File: cuda_codegen.cpp

package info (click to toggle)
pytorch 1.7.1-7
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 80,340 kB
  • sloc: cpp: 670,830; python: 343,991; ansic: 67,845; asm: 5,503; sh: 2,924; java: 2,888; xml: 266; makefile: 244; ruby: 148; yacc: 144; objc: 51; lex: 44
file content (1222 lines) | stat: -rw-r--r-- 37,363 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
#include <torch/csrc/jit/tensorexpr/cuda_codegen.h>
#include <torch/csrc/jit/tensorexpr/cuda_half_support.h>

#include <ATen/CUDAGeneratorImpl.h>
#include <c10/cuda/CUDAFunctions.h>
#include <torch/csrc/jit/jit_log.h>
#include <torch/csrc/jit/tensorexpr/analysis.h>
#include <torch/csrc/jit/tensorexpr/cuda_random.h>
#include <torch/csrc/jit/tensorexpr/eval.h>
#include <torch/csrc/jit/tensorexpr/exceptions.h>
#include <torch/csrc/jit/tensorexpr/execution_counter.h>
#include <torch/csrc/jit/tensorexpr/ir_simplifier.h>
#include <torch/csrc/jit/tensorexpr/registerizer.h>

namespace torch {
namespace jit {
namespace tensorexpr {

DEFINE_TRIGGER(cuda_codegen_created);
DEFINE_TRIGGER(cuda_codegen_executed);

// A RAII wrapper to manage a variable and name pair in the look-up table.
// TODO: move this to a more shared place.
class ScopedVarName {
 public:
  ScopedVarName(VarNameMap* mapping, const Var* var, const std::string& name)
      : mapping_(mapping), var_(var) {
    auto iter = mapping->find(var);
    if (iter != mapping->end()) {
      throw std::runtime_error("Duplicate var entry: " + var->name_hint());
    }
    mapping->insert(std::make_pair(var, name));
  }

  ScopedVarName(
      UniqueNameManager* manager,
      const Var* var,
      const std::string& name)
      : ScopedVarName(&manager->unique_name_mapping_, var, name) {}

  ScopedVarName(const ScopedVarName&) = delete;
  ScopedVarName& operator=(const ScopedVarName&) = delete;

  ~ScopedVarName() noexcept(false) {
    mapping_->erase(var_);
  }

 private:
  VarNameMap* mapping_ = nullptr;
  const Var* var_ = nullptr;
};

static int as_int(const Expr* expr) {
  auto v = dynamic_cast<const IntImm*>(expr);
  if (!v) {
    throw malformed_input(
        "cuda_codegen: non Int expr interpreted as int", expr);
  }

  return v->value();
}

static bool is_zero(const Expr* expr) {
  return as_int(expr) == 0;
}

static const at::cuda::NVRTC& nvrtc() {
  return at::globalContext().getNVRTC();
}

static void getMajorMinor(
    const cudaDeviceProp* const prop,
    int& major,
    int& minor) {
  using CudaVersion = std::pair<int, int>;
  CudaVersion nvrtc_version;
  AT_CUDA_NVRTC_CHECK(
      nvrtc().nvrtcVersion(&nvrtc_version.first, &nvrtc_version.second));

  AT_ASSERT(nvrtc_version.first >= 6);

  CudaVersion dev_version = CudaVersion(prop->major, prop->minor);
  CudaVersion max_dev_version(dev_version);
  if (nvrtc_version.first <= 7) { // 7 supports 2-5.x
    max_dev_version = CudaVersion(5, 0);
  } else if (nvrtc_version.first <= 8) { // 8 supports 2-6.x
    max_dev_version = CudaVersion(6, 0);
  } else if (nvrtc_version.first <= 9) { // 9 supports 3-7.2
    max_dev_version = CudaVersion(7, 2);
  } else if (nvrtc_version.first <= 10) { // 10 supports 3-7.5
    max_dev_version = CudaVersion(7, 5);
  } else if (nvrtc_version.first == 11 && nvrtc_version.second == 0) {
    // 11.0 supports 3-8.0
    max_dev_version = CudaVersion(8, 0);
  }
  if (dev_version > max_dev_version) {
    dev_version = max_dev_version;
  }
  major = dev_version.first;
  minor = dev_version.second;
}

std::string cudaDtypeCppString(const Dtype& dtype) {
  switch (dtype.scalar_type()) {
    case ScalarType::Bool:
      return "bool";
    case ScalarType::Half:
      return "half";
    case ScalarType::Char:
      return "char";
    case ScalarType::Byte:
      return "unsigned char";
    case ScalarType::Short:
      return "short";
    case ScalarType::Long:
      return "long long";
    default:
      return dtype.ToCppString();
  }
}

void CudaAnalysis::visit(const Free* v) {
  if (thread_local_bufs_.count(v->buffer_var()) == 0 &&
      cross_block_bufs_.count(v->buffer_var()) == 0) {
    throw std::runtime_error("Global free not supported yet");
  }
}

void CudaAnalysis::visit(const Allocate* v) {
  Stmt* p = v->get_parent();
  while (p) {
    const For* for_v = dynamic_cast<const For*>(p);
    if (for_v) {
      if (for_v->loop_options().is_gpu_block_index()) {
        // TODO: This isn't right if there's a thread index at a higher level
        // than this.
        cross_block_bufs_.insert(v->buffer_var());
        return;
      } else if (for_v->loop_options().is_gpu_thread_index()) {
        thread_local_bufs_.insert(v->buffer_var());
        return;
      }
    }
    p = p->get_parent();
  }
  throw std::runtime_error("Global alloc not supported yet");
}

