1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
|
#include <torch/csrc/jit/runtime/static/impl.h>
#include <ATen/core/interned_strings.h>
#include <ATen/core/op_registration/op_registration.h>
#include <torch/csrc/jit/passes/canonicalize.h>
#include <torch/csrc/jit/passes/freeze_module.h>
#include <torch/csrc/jit/passes/remove_mutation.h>
#include <torch/csrc/jit/passes/subgraph_rewrite.h>
#include <torch/csrc/jit/runtime/static/ops.h>
#include <torch/csrc/jit/runtime/vararg_functions.h>
namespace torch {
namespace jit {
using c10::DispatchKey;
using c10::RegisterOperators;
std::shared_ptr<torch::jit::Graph> PrepareForStaticRuntime(
std::shared_ptr<torch::jit::Graph> g) {
Inline(*g);
ConstantPropagation(g);
Canonicalize(g);
ConstantPropagation(g);
RemoveTensorMutation(g);
ConstantPropagation(g);
for (auto n : g->nodes()) {
if (n->kind() == c10::Symbol::fromQualString("prim::GetAttr")) {
throw std::runtime_error("Cannot accelerate unfrozen graphs");
}
bool supported = false;
#define X(_) \
if (n->kind() == c10::Symbol::fromQualString(#_)) { \
supported = true; \
}
SUPPORTED_OPS(X)
#undef X
if (!supported) {
throw std::runtime_error(
std::string("Unsupported operation: ") + n->kind().toQualString());
}
}
// remove unused input 0 from graph
if (g->inputs().at(0)->type()->is_module()) {
if (!g->inputs().at(0)->hasUses()) {
g->eraseInput(0);
}
}
return g;
}
std::shared_ptr<torch::jit::Graph> PrepareForStaticRuntime(
const torch::jit::Module& m) {
auto module = m.copy();
module.eval();
module = freeze_module(module);
auto g = module.get_method("forward").graph();
return PrepareForStaticRuntime(g);
}
StaticRuntime::StaticRuntime(std::shared_ptr<torch::jit::Graph> g) : graph_(g) {
// fill workspace_ with constants
for (Node* node : graph_->nodes()) {
if (node->kind() == prim::Constant) {
CHECK(node->output()->type()->kind() != FunctionType::Kind);
workspace_[node->output()] = toIValue(node->output()).value();
} else {
nodes_.emplace_back(node);
}
}
}
std::vector<at::Tensor> StaticRuntime::run(
const std::vector<at::Tensor>& inps) const {
// Container for inputs, outputs, and activations (excluding parameters)
TORCH_INTERNAL_ASSERT(graph_->inputs().size() == inps.size());
for (size_t i = 0; i < inps.size(); i++) {
workspace_[graph_->inputs()[i]] = inps[i];
}
for (const auto& n : nodes_) {
n.run(workspace_);
}
std::vector<at::Tensor> out;
for (Value* output : graph_->outputs()) {
const IValue& v = workspace_[output];
if (v.isTuple()) {
auto t = v.toTuple();
for (const auto& el : t->elements()) {
out.emplace_back(el.toTensor());
}
} else {
out.emplace_back(v.toTensor());
}
}
return out;
}
ProcessedNode::ProcessedNode(Node* node) : node_(node) {
if (node->kind() != prim::ListConstruct &&
node->kind() != prim::TupleConstruct) {
const Operator& op = node->getOperator();
CHECK(op.hasOperation());
op_ = op.getOperation(node);
}
if (canRunOutOfPlace(node)) {
fn_ = getOutOfPlaceOperation(node);
}
}
void ProcessedNode::run(StaticRuntime::ConstantMap& workspace) const {
if (!fn_) {
std::vector<IValue> stack;
const size_t size = node_->inputs().size();
stack.reserve(size);
for (size_t i = 0; i < size; i++) {
Value* v = node_->inputs()[i];
auto f = workspace.find(v);
TORCH_CHECK(
f != workspace.end(),
"Workspace does not contain Value ",
v->debugName());
stack.emplace_back(f->second);
}
if (op_) {
op_->operator()(&stack);
} else {
if (node_->kind() == prim::ListConstruct) {
listConstruct(
stack,
node_->output()->type()->expect<ListType>(),
node_->inputs().size());
} else if (node_->kind() == prim::TupleConstruct) {
bool named =
node_->output()->type()->expect<TupleType>()->name().has_value();
if (named) {
namedTupleConstruct(
stack,
node_->output()->type()->expect<TupleType>(),
node_->inputs().size());
} else {
tupleConstruct(stack, node_->inputs().size());
}
} else {
TORCH_CHECK(0, "Unhandled operation!", node_->kind().toQualString());
}
}
DCHECK_EQ(stack.size(), node_->outputs().size());
for (auto i = 0; i < node_->outputs().size(); i++) {
workspace[node_->outputs()[i]] = stack[i];
}
} else {
fn_->operator()(workspace);
}
}
} // namespace jit
} // namespace torch
|