1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
|
#include <torch/csrc/jit/tensorexpr/cuda_codegen.h>
#include <torch/csrc/jit/tensorexpr/cuda_half_support.h>
#include <ATen/CUDAGeneratorImpl.h>
#include <c10/cuda/CUDAFunctions.h>
#include <torch/csrc/jit/jit_log.h>
#include <torch/csrc/jit/tensorexpr/analysis.h>
#include <torch/csrc/jit/tensorexpr/cuda_random.h>
#include <torch/csrc/jit/tensorexpr/eval.h>
#include <torch/csrc/jit/tensorexpr/exceptions.h>
#include <torch/csrc/jit/tensorexpr/execution_counter.h>
#include <torch/csrc/jit/tensorexpr/ir_simplifier.h>
#include <torch/csrc/jit/tensorexpr/registerizer.h>
namespace torch {
namespace jit {
namespace tensorexpr {
DEFINE_TRIGGER(cuda_codegen_created);
DEFINE_TRIGGER(cuda_codegen_executed);
// A RAII wrapper to manage a variable and name pair in the look-up table.
// TODO: move this to a more shared place.
class ScopedVarName {
public:
ScopedVarName(VarNameMap* mapping, const Var* var, const std::string& name)
: mapping_(mapping), var_(var) {
auto iter = mapping->find(var);
if (iter != mapping->end()) {
throw std::runtime_error("Duplicate var entry: " + var->name_hint());
}
mapping->insert(std::make_pair(var, name));
}
ScopedVarName(
UniqueNameManager* manager,
const Var* var,
const std::string& name)
: ScopedVarName(&manager->unique_name_mapping_, var, name) {}
ScopedVarName(const ScopedVarName&) = delete;
ScopedVarName& operator=(const ScopedVarName&) = delete;
~ScopedVarName() noexcept(false) {
mapping_->erase(var_);
}
private:
VarNameMap* mapping_ = nullptr;
const Var* var_ = nullptr;
};
static int as_int(const Expr* expr) {
auto v = dynamic_cast<const IntImm*>(expr);
if (!v) {
throw malformed_input(
"cuda_codegen: non Int expr interpreted as int", expr);
}
return v->value();
}
static bool is_zero(const Expr* expr) {
return as_int(expr) == 0;
}
static const at::cuda::NVRTC& nvrtc() {
return at::globalContext().getNVRTC();
}
static void getMajorMinor(
const cudaDeviceProp* const prop,
int& major,
int& minor) {
using CudaVersion = std::pair<int, int>;
CudaVersion nvrtc_version;
AT_CUDA_NVRTC_CHECK(
nvrtc().nvrtcVersion(&nvrtc_version.first, &nvrtc_version.second));
AT_ASSERT(nvrtc_version.first >= 6);
CudaVersion dev_version = CudaVersion(prop->major, prop->minor);
CudaVersion max_dev_version(dev_version);
if (nvrtc_version.first <= 7) { // 7 supports 2-5.x
max_dev_version = CudaVersion(5, 0);
} else if (nvrtc_version.first <= 8) { // 8 supports 2-6.x
max_dev_version = CudaVersion(6, 0);
} else if (nvrtc_version.first <= 9) { // 9 supports 3-7.2
max_dev_version = CudaVersion(7, 2);
} else if (nvrtc_version.first <= 10) { // 10 supports 3-7.5
max_dev_version = CudaVersion(7, 5);
} else if (nvrtc_version.first == 11 && nvrtc_version.second == 0) {
// 11.0 supports 3-8.0
max_dev_version = CudaVersion(8, 0);
}
if (dev_version > max_dev_version) {
dev_version = max_dev_version;
}
major = dev_version.first;
minor = dev_version.second;
}
std::string cudaDtypeCppString(const Dtype& dtype) {
switch (dtype.scalar_type()) {
case ScalarType::Bool:
return "bool";
case ScalarType::Half:
return "half";
case ScalarType::Char:
return "char";
case ScalarType::Byte:
return "unsigned char";
case ScalarType::Short:
return "short";
case ScalarType::Long:
return "long long";
default:
return dtype.ToCppString();
}
}
void CudaAnalysis::visit(const Free* v) {
if (thread_local_bufs_.count(v->buffer_var()) == 0 &&
cross_block_bufs_.count(v->buffer_var()) == 0) {
throw std::runtime_error("Global free not supported yet");
}
}
void CudaAnalysis::visit(const Allocate* v) {
Stmt* p = v->get_parent();
while (p) {
const For* for_v = dynamic_cast<const For*>(p);
if (for_v) {
if (for_v->loop_options().is_gpu_block_index()) {
// TODO: This isn't right if there's a thread index at a higher level
// than this.
cross_block_bufs_.insert(v->buffer_var());
return;
} else if (for_v->loop_options().is_gpu_thread_index()) {
thread_local_bufs_.insert(v->buffer_var());
return;
}
}
p = p->get_parent();
}
throw std::runtime_error("Global alloc not supported yet");
}
void CudaAnalysis::visit(const For* v) {
// Recurse first.