void CudaAnalysis::visit(const For* v) {
  // Recurse first.
  v->body()->accept(this);

  const LoopOptions& loop_options = v->loop_options();
  if (loop_options.is_gpu_block_index()) {
    int gpu_block_index = loop_options.gpu_block_index();
    if (gpu_block_index >= 3) {
      throw std::runtime_error("support only 3D gpu_block_index");
    }
    const Expr* prev = nullptr;
    if (gpu_block_extents_.size() <= gpu_block_index) {
      gpu_block_extents_.resize(gpu_block_index + 1);
    } else {
      prev = gpu_block_extents_[gpu_block_index];
    }
    if (!is_zero(v->start())) {
      throw std::runtime_error(
          "start must be zero for gpu_block_index: " +
          std::to_string(v->start()));
    }

    if (prev == nullptr) {
      gpu_block_extents_[gpu_block_index] = v->stop();
    } else if (prev->isConstant() && immediateEquals(prev, 1)) {
      // extents must be positive so if the current extent is 1 then even if the
      // stop is symbolic it's the max.
      gpu_block_extents_[gpu_block_index] = v->stop();
    } else {
      gpu_block_extents_[gpu_block_index] =
          IRSimplifier::simplify(new Max(prev, v->stop(), true));
    }
  } else if (loop_options.is_gpu_thread_index()) {
    int gpu_thread_index = loop_options.gpu_thread_index();
    if (gpu_thread_index >= 3) {
      throw std::runtime_error("support only 3D gpu_thread_index");
    }
    const Expr* prev = nullptr;
    if (gpu_thread_extents_.size() <= gpu_thread_index) {
      gpu_thread_extents_.resize(gpu_thread_index + 1);
    } else {
      prev = gpu_thread_extents_[gpu_thread_index];
    }
    if (!is_zero(v->start())) {
      throw std::runtime_error(
          "start must be zero for gpu_thread_index: " +
          std::to_string(v->start()));
    }

    if (prev == nullptr) {
      gpu_thread_extents_[gpu_thread_index] = v->stop();
    } else if (prev->isConstant() && immediateEquals(prev, 1)) {
      // extents must be positive so if the current extent is 1 then even if the
      // stop is symbolic it's the max.
      gpu_thread_extents_[gpu_thread_index] = v->stop();
    } else {
      gpu_thread_extents_[gpu_thread_index] =
          IRSimplifier::simplify(new Max(prev, v->stop(), true));
    }
  }
}

static void print_flat_alloc(std::ostream& os, const Allocate* alloc) {
  std::vector<const Expr*> dims = alloc->dims();
  // TODO: this should be merged with the storage flattener.
  int64_t flat_size = 1;
  for (auto dim : dims) {
    const IntImm* dim_i = dynamic_cast<const IntImm*>(dim);
    if (dim_i) {
      flat_size *= dim_i->value();
    } else {
      throw std::runtime_error("Only IntImm dimensions are supported for now");
    }
  }
  os << cudaDtypeCppString(alloc->dtype()) << " " << (*alloc->buffer_var())
     << "[" << flat_size << "];" << std::endl;
}

void CudaPrinter::visit(const Allocate* v) {
  // TODO: handle dynamic shapes here.
  if (cuda_analysis_->cross_block_bufs().count(v->buffer_var()) != 0) {
    emitIndent();
    os() << "__shared__ ";
    print_flat_alloc(os(), v);
    return;
  }

  if (cuda_analysis_->thread_local_bufs().count(v->buffer_var()) != 0) {
    emitIndent();
    print_flat_alloc(os(), v);
    return;
  }

  throw std::runtime_error("Encountered Alloc not local to block or thread");
}

void CudaPrinter::visit(const Free* v) {
  // do nothing
}

void CudaPrinter::visit(const For* v) {
  IRPrinter::visit(v);
}

void CudaPrinter::visit(const Cast* v) {
  if (v->dtype().scalar_type() == ScalarType::Half) {
    os() << "__float2half(";
    v->src_value()->accept(this);
    os() << ")";
    return;
  } else if (v->src_value()->dtype().scalar_type() == ScalarType::Half) {
    os() << "__half2float(";
    v->src_value()->accept(this);
    os() << ")";
    return;
  }

  os() << "(" << cudaDtypeCppString(v->dtype()) << ")";
  os() << "(";
  v->src_value()->accept(this);
  os() << ")";
}

void CudaPrinter::visit(const Intrinsics* v) {
  if (v->op_type() == IntrinsicsOp::kRand) {
    os() << "Uint32ToFloat(" << *rand_func_ << "())";
    return;
  }

  std::string func_name = v->func_name();

