profiler = [this, pno](Stack& stack) {
    int64_t frame_id = 0;
    pop(stack, frame_id);
    IValue v;
    pop(stack, v);
    if (v.isTensor()) {
      std::lock_guard<std::mutex> lock(this->mutex_);
      auto& profiled_types = profiled_types_per_frame_[frame_id];
      auto t = v.toTensor();
      if (t.defined()) {
        auto pttp = tensorTypeInCurrentExecutionContext(t);
        GRAPH_DEBUG(
            "In run ",
            frame_id,
            " annotating %",
            pno->debugName(),
            " with ",
            *pttp);
        if (profiled_types.count(pno) == 0) {
          profiled_types.insert({pno, pttp});
        } else {
          auto type = profiled_types.at(pno);
          GRAPH_DEBUG("Existing type for %", pno->debugName(), " ", *type);
          pttp = type->merge(pttp);
          GRAPH_DEBUG("Result for %", pno->debugName(), " ", *pttp);
          profiled_types[pno] = pttp;
        }
      } else {
        profiled_types[pno] = TensorType::get()->withUndefined();
      }
    }
    // passing t through
    push(stack, v);
  };

  pn->setCallback(shape_profiler);
  pn->insertBefore(n);
  n->replaceInput(offset, pn->output());
}

bool needsProfiledInputs(Node* n) {
  if (tensorexpr::isSupported(n)) {
    return true;
  }

  switch (n->kind()) {
    // specialize_autogradzero
    case prim::AutogradAdd:
    case prim::AutogradAnyNonZero:
    case prim::AutogradAllNonZero:
    case prim::AutogradAllZero:
    case prim::AutogradZero:
    // peephole
    case aten::dim:
    case aten::size:
    case aten::expand:
    case prim::dtype:
    case prim::device:
    case prim::is_cuda:
    case aten::is_floating_point:
    case aten::type_as:
    // TODO: hack to make `test_lstm_gates_permutations_cuda`
    // pass.
    case aten::t:
    case aten::mm:
      return true;
    default:
      return false;
  }
}

bool needsProfiledOutput(Node* n) {
  if (tensorexpr::isSupported(n)) {
    return true;
  }

  switch (n->kind()) {
    case prim::AutogradAdd:
    case prim::AutogradZero:
      return true;
    default:
      return false;
  }
}

void ProfilingRecord::removeProfileCounter(Block* b) {
  for (auto it = b->nodes().rbegin(); it != b->nodes().rend();) {
    auto n = *it;
    if (n->kind() == prim::profile && n->inputs().size() == 0) {
      it.destroyCurrent();
      // there is only one counter node
      return;
    } else {
      it++;
    }
  }
}

bool hasGradSumToSizeUses(Value* v) {
  return std::any_of(v->uses().begin(), v->uses().end(), [](const Use& use) {
    return use.user->kind() == aten::_grad_sum_to_size;
  });
}

void ProfilingRecord::instrumentBlock(Block* block) {
  for (auto it = block->nodes().begin(); it != block->nodes().end(); ++it) {
    auto n = *it;
    for (size_t offset = 0; offset < n->inputs().size(); offset++) {
      auto i = n->input(offset);
      if (i->type()->kind() == c10::TypeKind::TensorType &&
          (needsProfiledInputs(n) || needsProfiledOutput(i->node()))) {
        insertShapeProfile(n, offset);
      }

      if (i->type()->cast<OptionalType>() && hasGradSumToSizeUses(i)) {
        // here we are profile the definition instead of the use,
        // because we are only optimizing in the case of a None value which is
        // immutable
        auto opt_pn = createProfileOptionalNode(nullptr, {i});
        std::function<void(Stack&)> optional_profiler = [this,
                                                         opt_pn](Stack& stack) {
          std::lock_guard<std::mutex> lock(this->mutex_);
          // frame_id is unused
          int64_t frame_id = 0;
          pop(stack, frame_id);
          IValue value;
          pop(stack, value);
          if (value.isNone()) {
            opt_pn->i_(attr::num_none, opt_pn->i(attr::num_none) + 1);
          } else {
            opt_pn->i_(attr::num_present, opt_pn->i(attr::num_present) + 1);
          }
          push(stack, value);
        };
        opt_pn->setCallback(optional_profiler);
        auto pno = opt_pn->addOutput();
        pno->setType(i->type());
        opt_pn->insertAfter(i->node());
        i->replaceAllUsesAfterNodeWith(opt_pn, pno);
      }
    }