v->body()->accept(this);
const LoopOptions& loop_options = v->loop_options();
if (loop_options.is_gpu_block_index()) {
int gpu_block_index = loop_options.gpu_block_index();
if (gpu_block_index >= 3) {
throw std::runtime_error("support only 3D gpu_block_index");
}
const Expr* prev = nullptr;
if (gpu_block_extents_.size() <= gpu_block_index) {
gpu_block_extents_.resize(gpu_block_index + 1);
} else {
prev = gpu_block_extents_[gpu_block_index];
}
if (!is_zero(v->start())) {
throw std::runtime_error(
"start must be zero for gpu_block_index: " +
std::to_string(v->start()));
}
if (prev == nullptr) {
gpu_block_extents_[gpu_block_index] = v->stop();
} else if (prev->isConstant() && immediateEquals(prev, 1)) {
// extents must be positive so if the current extent is 1 then even if the
// stop is symbolic it's the max.
gpu_block_extents_[gpu_block_index] = v->stop();
} else {
gpu_block_extents_[gpu_block_index] =
IRSimplifier::simplify(new Max(prev, v->stop(), true));
}
} else if (loop_options.is_gpu_thread_index()) {
int gpu_thread_index = loop_options.gpu_thread_index();
if (gpu_thread_index >= 3) {
throw std::runtime_error("support only 3D gpu_thread_index");
}
const Expr* prev = nullptr;
if (gpu_thread_extents_.size() <= gpu_thread_index) {
gpu_thread_extents_.resize(gpu_thread_index + 1);
} else {
prev = gpu_thread_extents_[gpu_thread_index];
}
if (!is_zero(v->start())) {
throw std::runtime_error(
"start must be zero for gpu_thread_index: " +
std::to_string(v->start()));
}
if (prev == nullptr) {
gpu_thread_extents_[gpu_thread_index] = v->stop();
} else if (prev->isConstant() && immediateEquals(prev, 1)) {
// extents must be positive so if the current extent is 1 then even if the
// stop is symbolic it's the max.
gpu_thread_extents_[gpu_thread_index] = v->stop();
} else {
gpu_thread_extents_[gpu_thread_index] =
IRSimplifier::simplify(new Max(prev, v->stop(), true));
}
}
}
static void print_flat_alloc(std::ostream& os, const Allocate* alloc) {
std::vector<const Expr*> dims = alloc->dims();
// TODO: this should be merged with the storage flattener.
int64_t flat_size = 1;
for (auto dim : dims) {
const IntImm* dim_i = dynamic_cast<const IntImm*>(dim);
if (dim_i) {
flat_size *= dim_i->value();
} else {
throw std::runtime_error("Only IntImm dimensions are supported for now");
}
}
os << cudaDtypeCppString(alloc->dtype()) << " " << (*alloc->buffer_var())
<< "[" << flat_size << "];" << std::endl;
}
void CudaPrinter::visit(const Allocate* v) {
// TODO: handle dynamic shapes here.
if (cuda_analysis_->cross_block_bufs().count(v->buffer_var()) != 0) {
emitIndent();
os() << "__shared__ ";
print_flat_alloc(os(), v);
return;
}
if (cuda_analysis_->thread_local_bufs().count(v->buffer_var()) != 0) {
emitIndent();
print_flat_alloc(os(), v);
return;
}
throw std::runtime_error("Encountered Alloc not local to block or thread");
}
void CudaPrinter::visit(const Free* v) {
// do nothing
}
void CudaPrinter::visit(const For* v) {
IRPrinter::visit(v);
}
void CudaPrinter::visit(const Cast* v) {
if (v->dtype().scalar_type() == ScalarType::Half) {
os() << "__float2half(";
v->src_value()->accept(this);
os() << ")";
return;
} else if (v->src_value()->dtype().scalar_type() == ScalarType::Half) {
os() << "__half2float(";
v->src_value()->accept(this);
os() << ")";
return;
}
os() << "(" << cudaDtypeCppString(v->dtype()) << ")";
os() << "(";
v->src_value()->accept(this);
os() << ")";
}
void CudaPrinter::visit(const Intrinsics* v) {
if (v->op_type() == IntrinsicsOp::kRand) {
os() << "Uint32ToFloat(" << *rand_func_ << "())";
return;
}
std::string func_name = v->func_name();
// get type of resulting expression.
ScalarType returnType = v->param(0)->dtype().scalar_type();
for (int i = 1; i < v->nparams(); ++i) {
returnType = promoteTypes(returnType, v->param(i)->dtype().scalar_type());
}
if (returnType == ScalarType::Half || returnType == ScalarType::Float) {
func_name = func_name + "f";
}
if (v->op_type() == IntrinsicsOp::kFabs && is_integral(returnType)) {
func_name = "abs";
}
os() << func_name << "(";
for (int i = 0; i < v->nparams(); i++) {
if (i > 0) {
os() << ", ";
}
os() << *v->param(i);
}
os() << ")";
}
void CudaPrinter::visit(const Load* v) {
// TODO: find a better metric in using ldg or not. Support different dtypes.