  // get type of resulting expression.
  ScalarType returnType = v->param(0)->dtype().scalar_type();
  for (int i = 1; i < v->nparams(); ++i) {
    returnType = promoteTypes(returnType, v->param(i)->dtype().scalar_type());
  }

  if (returnType == ScalarType::Half || returnType == ScalarType::Float) {
    func_name = func_name + "f";
  }
  if (v->op_type() == IntrinsicsOp::kFabs && is_integral(returnType)) {
    func_name = "abs";
  }

  os() << func_name << "(";
  for (int i = 0; i < v->nparams(); i++) {
    if (i > 0) {
      os() << ", ";
    }
    os() << *v->param(i);
  }
  os() << ")";
}

void CudaPrinter::visit(const Load* v) {
  // TODO: find a better metric in using ldg or not. Support different dtypes.
  // Detects whether the load target is also a store target.
  // TODO: this is currently too wide. It detects whether a store-target
  // exists within the program. In fact, this check is only necessary within a
  // kernel.
  if (v->indices().empty()) {
    os() << *v->base_handle();
    return;
  }
  if (v->dtype().scalar_type() == ScalarType::Bool ||
      v->dtype().scalar_type() == ScalarType::Half) {
    // There's no __ldg overload for bool or half.
    os() << *v->base_handle() << "[" << *v->flat_index() << "]";
    return;
  }
  if (cuda_analysis_->is_buf_store_target(v->buf())) {
    // Cuda __ldg can only be applied on read-only buffers.
    os() << *v->base_handle() << "[" << *v->flat_index() << "]";
    return;
  }
  os() << "__ldg(" << *v->base_handle() << " + " << *v->flat_index() << ")";
}

// TODO: maybe this should be a more shared location?
// TODO: investigate how "Expr*" can be implicitly converted to "ExprHandle" as
// a bool.
static bool CheckEqual(const Expr* lhs, const Expr* rhs) {
  // The fast path. Checks if the pointers are the same.
  if (lhs == rhs) {
    return true;
  }
  ExprHandle diff = Sub::make(ExprHandle(lhs), ExprHandle(rhs));
  ExprHandle diff_s = IRSimplifier::simplify(diff);
  return immediateEquals(diff_s.node(), 0);
}

class AtomicAddFuser : public IRMutator {
 public:
  AtomicAddFuser(
      const std::unordered_set<const Var*>& thread_local_bufs,
      const GPUMetaVarRewriter& metavars)
      : thread_local_bufs_(thread_local_bufs) {
    size_t DIMS = 3;

    const std::vector<const Expr*>& block_extents =
        metavars.gpu_block_extents();
    const std::vector<const Var*>& block_vars = metavars.gpu_block_vars();
    for (size_t i = 0; i < block_extents.size(); ++i) {
      MetaVarExtent extent{block_extents[i], false};
      if (extent.expr->isConstant() && immediateEquals(extent.expr, 1)) {
        extent.trivial = true;
      } else {
        nontrivial_metavars_.insert(block_vars[i]);
      }
      metavars_[block_vars[i]] = extent;
    }

    const std::vector<const Expr*>& thread_extents =
        metavars.gpu_thread_extents();
    const std::vector<const Var*>& thread_vars = metavars.gpu_thread_vars();
    for (size_t i = 0; i < thread_extents.size(); ++i) {
      MetaVarExtent extent{thread_extents[i], false};
      if (extent.expr->isConstant() && immediateEquals(extent.expr, 1)) {
        extent.trivial = true;
      } else {
        nontrivial_metavars_.insert(thread_vars[i]);
      }
      metavars_[thread_vars[i]] = extent;
    }
  }

  Stmt* mutate(const Store* v) override {
    const Buf* buf = v->buf();
    Store* orig = const_cast<Store*>(v); // NOLINT

    // Thread locals never need to be atomic.
    if (thread_local_bufs_.count(buf->base_handle()) != 0) {
      return orig;
    }

    ScalarType dtype = v->value()->dtype().scalar_type();
    if (dtype != ScalarType::Float && dtype != ScalarType::Double) {
      return orig;
    }
    const Add* add_v = dynamic_cast<const Add*>(v->value());
    if (!add_v) {
      return orig;
    }
    const Load* load_v = dynamic_cast<const Load*>(add_v->lhs());
    if (!load_v) {
      return orig;
    }
    if (v->base_handle() != load_v->base_handle()) {
      return orig;
    }
    if (v->indices().empty() && load_v->indices().empty()) {
      return orig;
    }
    bool index_equal = CheckEqual(v->flat_index(), load_v->flat_index());
    if (!index_equal) {
      return orig;
    }

    // TODO: this checks that the metavars occur directly as an index, but this
    // is pessimistic, blockIdx.x + 1 is fine too if there is no overlapping.
    std::unordered_set<const Var*> vars_to_find = nontrivial_metavars_;
    for (const Expr* e : v->indices()) {
      if (const Var* v = dynamic_cast<const Var*>(e)) {
        vars_to_find.erase(v);
      }
    }

    if (vars_to_find.empty()) {
      // All metavars accounted for.
      return orig;
    }

    return new AtomicAdd(buf, v->indices(), add_v->rhs());
  }

 private:
  const std::unordered_set<const Var*>& thread_local_bufs_;
  struct MetaVarExtent {
    const Expr* expr{nullptr};
    bool trivial{false};
  };
  std::unordered_map<const Var*, MetaVarExtent> metavars_;
  std::unordered_set<const Var*> nontrivial_metavars_;
};

void CudaPrinter::visit(const Store* v) {
  emitIndent();
  if (v->indices().empty()) {
    os() << *v->base_handle() << " = ";
  } else {
    os() << *v->base_handle() << "[" << *v->flat_index() << "] = ";
  }
  os() << *v->value() << ";";
  os() << std::endl;
}

