File: pickle.h

package info (click to toggle)
pytorch 1.7.1-7
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 80,340 kB
  • sloc: cpp: 670,830; python: 343,991; ansic: 67,845; asm: 5,503; sh: 2,924; java: 2,888; xml: 266; makefile: 244; ruby: 148; yacc: 144; objc: 51; lex: 44
file content (86 lines) | stat: -rw-r--r-- 3,071 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
#pragma once

#include <ATen/core/ivalue.h>
#include <caffe2/serialize/inline_container.h>
#include <torch/csrc/WindowsTorchApiMacro.h>
#include <torch/csrc/jit/serialization/pickler.h>
#include <torch/csrc/jit/serialization/unpickler.h>

namespace torch {
namespace jit {

/// Pickle an IValue by calling a function to handle writing the data.
///
/// `writer` is a function that takes in a pointer to a chunk of memory and its
/// size and consumes it.
///
/// See `jit::pickle` for more details.
TORCH_API void pickle(
    std::function<void(const char* data_start, size_t data_len)> writer,
    const IValue& ivalue,
    std::vector<at::Tensor>* tensor_table = nullptr);

/// Save a `torch::IValue` in a format compatible with Python's `pickle` module
///
/// If present, `tensor_table` is a pointer to a table in which tensors that
/// are contained within `ivalue` are stored, and the bytes returned by the
/// pickler will only include references to these tensors in the table. This can
/// be used to keep the binary blob size small.
/// If not provided, tensors are stored in the same byte stream as the pickle
/// data, similar to `torch.save()` in eager Python.
///
/// Pickled values can be loaded in Python and C++:
/// \rst
/// .. code-block:: cpp
///
///  torch::IValue float_value(2.3);
///
///  // TODO: when tensors are stored in the pickle, delete this
///  std::vector<at::Tensor> tensor_table;
///  auto data = torch::jit::pickle(float_value, &tensor_table);
///
///  std::vector<torch::IValue> ivalues =
///      torch::jit::unpickle(data.data(), data.size());
///
/// .. code-block:: python
///
///   values = torch.load('data.pkl')
///   print(values)
///
/// \endrst
TORCH_API std::vector<char> pickle(
    const IValue& ivalue,
    std::vector<at::Tensor>* tensor_table = nullptr);

/// Save a `torch::IValue` in a format that can be loaded by both
/// `torch::pickle_load` in C++ and `torch.load` in Python.
TORCH_API std::vector<char> pickle_save(const IValue& ivalue);

/// Deserialize a `torch::IValue` from bytes produced by either
/// `torch::pickle_save` in C++ or `torch.save` in Python
TORCH_API IValue pickle_load(const std::vector<char>& data);

/// `reader` is a function that takes in a size to read from some pickled
/// binary. `reader` should remember where it last read, and return
/// the number of bytes read.
/// See `torch::pickle` for details.
/// type_resolver is used to resolve any JIT type based on type str
TORCH_API IValue unpickle(
    std::function<size_t(char*, size_t)> reader,
    TypeResolver type_resolver,
    const std::vector<at::Tensor>* tensor_table);

/// Decode a chunk of memory containing pickled data into its `torch::IValue`s.
///
/// If any `torch::IValue`s in the pickled data are `Object`s, then a
/// `class_resolver` function must be provided.
///
/// See `torch::pickle` for details.
TORCH_API IValue unpickle(
    const char* data,
    size_t size,
    TypeResolver type_resolver = nullptr,
    const std::vector<at::Tensor>* tensor_table = nullptr);

} // namespace jit
} // namespace torch