// Detects whether the load target is also a store target.
// TODO: this is currently too wide. It detects whether a store-target
// exists within the program. In fact, this check is only necessary within a
// kernel.
if (v->indices().empty()) {
os() << *v->base_handle();
return;
}
if (v->dtype().scalar_type() == ScalarType::Bool ||
v->dtype().scalar_type() == ScalarType::Half) {
// There's no __ldg overload for bool or half.
os() << *v->base_handle() << "[" << *v->flat_index() << "]";
return;
}
if (cuda_analysis_->is_buf_store_target(v->buf())) {
// Cuda __ldg can only be applied on read-only buffers.
os() << *v->base_handle() << "[" << *v->flat_index() << "]";
return;
}
os() << "__ldg(" << *v->base_handle() << " + " << *v->flat_index() << ")";
}
// TODO: maybe this should be a more shared location?
// TODO: investigate how "Expr*" can be implicitly converted to "ExprHandle" as
// a bool.
static bool CheckEqual(const Expr* lhs, const Expr* rhs) {
// The fast path. Checks if the pointers are the same.
if (lhs == rhs) {
return true;
}
ExprHandle diff = Sub::make(ExprHandle(lhs), ExprHandle(rhs));
ExprHandle diff_s = IRSimplifier::simplify(diff);
return immediateEquals(diff_s.node(), 0);
}
class AtomicAddFuser : public IRMutator {
public:
AtomicAddFuser(
const std::unordered_set<const Var*>& thread_local_bufs,
const GPUMetaVarRewriter& metavars)
: thread_local_bufs_(thread_local_bufs) {
size_t DIMS = 3;
const std::vector<const Expr*>& block_extents =
metavars.gpu_block_extents();
const std::vector<const Var*>& block_vars = metavars.gpu_block_vars();
for (size_t i = 0; i < block_extents.size(); ++i) {
MetaVarExtent extent{block_extents[i], false};
if (extent.expr->isConstant() && immediateEquals(extent.expr, 1)) {
extent.trivial = true;
} else {
nontrivial_metavars_.insert(block_vars[i]);
}
metavars_[block_vars[i]] = extent;
}
const std::vector<const Expr*>& thread_extents =
metavars.gpu_thread_extents();
const std::vector<const Var*>& thread_vars = metavars.gpu_thread_vars();
for (size_t i = 0; i < thread_extents.size(); ++i) {
MetaVarExtent extent{thread_extents[i], false};
if (extent.expr->isConstant() && immediateEquals(extent.expr, 1)) {
extent.trivial = true;
} else {
nontrivial_metavars_.insert(thread_vars[i]);
}
metavars_[thread_vars[i]] = extent;
}
}
Stmt* mutate(const Store* v) override {
const Buf* buf = v->buf();
Store* orig = const_cast<Store*>(v); // NOLINT
// Thread locals never need to be atomic.
if (thread_local_bufs_.count(buf->base_handle()) != 0) {
return orig;
}
ScalarType dtype = v->value()->dtype().scalar_type();
if (dtype != ScalarType::Float && dtype != ScalarType::Double) {
return orig;
}
const Add* add_v = dynamic_cast<const Add*>(v->value());
if (!add_v) {
return orig;
}
const Load* load_v = dynamic_cast<const Load*>(add_v->lhs());
if (!load_v) {
return orig;
}
if (v->base_handle() != load_v->base_handle()) {
return orig;
}
if (v->indices().empty() && load_v->indices().empty()) {
return orig;
}
bool index_equal = CheckEqual(v->flat_index(), load_v->flat_index());
if (!index_equal) {
return orig;
}
// TODO: this checks that the metavars occur directly as an index, but this
// is pessimistic, blockIdx.x + 1 is fine too if there is no overlapping.
std::unordered_set<const Var*> vars_to_find = nontrivial_metavars_;
for (const Expr* e : v->indices()) {
if (const Var* v = dynamic_cast<const Var*>(e)) {
vars_to_find.erase(v);
}
}
if (vars_to_find.empty()) {
// All metavars accounted for.