void CudaPrinter::visit(const AtomicAdd* v) {
  emitIndent();
  if (cuda_analysis_->thread_local_bufs().count(v->base_handle()) > 0) {
    // atomicAdd only works on global and shared memory
    os() << *v->base_handle() << "[" << *v->flat_index()
         << "] += " << *v->value() << ";";
  } else {
    os() << "atomicAdd(&" << *v->base_handle() << "[" << *v->flat_index() << "]"
         << ", " << *v->value() << ");";
  }
  os() << std::endl;
}

void CudaPrinter::visit(const Max* v) {
  if (is_integral(v->dtype().scalar_type())) {
    os() << "max(";
  } else {
    os() << "maximum(";
  }
  v->lhs()->accept(this);
  os() << ",";
  v->rhs()->accept(this);
  os() << ")";
}

void CudaPrinter::visit(const Min* v) {
  if (is_integral(v->dtype().scalar_type())) {
    os() << "min(";
  } else {
    os() << "minimum(";
  }
  v->lhs()->accept(this);
  os() << ",";
  v->rhs()->accept(this);
  os() << ")";
}

void CudaPrinter::visit(const IfThenElse* v) {
  os() << "((";
  v->condition()->accept(this);
  os() << ") ? ";
  v->true_value()->accept(this);
  os() << " : ";
  v->false_value()->accept(this);
  os() << ")";
}

void CudaPrinter::visit(const Block* v) {
  os() << "{" << std::endl;
  indent_++;

  for (Stmt* s : v->stmts()) {
    s->accept(this);
  }

  indent_--;
  emitIndent();
  os() << "}";
}

void CudaPrinter::visit(const Let* v) {
  emitIndent();
  os() << cudaDtypeCppString(v->dtype());
  os() << " " << *v->var() << " = ";
  v->value()->accept(this);
  os() << ";" << std::endl;
}

class PrioritizeLoad : public IRMutator {
 public:
  const Expr* mutate(const Load* v) override {
    // Look at the declaration of this variable for more details.
    if (nested_if_then_else_ > 0) {
      return IRMutator::mutate(v);
    }
    if (nested_let_) {
      return IRMutator::mutate(v);
    }
    if (thread_local_bufs_.count(v->base_handle()) > 0) {
      return IRMutator::mutate(v);
    }
    if (v->indices().size() == 0) {
      return IRMutator::mutate(v);
    }
    if (nested_store_) {
      if (v->base_handle() == nested_store_->buf()->base_handle() &&
          v->indices().size() == nested_store_->indices().size()) {
        // also check indices
        bool same = true;
        for (int i = 0; i < v->indices().size(); ++i) {
          if (!exprEquals(v->indices()[i], nested_store_->indices()[i])) {
            same = false;
            break;
          }
        }
        if (same) {
          return IRMutator::mutate(v);
        }
      } else if (nested_store_->indices().empty()) {
        return IRMutator::mutate(v);
      }
    }

    MemLoadList& load_list = load_stack_.back();
    const Var* load_new_var = new Var("v", v->dtype());
    const Expr* new_value = IRMutator::mutate(v);
    load_list.push_back(std::make_pair(load_new_var, new_value));

    return load_new_var;
  }

  const Expr* mutate(const Cast* v) override {
    const Load* src_load = dynamic_cast<const Load*>(v->src_value());
    const Expr* new_src = v->src_value()->accept_mutator(this);
    const Var* new_var = dynamic_cast<const Var*>(new_src);
    if (!src_load || !new_var) {
      return new Cast(v->dtype(), new_src);
    }

    // We just did the prioritize load, let's fold in the Cast.
    MemLoadList& load_list = load_stack_.back();
    assert(!load_list.empty());
    auto pair = load_list.back();
    assert(pair.first == new_var);
    load_list.pop_back();

    new_var = new Var("v", v->dtype());
    const Expr* new_value = new Cast(v->dtype(), pair.second);
    load_list.push_back(std::make_pair(new_var, new_value));
    return new_var;
  }

  Stmt* mutate(const Store* v) override {
    const Store* last = nested_store_;
    nested_store_ = v;
    Stmt* s = IRMutator::mutate(v);
    nested_store_ = last;
    return s;
  }

  Stmt* mutate(const Let* v) override {
    nested_let_ = true;
    Stmt* s = IRMutator::mutate(v);
    nested_let_ = false;
    return s;
  }

  Stmt* mutate(const Block* v) override {
    bool any_change = false;

    Block* v1 = const_cast<Block*>(v); // NOLINT
    assert(v1);
    std::list<Stmt*> stmts = v1->stmts();
    for (Stmt* stmt : stmts) {
      PushList();
      Stmt* stmt_new = stmt->accept_mutator(this);

      AddMemLoadsFromList(v1, stmt);
      PopList();

      if (stmt_new == stmt) {
        continue;
      }
      v1->replace_stmt(stmt, stmt_new);
    }
    return v1;
  }

  const Expr* mutate(const IfThenElse* v) override {
    nested_if_then_else_++;
    const Expr* new_v = IRMutator::mutate(v);
    nested_if_then_else_--;
    return new_v;
  }

 private:
  using MemLoadEntry = std::pair<const Var*, const Expr*>;
  using MemLoadList = std::vector<MemLoadEntry>;
  using MemoryLoadStack = std::vector<MemLoadList>;

  void PushList() {
    load_stack_.push_back(MemLoadList());
  }

  void PopList() {
    load_stack_.pop_back();
  }

  void AddMemLoadsFromList(Block* block, Stmt* last) {
    MemLoadList& load_list = load_stack_.back();
    if (load_list.empty()) {
      return;
    }

    for (const auto& pair : load_list) {
      Stmt* news = new Let(pair.first, pair.second);
      block->insert_stmt_before(news, last);
    }
  }