    for (auto b : n->blocks()) {
      instrumentBlock(b);
    }
  }

  // inserting profile nodes on block outputs
  // allows us to eliminate more guards as
  // the use of a guard is now in the same
  // block as opposed to being separated from
  // the definition by block boundaries
  for (size_t offset = 0; offset < block->return_node()->inputs().size();
       offset++) {
    auto i = block->return_node()->input(offset);
    if (i->type()->isSubtypeOf(TensorType::get())) {
      insertShapeProfile(block->return_node(), offset);
    }
  }
}

void ProfilingRecord::removeProfilingNodes(Block* b) {
  for (auto it = b->nodes().begin(); it != b->nodes().end(); it++) {
    if (it->kind() == prim::profile || it->kind() == prim::profile_optional) {
      it->output()->replaceAllUsesWith(it->input());
      it.destroyCurrent();
    } else {
      for (Block* ib : it->blocks()) {
        removeProfilingNodes(ib);
      }
    }
  }
}

std::unique_ptr<ProfilingRecord> ProfilingRecord::instrumentGraph(
    const std::shared_ptr<Graph>& graph) {
  auto new_g = graph->copy();

  auto pr = std::unique_ptr<ProfilingRecord>(new ProfilingRecord(new_g));
  auto raw_pr = pr.get();
  unprofileGraphInputs(new_g);
  unprofileBlock(new_g->block());
  pr->instrumentBlock(new_g->block());

  std::function<void(Stack&)> counter = [raw_pr](Stack& stack) {
    int64_t frame_id = 0;
    pop(stack, frame_id);

    std::lock_guard<std::mutex> lock(raw_pr->mutex_);

    if (raw_pr->profiling_count_ > 0) {
      raw_pr->profiling_count_--;
    }

    // merge profiling information from all runs
    if (raw_pr->profiling_count_ == 0) {
      GRAPH_DEBUG(
          "Collected ",
          raw_pr->profiled_types_per_frame_.size(),
          " records for run ",
          frame_id);

      if (raw_pr->profiled_types_per_frame_.size() == 0) {
        return;
      }

      // the key is a frame id
      // the value is a mapping from a Value in a graph
      // to a profiled TensorType
      // we make a copy of profiling information from the very first run
      // and use it for building the symbol sets
      auto profiled_types_iter = raw_pr->profiled_types_per_frame_.begin();
      auto merged_profiled_types = profiled_types_iter->second;
      profiled_types_iter++;

      // merge profiling information from next runs into the first one
      for (; profiled_types_iter != raw_pr->profiled_types_per_frame_.end();
           profiled_types_iter++) {
        SetPartitioningHelper partition_helper;
        for (const auto& val_type_pair : profiled_types_iter->second) {
          if (merged_profiled_types.count(val_type_pair.first) == 0) {
            merged_profiled_types[val_type_pair.first] = val_type_pair.second;
          } else {
            auto type = merged_profiled_types[val_type_pair.first];
            auto merged_type = type->merge(val_type_pair.second);
            if (merged_type->sizes().size().has_value()) {
              auto new_shape = raw_pr->mergeSymbolicShapes(
                  val_type_pair.second->symbolic_sizes(),
                  type->symbolic_sizes(),
                  partition_helper);
              GRAPH_DEBUG(
                  "Merging ",
                  *val_type_pair.second,
                  " of run ",
                  profiled_types_iter->first,
                  " into ",
                  *type);
              merged_type = type->withSymbolicShapes(new_shape);
              GRAPH_DEBUG("Result : ", *merged_type);
              merged_profiled_types[val_type_pair.first] = merged_type;
            } else {
              // reset symbolic shapes when ranks are different
              type = type->merge(val_type_pair.second);
              merged_profiled_types[val_type_pair.first] = type;
            }
          }
        }
      }

      // update types in the graph
      for (auto val_type_pair : merged_profiled_types) {
        val_type_pair.first->node()->ty_(
            attr::profiled_type, val_type_pair.second);
      }
    }
  };

  auto pop = pr->createProfileNode(counter, {});
  new_g->appendNode(pop);
  GRAPH_DUMP("Instrumented Graph: ", new_g);
  return pr;
}

} // namespace jit
} // namespace torch