return orig;
}
return new AtomicAdd(buf, v->indices(), add_v->rhs());
}
private:
const std::unordered_set<const Var*>& thread_local_bufs_;
struct MetaVarExtent {
const Expr* expr{nullptr};
bool trivial{false};
};
std::unordered_map<const Var*, MetaVarExtent> metavars_;
std::unordered_set<const Var*> nontrivial_metavars_;
};
void CudaPrinter::visit(const Store* v) {
emitIndent();
if (v->indices().empty()) {
os() << *v->base_handle() << " = ";
} else {
os() << *v->base_handle() << "[" << *v->flat_index() << "] = ";
}
os() << *v->value() << ";";
os() << std::endl;
}
void CudaPrinter::visit(const AtomicAdd* v) {
emitIndent();
if (cuda_analysis_->thread_local_bufs().count(v->base_handle()) > 0) {
// atomicAdd only works on global and shared memory
os() << *v->base_handle() << "[" << *v->flat_index()
<< "] += " << *v->value() << ";";
} else {
os() << "atomicAdd(&" << *v->base_handle() << "[" << *v->flat_index() << "]"
<< ", " << *v->value() << ");";
}
os() << std::endl;
}
void CudaPrinter::visit(const Max* v) {
if (is_integral(v->dtype().scalar_type())) {
os() << "max(";
} else {
os() << "maximum(";
}
v->lhs()->accept(this);
os() << ",";
v->rhs()->accept(this);
os() << ")";
}
void CudaPrinter::visit(const Min* v) {
if (is_integral(v->dtype().scalar_type())) {
os() << "min(";
} else {
os() << "minimum(";
}
v->lhs()->accept(this);
os() << ",";
v->rhs()->accept(this);
os() << ")";
}
void CudaPrinter::visit(const IfThenElse* v) {
os() << "((";
v->condition()->accept(this);
os() << ") ? ";
v->true_value()->accept(this);
os() << " : ";
v->false_value()->accept(this);
os() << ")";
}
void CudaPrinter::visit(const Block* v) {
os() << "{" << std::endl;
indent_++;
for (Stmt* s : v->stmts()) {
s->accept(this);
}
indent_--;
emitIndent();
os() << "}";
}
void CudaPrinter::visit(const Let* v) {
emitIndent();
os() << cudaDtypeCppString(v->dtype());
os() << " " << *v->var() << " = ";
v->value()->accept(this);
os() << ";" << std::endl;
}
class PrioritizeLoad : public IRMutator {
public:
const Expr* mutate(const Load* v) override {
// Look at the declaration of this variable for more details.
if (nested_if_then_else_ > 0) {
return IRMutator::mutate(v);
}
if (nested_let_) {
return IRMutator::mutate(v);
}
if (thread_local_bufs_.count(v->base_handle()) > 0) {
return IRMutator::mutate(v);
}
if (v->indices().size() == 0) {
return IRMutator::mutate(v);
}
if (nested_store_) {
if (v->base_handle() == nested_store_->buf()->base_handle() &&
v->indices().size() == nested_store_->indices().size()) {
// also check indices
bool same = true;
for (int i = 0; i < v->indices().size(); ++i) {
if (!exprEquals(v->indices()[i], nested_store_->indices()[i])) {
same = false;
break;
}
}
if (same) {
return IRMutator::mutate(v);
}
} else if (nested_store_->indices().empty()) {
return IRMutator::mutate(v);
}
}
MemLoadList& load_list = load_stack_.back();
const Var* load_new_var = new Var("v", v->dtype());
const Expr* new_value = IRMutator::mutate(v);
load_list.push_back(std::make_pair(load_new_var, new_value));
return load_new_var;
}
const Expr* mutate(const Cast* v) override {
const Load* src_load = dynamic_cast<const Load*>(v->src_value());
const Expr* new_src = v->src_value()->accept_mutator(this);
const Var* new_var = dynamic_cast<const Var*>(new_src);
if (!src_load || !new_var) {
return new Cast(v->dtype(), new_src);
}
// We just did the prioritize load, let's fold in the Cast.
MemLoadList& load_list = load_stack_.back();
assert(!load_list.empty());
auto pair = load_list.back();
assert(pair.first == new_var);
load_list.pop_back();
new_var = new Var("v", v->dtype());
const Expr* new_value = new Cast(v->dtype(), pair.second);
load_list.push_back(std::make_pair(new_var, new_value));
return new_var;
}
Stmt* mutate(const Store* v) override {
const Store* last = nested_store_;
nested_store_ = v;
Stmt* s = IRMutator::mutate(v);
nested_store_ = last;
return s;
}
Stmt* mutate(const Let* v) override {
nested_let_ = true;
Stmt* s = IRMutator::mutate(v);
nested_let_ = false;
return s;
}
Stmt* mutate(const Block* v) override {
bool any_change = false;
Block* v1 = const_cast<Block*>(v); // NOLINT
assert(v1);
std::list<Stmt*> stmts = v1->stmts();
for (Stmt* stmt : stmts) {
PushList();
Stmt* stmt_new = stmt->accept_mutator(this);
AddMemLoadsFromList(v1, stmt);
PopList();
if (stmt_new == stmt) {
continue;
}
v1->replace_stmt(stmt, stmt_new);
}
return v1;
}
const Expr* mutate(const IfThenElse* v) override {
nested_if_then_else_++;
const Expr* new_v = IRMutator::mutate(v);
nested_if_then_else_--;
return new_v;
}
private:
using MemLoadEntry = std::pair<const Var*, const Expr*>;
using MemLoadList = std::vector<MemLoadEntry>;
using MemoryLoadStack = std::vector<MemLoadList>;
void PushList() {
load_stack_.push_back(MemLoadList());
}
void PopList() {
load_stack_.pop_back();
}
void AddMemLoadsFromList(Block* block, Stmt* last) {
MemLoadList& load_list = load_stack_.back();
if (load_list.empty()) {
return;
}
for (const auto& pair : load_list) {
Stmt* news = new Let(pair.first, pair.second);
block->insert_stmt_before(news, last);
}
}
MemoryLoadStack load_stack_;
// TODO: For now, we are not moving the loads with the IfThenElse.