  MemoryLoadStack load_stack_;
  // TODO: For now, we are not moving the loads with the IfThenElse.
  // Eventually, we should switch to a more generic structure like:
  // int v2 = IfThenElse(cond, true_v, false_v) + 2 ->
  //
  // int v;
  // if (cond) {
  //   v = true_v;
  // } else {
  //   v = false_v;
  // }
  // int v2 = v + 2;
  int nested_if_then_else_{0};
  const Store* nested_store_{nullptr};
  bool nested_let_{false};
  std::unordered_set<const Var*> thread_local_bufs_;
};

std::string CudaCodeGen::GetUniqueFuncName(const std::string& func_prefix) {
  // We are using a global counter here to make sure difference instances
  // within CudaCodeGen have different names.
  static int64_t counter = 0;
  ++counter;
  int64_t value = counter;
  return func_prefix + "_" + std::to_string(value);
}

bool GPUMetaVarRewriter::isFullExtent() {
  {
    auto& extents = cuda_analysis_->gpu_block_extents();
    for (int i = 0; i < 3; ++i) {
      if (!exprEquals(current_block_reach_[i], extents[i])) {
        return false;
      }
    }
  }

  {
    auto& extents = cuda_analysis_->gpu_thread_extents();
    for (int i = 0; i < 3; ++i) {
      if (!exprEquals(current_thread_reach_[i], extents[i])) {
        return false;
      }
    }
  }

  return true;
}

Stmt* GPUMetaVarRewriter::mutate(const For* v) {
  Stmt* body = v->body();
  const Expr* old_reach = nullptr;
  const LoopOptions& loop_options = v->loop_options();
  if (loop_options.is_gpu_block_index()) {
    int gpu_block_index = loop_options.gpu_block_index();
    if (gpu_block_index >= 3) {
      throw std::runtime_error("support only 3D gpu_block_index");
    }
    old_reach = current_block_reach_[gpu_block_index];

    // Extents must be positive, assume >= 1.
    if (old_reach->isConstant() && immediateEquals(old_reach, 1)) {
      current_block_reach_[gpu_block_index] = v->stop();
    } else {
      current_block_reach_[gpu_block_index] =
          IRSimplifier::simplify(new Max(old_reach, v->stop(), true));
    }

    const Var* metaVar = gpu_block_vars_[gpu_block_index];
    body = Substitute(Stmt::clone(body), {{v->var(), metaVar}});
  } else if (loop_options.is_gpu_thread_index()) {
    int gpu_thread_index = loop_options.gpu_thread_index();
    if (gpu_thread_index >= 3) {
      throw std::runtime_error("support only 3D gpu_thread_index");
    }
    old_reach = current_thread_reach_[gpu_thread_index];

    // Extents must be positive, assume >= 1.
    if (old_reach->isConstant() && immediateEquals(old_reach, 1)) {
      current_thread_reach_[gpu_thread_index] = v->stop();
    } else {
      current_thread_reach_[gpu_thread_index] =
          IRSimplifier::simplify(new Max(old_reach, v->stop(), true));
    }

    const Var* metaVar = gpu_thread_vars_[gpu_thread_index];
    body = Substitute(Stmt::clone(body), {{v->var(), metaVar}});
  }

  // Recurse into body block.
  body = Stmt::clone(body->accept_mutator(this));

  // pop the internal reach off the stack.
  if (loop_options.is_gpu_block_index()) {
    current_block_reach_[loop_options.gpu_block_index()] = old_reach;
    return body;
  } else if (loop_options.is_gpu_thread_index()) {
    current_thread_reach_[loop_options.gpu_thread_index()] = old_reach;
    return body;
  }

  return v->cloneWithNewBody(body);
}

Stmt* GPUMetaVarRewriter::mutate(const Block* v) {
  std::vector<Segment> innerSegments;
  Segment current;

  auto pushAndReset = [&](bool mask) {
    if (!current.empty()) {
      innerSegments.push_back(current);
    }
    current.reset(mask);
  };

  // Here's we're slicing the Block's contents into segments that should have
  // the same launch reach. Segments are comprised of all statements that aren't
  // loops - which are their own segments. Some operations, such as threading
  // and memory ops should never be masked and so also get their own segment.
  for (Stmt* stmt : *v) {
    Stmt* stmt_new = stmt->accept_mutator(this);
    if (stmt == stmt_new) {
      stmt_new = Stmt::clone(stmt_new);
    }

    // Likewise, Allocate and Free should never be masked.
    if (dynamic_cast<Allocate*>(stmt) || dynamic_cast<Free*>(stmt)) {
      pushAndReset(false);
    }