// Eventually, we should switch to a more generic structure like:
// int v2 = IfThenElse(cond, true_v, false_v) + 2 ->
//
// int v;
// if (cond) {
// v = true_v;
// } else {
// v = false_v;
// }
// int v2 = v + 2;
int nested_if_then_else_{0};
const Store* nested_store_{nullptr};
bool nested_let_{false};
std::unordered_set<const Var*> thread_local_bufs_;
};
std::string CudaCodeGen::GetUniqueFuncName(const std::string& func_prefix) {
// We are using a global counter here to make sure difference instances
// within CudaCodeGen have different names.
static int64_t counter = 0;
++counter;
int64_t value = counter;
return func_prefix + "_" + std::to_string(value);
}
bool GPUMetaVarRewriter::isFullExtent() {
{
auto& extents = cuda_analysis_->gpu_block_extents();
for (int i = 0; i < 3; ++i) {
if (!exprEquals(current_block_reach_[i], extents[i])) {
return false;
}
}
}
{
auto& extents = cuda_analysis_->gpu_thread_extents();
for (int i = 0; i < 3; ++i) {
if (!exprEquals(current_thread_reach_[i], extents[i])) {
return false;
}
}
}
return true;
}
Stmt* GPUMetaVarRewriter::mutate(const For* v) {
Stmt* body = v->body();
const Expr* old_reach = nullptr;
const LoopOptions& loop_options = v->loop_options();
if (loop_options.is_gpu_block_index()) {
int gpu_block_index = loop_options.gpu_block_index();
if (gpu_block_index >= 3) {
throw std::runtime_error("support only 3D gpu_block_index");
}
old_reach = current_block_reach_[gpu_block_index];
// Extents must be positive, assume >= 1.
if (old_reach->isConstant() && immediateEquals(old_reach, 1)) {
current_block_reach_[gpu_block_index] = v->stop();
} else {
current_block_reach_[gpu_block_index] =
IRSimplifier::simplify(new Max(old_reach, v->stop(), true));
}
const Var* metaVar = gpu_block_vars_[gpu_block_index];
body = Substitute(Stmt::clone(body), {{v->var(), metaVar}});
} else if (loop_options.is_gpu_thread_index()) {
int gpu_thread_index = loop_options.gpu_thread_index();
if (gpu_thread_index >= 3) {
throw std::runtime_error("support only 3D gpu_thread_index");
}
old_reach = current_thread_reach_[gpu_thread_index];
// Extents must be positive, assume >= 1.
if (old_reach->isConstant() && immediateEquals(old_reach, 1)) {
current_thread_reach_[gpu_thread_index] = v->stop();
} else {
current_thread_reach_[gpu_thread_index] =
IRSimplifier::simplify(new Max(old_reach, v->stop(), true));
}
const Var* metaVar = gpu_thread_vars_[gpu_thread_index];
body = Substitute(Stmt::clone(body), {{v->var(), metaVar}});
}
// Recurse into body block.
body = Stmt::clone(body->accept_mutator(this));
// pop the internal reach off the stack.
if (loop_options.is_gpu_block_index()) {
current_block_reach_[loop_options.gpu_block_index()] = old_reach;
return body;
} else if (loop_options.is_gpu_thread_index()) {
current_thread_reach_[loop_options.gpu_thread_index()] = old_reach;
return body;
}
return v->cloneWithNewBody(body);
}
Stmt* GPUMetaVarRewriter::mutate(const Block* v) {
std::vector<Segment> innerSegments;
Segment current;
auto pushAndReset = [&](bool mask) {
if (!current.empty()) {
innerSegments.push_back(current);
}
current.reset(mask);
};
// Here's we're slicing the Block's contents into segments that should have
// the same launch reach. Segments are comprised of all statements that aren't
// loops - which are their own segments. Some operations, such as threading
// and memory ops should never be masked and so also get their own segment.
for (Stmt* stmt : *v) {
Stmt* stmt_new = stmt->accept_mutator(this);
if (stmt == stmt_new) {
stmt_new = Stmt::clone(stmt_new);
}
// Likewise, Allocate and Free should never be masked.
if (dynamic_cast<Allocate*>(stmt) || dynamic_cast<Free*>(stmt)) {
pushAndReset(false);
}
// If the current stmt *was* a loop, it's a segment boundary.
if (For* f = dynamic_cast<For*>(stmt)) {
pushAndReset(false);
}
current.stmts().push_back(stmt_new);
// if the current segment should not be masked, it's a segment boundary on
// the far side as well.
if (!current.mask()) {
pushAndReset(true);
}
}
if (!current.empty()) {
innerSegments.push_back(current);
}
// We are max extent in all dimensions, so need no masks at this level.
if (isFullExtent()) {
// flatten inner segments.
std::vector<Stmt*> stmts;
for (auto& v : innerSegments) {
for (auto* s : v.stmts()) {
stmts.push_back(s);
}
}
return new Block(stmts);
}
std::vector<Stmt*> stmts;
for (auto& segment : innerSegments) {
bool need_sync = false;
// We never mask loops, they'll mask their contents.
if (!segment.mask()) {
TORCH_INTERNAL_ASSERT(segment.stmts().size() == 1);
stmts.push_back(segment.stmts()[0]);
continue;
}
// If we get here, we must mask since we're not full reach and our direct
// child isn't a For.
Stmt* inner = new Block(segment.stmts());
// threads inside blocks.
auto& thread_extents = cuda_analysis_->gpu_thread_extents();
for (size_t i = 0; i < gpu_thread_vars_.size(); ++i) {
if (!exprEquals(current_thread_reach_[i], thread_extents[i])) {
need_sync = true;
// Mask it against the current dimensions.
inner = new Cond(
new CompareSelect(
gpu_thread_vars_[i],
current_thread_reach_[i],
CompareSelectOperation::kLT),
inner,
nullptr);
}
}
auto& block_extents = cuda_analysis_->gpu_block_extents();
for (size_t i = 0; i < gpu_block_vars_.size(); ++i) {
if (!exprEquals(current_block_reach_[i], block_extents[i])) {
// Mask it against the current dimensions.
inner = new Cond(
new CompareSelect(
gpu_block_vars_[i],
current_block_reach_[i],
CompareSelectOperation::kLT),
inner,
nullptr);
}
}
if (need_sync) {
stmts.push_back(new SyncThreads());
}
stmts.push_back(inner);
if (need_sync) {
stmts.push_back(new SyncThreads());
}
}
return new Block(stmts);
}
static std::ostream& operator<<(
std::ostream& out,
const std::vector<const Expr*>& exprs) {
size_t i = 0;
for (auto expr : exprs) {
if (i++ > 0) {
out << ", ";
}
out << *expr;
}
return out;
}
#ifdef USE_ROCM
static const char* device_resource_string = R"(
#include <hip/hip_runtime.h>
#define POS_INFINITY INFINITY
#define NEG_INFINITY -INFINITY
)";
#else
static const char* device_resource_string = R"(
#define NAN __int_as_float(0x7fffffff)
#define POS_INFINITY __int_as_float(0x7f800000)
#define NEG_INFINITY __int_as_float(0xff800000)
)";
#endif
static const char* shared_resource_string = R"(
template<typename T>
__device__ T maximum(T a, T b) {
return isnan(a) ? a : (a > b ? a : b);
}
template<typename T>
__device__ T minimum(T a, T b) {
return isnan(a) ? a : (a < b ? a : b);
}
)";
void CudaCodeGen::Initialize() {
// TODO: handle multiple kernels.
// TODO: handle dynamic dimension.
// TODO: call nvrtc.
// TODO: merge HasRand with CudaAnalysis.
GenericIntrinsicsExpander intrinsics_expander;
apply_mutator(&intrinsics_expander);
HasRand has_rand_func(stmt());
has_random_ = has_rand_func.has_rand();
cuda_analysis_ = std::make_unique<CudaAnalysis>();
printer_ =
std::make_unique<CudaPrinter>(&oss_, cuda_analysis_.get(), has_random_);
metavar_rewriter_ =
std::make_unique<GPUMetaVarRewriter>(cuda_analysis_.get());
os() << device_resource_string << shared_resource_string;
if (has_random_) {
os() << philox_random_string << std::endl;
}
// Check whether the statement uses the Half type, if so add the
// half_support_literal.
Stmt* stmt_v = stmt();
CudaHalfChecker halfChecker;
stmt_v = stmt_v->accept_mutator(&halfChecker);
if (halfChecker.hasHalf()) {
os() << fuser::cuda::half_support_literal << std::endl;
}
std::string func_name = GetUniqueFuncName("func");
os() << "extern \"C\" __global__" << std::endl;
#ifdef USE_ROCM
// CUDA has a default limit of threads per block (=flat work group size)
// of 1024, but ROCm uses 256 by default. At the time of writing
// (#45506), I am unaware of a stricter limit that TensorExpr imposes
// (maybe for perf),so I use 1024 as maximum flat work group size.
// We put a minimum value of 1, this is also used by hip (ROCm 3.8) in
// the __launch_bound__ implementation. The arguments for the attribute
// are (min, max), for details see the documentation at
// https://clang.llvm.org/docs/AttributeReference.html#amdgpu-flat-work-group-size
os() << "__attribute__((amdgpu_flat_work_group_size(1, 1024)))" << std::endl;
#endif
os() << "void " << func_name << "(";
const std::vector<BufferArg> buffer_args = this->buffer_args();
for (size_t i = 0; i < buffer_args.size(); i++) {
if (i > 0) {
os() << ", ";
}
const BufferArg& buffer_arg = buffer_args[i];
const Var* var = buffer_arg.var();
Dtype dtype = buffer_arg.dtype();
os() << cudaDtypeCppString(dtype) << (buffer_arg.isVar() ? " " : "* ")
<< name_manager()->get_unique_name(var);
}
const Var* rand_seed;
const Var* rand_offset;
if (has_random_) {
// TODO: switch to kUint64 when it is available.