    // If the current stmt *was* a loop, it's a segment boundary.
    if (For* f = dynamic_cast<For*>(stmt)) {
      pushAndReset(false);
    }

    current.stmts().push_back(stmt_new);
    // if the current segment should not be masked, it's a segment boundary on
    // the far side as well.
    if (!current.mask()) {
      pushAndReset(true);
    }
  }

  if (!current.empty()) {
    innerSegments.push_back(current);
  }

  // We are max extent in all dimensions, so need no masks at this level.
  if (isFullExtent()) {
    // flatten inner segments.
    std::vector<Stmt*> stmts;
    for (auto& v : innerSegments) {
      for (auto* s : v.stmts()) {
        stmts.push_back(s);
      }
    }

    return new Block(stmts);
  }

  std::vector<Stmt*> stmts;
  for (auto& segment : innerSegments) {
    bool need_sync = false;
    // We never mask loops, they'll mask their contents.
    if (!segment.mask()) {
      TORCH_INTERNAL_ASSERT(segment.stmts().size() == 1);
      stmts.push_back(segment.stmts()[0]);
      continue;
    }

    // If we get here, we must mask since we're not full reach and our direct
    // child isn't a For.
    Stmt* inner = new Block(segment.stmts());
    // threads inside blocks.
    auto& thread_extents = cuda_analysis_->gpu_thread_extents();
    for (size_t i = 0; i < gpu_thread_vars_.size(); ++i) {
      if (!exprEquals(current_thread_reach_[i], thread_extents[i])) {
        need_sync = true;
        // Mask it against the current dimensions.
        inner = new Cond(
            new CompareSelect(
                gpu_thread_vars_[i],
                current_thread_reach_[i],
                CompareSelectOperation::kLT),
            inner,
            nullptr);
      }
    }
    auto& block_extents = cuda_analysis_->gpu_block_extents();
    for (size_t i = 0; i < gpu_block_vars_.size(); ++i) {
      if (!exprEquals(current_block_reach_[i], block_extents[i])) {
        // Mask it against the current dimensions.
        inner = new Cond(
            new CompareSelect(
                gpu_block_vars_[i],
                current_block_reach_[i],
                CompareSelectOperation::kLT),
            inner,
            nullptr);
      }
    }

    if (need_sync) {
      stmts.push_back(new SyncThreads());
    }
    stmts.push_back(inner);
    if (need_sync) {
      stmts.push_back(new SyncThreads());
    }
  }

  return new Block(stmts);
}

static std::ostream& operator<<(
    std::ostream& out,
    const std::vector<const Expr*>& exprs) {
  size_t i = 0;
  for (auto expr : exprs) {
    if (i++ > 0) {
      out << ", ";
    }
    out << *expr;
  }
  return out;
}

#ifdef USE_ROCM
static const char* device_resource_string = R"(
#include <hip/hip_runtime.h>
#define POS_INFINITY INFINITY
#define NEG_INFINITY -INFINITY

)";
#else
static const char* device_resource_string = R"(
#define NAN __int_as_float(0x7fffffff)
#define POS_INFINITY __int_as_float(0x7f800000)
#define NEG_INFINITY __int_as_float(0xff800000)

)";
#endif

static const char* shared_resource_string = R"(
template<typename T>
__device__ T maximum(T a, T b) {
  return isnan(a) ? a : (a > b ? a : b);
}

template<typename T>
__device__ T minimum(T a, T b) {
  return isnan(a) ? a : (a < b ? a : b);
}

)";

void CudaCodeGen::Initialize() {
  // TODO: handle multiple kernels.
  // TODO: handle dynamic dimension.
  // TODO: call nvrtc.
  // TODO: merge HasRand with CudaAnalysis.
  GenericIntrinsicsExpander intrinsics_expander;
  apply_mutator(&intrinsics_expander);

  HasRand has_rand_func(stmt());
  has_random_ = has_rand_func.has_rand();
  cuda_analysis_ = std::make_unique<CudaAnalysis>();
  printer_ =
      std::make_unique<CudaPrinter>(&oss_, cuda_analysis_.get(), has_random_);
  metavar_rewriter_ =
      std::make_unique<GPUMetaVarRewriter>(cuda_analysis_.get());

  os() << device_resource_string << shared_resource_string;

  if (has_random_) {
    os() << philox_random_string << std::endl;
  }

  // Check whether the statement uses the Half type, if so add the
  // half_support_literal.
  Stmt* stmt_v = stmt();
  CudaHalfChecker halfChecker;
  stmt_v = stmt_v->accept_mutator(&halfChecker);
  if (halfChecker.hasHalf()) {
    os() << fuser::cuda::half_support_literal << std::endl;
  }

  std::string func_name = GetUniqueFuncName("func");
  os() << "extern \"C\" __global__" << std::endl;
#ifdef USE_ROCM
  // CUDA has a default limit of threads per block (=flat work group size)
  // of 1024, but ROCm uses 256 by default. At the time of writing
  // (#45506), I am unaware of a stricter limit that TensorExpr imposes
  // (maybe for perf),so I use 1024 as maximum flat work group size.
  // We put a minimum value of 1, this is also used by hip (ROCm 3.8) in
  // the __launch_bound__ implementation. The arguments for the attribute
  // are (min, max), for details see the documentation at
  // https://clang.llvm.org/docs/AttributeReference.html#amdgpu-flat-work-group-size
  os() << "__attribute__((amdgpu_flat_work_group_size(1, 1024)))" << std::endl;
#endif
  os() << "void " << func_name << "(";
  const std::vector<BufferArg> buffer_args = this->buffer_args();
  for (size_t i = 0; i < buffer_args.size(); i++) {
    if (i > 0) {
      os() << ", ";
    }
    const BufferArg& buffer_arg = buffer_args[i];
    const Var* var = buffer_arg.var();
    Dtype dtype = buffer_arg.dtype();