rand_seed = new Var("rand_seed", kInt);
rand_offset = new Var("rand_offset", kInt);
std::string uint64_str = "unsigned long long";
os() << ", " << uint64_str << " " << *rand_seed << ", " << uint64_str << " "
<< *rand_offset;
}
os() << ") {";
os() << std::endl;
if (has_random_) {
const Var* idx = new Var("idx", kInt);
os() << "int " << *idx << " = blockIdx.x*blockDim.x + threadIdx.x;"
<< std::endl;
const Var* rand_func = printer_->rand_func();
os() << "Philox " << *rand_func << "(" << *rand_seed << ", " << *idx << ", "
<< *rand_offset << ");" << std::endl;
os() << std::endl;
}
stmt_v->accept(cuda_analysis_.get());
stmt_v = stmt_v->accept_mutator(metavar_rewriter_.get());
AtomicAddFuser atomic_add_fuser(
cuda_analysis_->thread_local_bufs(), *metavar_rewriter_.get());
stmt_v = stmt_v->accept_mutator(&atomic_add_fuser);
stmt_v = registerize(stmt_v);
// The registerizer might insert half-type scalars, we don't want this.
CudaHalfScalarRewriter hsFix;
stmt_v = stmt_v->accept_mutator(&hsFix);
PrioritizeLoad prioritize_load;
stmt_v = stmt_v->accept_mutator(&prioritize_load);
stmt_v = IRSimplifier::simplify(stmt_v);
set_stmt(stmt_v);
stmt_v->accept(printer_.get());
os() << std::endl;
os() << "}";
// Check that all block extents had been set.
const std::vector<const Expr*>& gpu_block_extents =
metavar_rewriter_->gpu_block_extents();
for (size_t i = 0; i < gpu_block_extents.size(); i++) {
if (!gpu_block_extents[i]) {
throw std::runtime_error("Missing gpu_block_index: " + std::to_string(i));
}
}
GRAPH_DEBUG(
"Fused TE CUDA kernel:\n",
oss_.str(),
"\n",
"gpu_block_extents: (",
metavar_rewriter_->gpu_block_extents(),
")\n",
"gpu_thread_extents: (",
metavar_rewriter_->gpu_thread_extents(),
")");
CompileToNVRTC(oss_.str(), func_name);
USE_TRIGGER(cuda_codegen_created);
}
void CudaCodeGen::call(const std::vector<CallArg>& args) {
if (args.size() != buffer_args().size()) {
throw malformed_input("cuda_codegen: wrong number of args in call");
}
// TODO: move as much of this into the constructors.
const std::vector<const Expr*>& gpu_block_extents =
metavar_rewriter_->gpu_block_extents();
const std::vector<const Expr*>& gpu_thread_extents =
metavar_rewriter_->gpu_thread_extents();
if (gpu_block_extents.size() > 3 || gpu_thread_extents.size() > 3) {
throw malformed_input(
"cuda_codegen: block or thread extent greater than 3D");
}
std::vector<int> gpu_block_extents_v(3, 1);
std::vector<int> gpu_thread_extents_v(3, 1);
// evaluate all the block/thread extents into values
// TODO: eventually, codegen these calculations and make them part of the
// module.
for (size_t i = 0; i < gpu_block_extents.size(); i++) {
if (gpu_block_extents[i]->isConstant()) {
gpu_block_extents_v[i] = immediateAs<int>(gpu_block_extents[i]);
continue;
}
ExprEval<SimpleIREvaluator> eval(
ExprHandle(gpu_block_extents[i]), buffer_args());
gpu_block_extents_v[i] = eval.value<int>(args);
}
for (size_t i = 0; i < gpu_thread_extents.size(); i++) {
if (gpu_thread_extents[i]->isConstant()) {
gpu_thread_extents_v[i] = immediateAs<int>(gpu_thread_extents[i]);
continue;
}
ExprEval<SimpleIREvaluator> eval(
ExprHandle(gpu_thread_extents[i]), buffer_args());
gpu_thread_extents_v[i] = eval.value<int>(args);
}
// Skip launching the kernel if there are no elements to process.
for (int extent : gpu_block_extents_v) {
if (extent == 0) {
return;
}
}
// Bind the buffer addresses into arguments
auto const& buffer_args = this->buffer_args();
int ptr_count = buffer_args.size();
if (has_random_) {
ptr_count += 2;
}
std::vector<void*> args_data(buffer_args.size());
std::vector<void*> ptr_to_args(ptr_count);
uint64_t rand_seed = uint64_t(-1);
uint64_t rand_offset = uint64_t(-1);
for (size_t i = 0; i < buffer_args.size(); i++) {
auto const& bufferArg = buffer_args[i];
if (bufferArg.isVar()) {
auto stype = bufferArg.dtype().scalar_type();
switch (stype) {
#define TYPE_CASE(Type, Name) \
case ScalarType::Name: \
ptr_to_args[i] = args[i].Name##Ptr(); \
break;
AT_FORALL_SCALAR_TYPES_AND2(Bool, Half, TYPE_CASE);
#undef TYPE_CASE
default:
throw unsupported_dtype();
}
} else {
args_data[i] = args[i].data();
ptr_to_args[i] = &args_data[i];
}
}
if (has_random_) {
auto gen = at::cuda::detail::getDefaultCUDAGenerator();
// TODO: total hack. Switch to numel when it is available.