    os() << cudaDtypeCppString(dtype) << (buffer_arg.isVar() ? " " : "* ")
         << name_manager()->get_unique_name(var);
  }
  const Var* rand_seed;
  const Var* rand_offset;
  if (has_random_) {
    // TODO: switch to kUint64 when it is available.
    rand_seed = new Var("rand_seed", kInt);
    rand_offset = new Var("rand_offset", kInt);
    std::string uint64_str = "unsigned long long";
    os() << ", " << uint64_str << " " << *rand_seed << ", " << uint64_str << " "
         << *rand_offset;
  }
  os() << ") {";
  os() << std::endl;

  if (has_random_) {
    const Var* idx = new Var("idx", kInt);
    os() << "int " << *idx << " = blockIdx.x*blockDim.x + threadIdx.x;"
         << std::endl;
    const Var* rand_func = printer_->rand_func();
    os() << "Philox " << *rand_func << "(" << *rand_seed << ", " << *idx << ", "
         << *rand_offset << ");" << std::endl;
    os() << std::endl;
  }

  stmt_v->accept(cuda_analysis_.get());

  stmt_v = stmt_v->accept_mutator(metavar_rewriter_.get());

  AtomicAddFuser atomic_add_fuser(
      cuda_analysis_->thread_local_bufs(), *metavar_rewriter_.get());
  stmt_v = stmt_v->accept_mutator(&atomic_add_fuser);

  stmt_v = registerize(stmt_v);

  // The registerizer might insert half-type scalars, we don't want this.
  CudaHalfScalarRewriter hsFix;
  stmt_v = stmt_v->accept_mutator(&hsFix);

  PrioritizeLoad prioritize_load;
  stmt_v = stmt_v->accept_mutator(&prioritize_load);
  stmt_v = IRSimplifier::simplify(stmt_v);
  set_stmt(stmt_v);

  stmt_v->accept(printer_.get());
  os() << std::endl;
  os() << "}";

  // Check that all block extents had been set.
  const std::vector<const Expr*>& gpu_block_extents =
      metavar_rewriter_->gpu_block_extents();
  for (size_t i = 0; i < gpu_block_extents.size(); i++) {
    if (!gpu_block_extents[i]) {
      throw std::runtime_error("Missing gpu_block_index: " + std::to_string(i));
    }
  }

  GRAPH_DEBUG(
      "Fused TE CUDA kernel:\n",
      oss_.str(),
      "\n",
      "gpu_block_extents: (",
      metavar_rewriter_->gpu_block_extents(),
      ")\n",
      "gpu_thread_extents: (",
      metavar_rewriter_->gpu_thread_extents(),
      ")");

  CompileToNVRTC(oss_.str(), func_name);
  USE_TRIGGER(cuda_codegen_created);
}

void CudaCodeGen::call(const std::vector<CallArg>& args) {
  if (args.size() != buffer_args().size()) {
    throw malformed_input("cuda_codegen: wrong number of args in call");
  }

  // TODO: move as much of this into the constructors.
  const std::vector<const Expr*>& gpu_block_extents =
      metavar_rewriter_->gpu_block_extents();
  const std::vector<const Expr*>& gpu_thread_extents =
      metavar_rewriter_->gpu_thread_extents();
  if (gpu_block_extents.size() > 3 || gpu_thread_extents.size() > 3) {
    throw malformed_input(
        "cuda_codegen: block or thread extent greater than 3D");
  }

  std::vector<int> gpu_block_extents_v(3, 1);
  std::vector<int> gpu_thread_extents_v(3, 1);

  // evaluate all the block/thread extents into values
  // TODO: eventually, codegen these calculations and make them part of the
  // module.
  for (size_t i = 0; i < gpu_block_extents.size(); i++) {
    if (gpu_block_extents[i]->isConstant()) {
      gpu_block_extents_v[i] = immediateAs<int>(gpu_block_extents[i]);
      continue;
    }
    ExprEval<SimpleIREvaluator> eval(
        ExprHandle(gpu_block_extents[i]), buffer_args());
    gpu_block_extents_v[i] = eval.value<int>(args);
  }
  for (size_t i = 0; i < gpu_thread_extents.size(); i++) {
    if (gpu_thread_extents[i]->isConstant()) {
      gpu_thread_extents_v[i] = immediateAs<int>(gpu_thread_extents[i]);
      continue;
    }
    ExprEval<SimpleIREvaluator> eval(
        ExprHandle(gpu_thread_extents[i]), buffer_args());
    gpu_thread_extents_v[i] = eval.value<int>(args);
  }

  // Skip launching the kernel if there are no elements to process.
  for (int extent : gpu_block_extents_v) {
    if (extent == 0) {
      return;
    }
  }