int64_t total_elements_per_thread = (1LL << 28);
{
std::lock_guard<std::mutex> lock(gen.mutex());
auto philox_engine_inputs =
at::check_generator<at::CUDAGeneratorImpl>(gen)->philox_engine_inputs(
total_elements_per_thread);
rand_seed = philox_engine_inputs.first;
rand_offset = philox_engine_inputs.second;
}
ptr_to_args[buffer_args.size()] = &rand_seed;
ptr_to_args[buffer_args.size() + 1] = &rand_offset;
}
const auto prior_device = at::cuda::current_device();
if (prior_device != this->device().index()) {
at::cuda::set_device(this->device().index());
}
// Launch the kernels
auto stream = at::cuda::getCurrentCUDAStream();
AT_CUDA_DRIVER_CHECK(nvrtc().cuLaunchKernel(
function_,
gpu_block_extents_v[0],
gpu_block_extents_v[1],
gpu_block_extents_v[2],
gpu_thread_extents_v[0],
gpu_thread_extents_v[1],
gpu_thread_extents_v[2],
0,
stream,
ptr_to_args.data(),
nullptr));
USE_TRIGGER(cuda_codegen_executed);
if (prior_device != this->device().index()) {
at::cuda::set_device(prior_device);
}
}
void CudaCodeGen::CompileToNVRTC(
const std::string& code,
const std::string& func_name) {
CUcontext pctx = 0;
AT_CUDA_DRIVER_CHECK(nvrtc().cuCtxGetCurrent(&pctx));
// Note: hacked at::DeviceGuard since at::DeviceGuard was failing to work
// properly in some scenarios
const auto prior_device = at::cuda::current_device();
if (prior_device != this->device().index()) {
at::cuda::set_device(this->device().index());
}
// cudaSetDevice does not have to really change the underlying device if it
// doesn't have to, so calling cudaFree to force that change
if (!pctx) {
std::unique_lock<std::mutex> cudaFreeMutexLock(
*(c10::cuda::CUDACachingAllocator::getFreeMutex()));
cudaFree(nullptr);
AT_CUDA_DRIVER_CHECK(nvrtc().cuCtxGetCurrent(&pctx));
}
// Acquires device and NVRTC properties (for compile arch and occupancy
// calculations)
cudaDeviceProp* prop = at::cuda::getCurrentDeviceProperties();
int major, minor;
getMajorMinor(prop, major, minor);
// Creates the NVRTC program
nvrtcProgram program;
AT_CUDA_NVRTC_CHECK(nvrtc().nvrtcCreateProgram(
&program, code.c_str(), nullptr, 0, nullptr, nullptr));
#ifdef __HIP_PLATFORM_HCC__
std::vector<const char*> args = {};
#else
const std::string compute = "--gpu-architecture=compute_" +
std::to_string(major) + std::to_string(minor);
const std::vector<const char*> args = {
"--std=c++14", compute.c_str(), "-default-device"};
#endif
const auto result =
nvrtc().nvrtcCompileProgram(program, args.size(), args.data());
if (result != NVRTC_SUCCESS) {
size_t logsize;
AT_CUDA_NVRTC_CHECK(nvrtc().nvrtcGetProgramLogSize(program, &logsize));
std::vector<char> log(logsize);
AT_CUDA_NVRTC_CHECK(nvrtc().nvrtcGetProgramLog(program, log.data()));
std::stringstream cu;
cu << log.data() << std::endl;
cu << "nvrtc compilation failed: " << std::endl;
cu << code << std::endl;
throw std::runtime_error(cu.str());
}
ResourceGuard holdProgram(
[&] { AT_CUDA_NVRTC_CHECK(nvrtc().nvrtcDestroyProgram(&program)); });
AT_CUDA_NVRTC_CHECK(result);
size_t ptx_size;
AT_CUDA_NVRTC_CHECK(nvrtc().nvrtcGetPTXSize(program, &ptx_size));
std::vector<char> ptx;
ptx.resize(ptx_size);
AT_CUDA_NVRTC_CHECK(nvrtc().nvrtcGetPTX(program, ptx.data()));
CUmodule module;
AT_CUDA_DRIVER_CHECK(nvrtc().cuModuleLoadData(&module, ptx.data()));
AT_CUDA_DRIVER_CHECK(
nvrtc().cuModuleGetFunction(&function_, module, func_name.c_str()));
if (prior_device != this->device().index()) {
at::cuda::set_device(prior_device);
}
}
CudaCodeGen::~CudaCodeGen() = default;
RegisterCodeGen<CudaCodeGen> cuda_codegen_reg("cuda_codegen");
} // namespace tensorexpr
} // namespace jit
} // namespace torch
|