  // Bind the buffer addresses into arguments
  auto const& buffer_args = this->buffer_args();
  int ptr_count = buffer_args.size();
  if (has_random_) {
    ptr_count += 2;
  }
  std::vector<void*> args_data(buffer_args.size());
  std::vector<void*> ptr_to_args(ptr_count);
  uint64_t rand_seed = uint64_t(-1);
  uint64_t rand_offset = uint64_t(-1);
  for (size_t i = 0; i < buffer_args.size(); i++) {
    auto const& bufferArg = buffer_args[i];
    if (bufferArg.isVar()) {
      auto stype = bufferArg.dtype().scalar_type();
      switch (stype) {
#define TYPE_CASE(Type, Name)             \
  case ScalarType::Name:                  \
    ptr_to_args[i] = args[i].Name##Ptr(); \
    break;
        AT_FORALL_SCALAR_TYPES_AND2(Bool, Half, TYPE_CASE);
#undef TYPE_CASE
        default:
          throw unsupported_dtype();
      }
    } else {
      args_data[i] = args[i].data();
      ptr_to_args[i] = &args_data[i];
    }
  }

  if (has_random_) {
    auto gen = at::cuda::detail::getDefaultCUDAGenerator();
    // TODO: total hack. Switch to numel when it is available.
    int64_t total_elements_per_thread = (1LL << 28);
    {
      std::lock_guard<std::mutex> lock(gen.mutex());
      auto philox_engine_inputs =
          at::check_generator<at::CUDAGeneratorImpl>(gen)->philox_engine_inputs(
              total_elements_per_thread);
      rand_seed = philox_engine_inputs.first;
      rand_offset = philox_engine_inputs.second;
    }
    ptr_to_args[buffer_args.size()] = &rand_seed;
    ptr_to_args[buffer_args.size() + 1] = &rand_offset;
  }
  const auto prior_device = at::cuda::current_device();
  if (prior_device != this->device().index()) {
    at::cuda::set_device(this->device().index());
  }
  // Launch the kernels
  auto stream = at::cuda::getCurrentCUDAStream();
  AT_CUDA_DRIVER_CHECK(nvrtc().cuLaunchKernel(
      function_,
      gpu_block_extents_v[0],
      gpu_block_extents_v[1],
      gpu_block_extents_v[2],
      gpu_thread_extents_v[0],
      gpu_thread_extents_v[1],
      gpu_thread_extents_v[2],
      0,
      stream,
      ptr_to_args.data(),
      nullptr));
  USE_TRIGGER(cuda_codegen_executed);

  if (prior_device != this->device().index()) {
    at::cuda::set_device(prior_device);
  }
}

void CudaCodeGen::CompileToNVRTC(
    const std::string& code,
    const std::string& func_name) {
  CUcontext pctx = 0;
  AT_CUDA_DRIVER_CHECK(nvrtc().cuCtxGetCurrent(&pctx));
  // Note: hacked at::DeviceGuard since at::DeviceGuard was failing to work
  // properly in some scenarios
  const auto prior_device = at::cuda::current_device();
  if (prior_device != this->device().index()) {
    at::cuda::set_device(this->device().index());
  }
  // cudaSetDevice does not have to really change the underlying device if it
  // doesn't have to, so calling cudaFree to force that change
  if (!pctx) {
    std::unique_lock<std::mutex> cudaFreeMutexLock(
        *(c10::cuda::CUDACachingAllocator::getFreeMutex()));
    cudaFree(nullptr);
    AT_CUDA_DRIVER_CHECK(nvrtc().cuCtxGetCurrent(&pctx));
  }
  // Acquires device and NVRTC properties (for compile arch and occupancy
  // calculations)
  cudaDeviceProp* prop = at::cuda::getCurrentDeviceProperties();
  int major, minor;
  getMajorMinor(prop, major, minor);

  // Creates the NVRTC program
  nvrtcProgram program;
  AT_CUDA_NVRTC_CHECK(nvrtc().nvrtcCreateProgram(
      &program, code.c_str(), nullptr, 0, nullptr, nullptr));

#ifdef __HIP_PLATFORM_HCC__
  std::vector<const char*> args = {};
#else
  const std::string compute = "--gpu-architecture=compute_" +
      std::to_string(major) + std::to_string(minor);
  const std::vector<const char*> args = {
      "--std=c++14", compute.c_str(), "-default-device"};
#endif

  const auto result =
      nvrtc().nvrtcCompileProgram(program, args.size(), args.data());
  if (result != NVRTC_SUCCESS) {
    size_t logsize;
    AT_CUDA_NVRTC_CHECK(nvrtc().nvrtcGetProgramLogSize(program, &logsize));
    std::vector<char> log(logsize);
    AT_CUDA_NVRTC_CHECK(nvrtc().nvrtcGetProgramLog(program, log.data()));
    std::stringstream cu;
    cu << log.data() << std::endl;
    cu << "nvrtc compilation failed: " << std::endl;
    cu << code << std::endl;
    throw std::runtime_error(cu.str());
  }
  ResourceGuard holdProgram(
      [&] { AT_CUDA_NVRTC_CHECK(nvrtc().nvrtcDestroyProgram(&program)); });
  AT_CUDA_NVRTC_CHECK(result);
  size_t ptx_size;
  AT_CUDA_NVRTC_CHECK(nvrtc().nvrtcGetPTXSize(program, &ptx_size));
  std::vector<char> ptx;
  ptx.resize(ptx_size);
  AT_CUDA_NVRTC_CHECK(nvrtc().nvrtcGetPTX(program, ptx.data()));

  CUmodule module;
  AT_CUDA_DRIVER_CHECK(nvrtc().cuModuleLoadData(&module, ptx.data()));
  AT_CUDA_DRIVER_CHECK(
      nvrtc().cuModuleGetFunction(&function_, module, func_name.c_str()));

  if (prior_device != this->device().index()) {
    at::cuda::set_device(prior_device);
  }
}

CudaCodeGen::~CudaCodeGen() = default;

RegisterCodeGen<CudaCodeGen> cuda_codegen_reg("cuda_codegen");

} // namespace tensorexpr
} // namespace jit
} // namespace torch