1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
|
#pragma once
#include <unordered_map>
#include <unordered_set>
#include <ATen/ATen.h>
#include <ATen/cuda/CUDAContext.h>
#include <ATen/cuda/nvrtc_stub/ATenNVRTC.h>
#include <c10/cuda/CUDACachingAllocator.h>
#include <c10/cuda/CUDAGuard.h>
#include <torch/csrc/jit/resource_guard.h>
#include <torch/csrc/jit/tensorexpr/codegen.h>
#include <torch/csrc/jit/tensorexpr/ir.h>
#include <torch/csrc/jit/tensorexpr/ir_printer.h>
#include <torch/csrc/jit/tensorexpr/ir_visitor.h>
#include <torch/csrc/jit/tensorexpr/unique_name_manager.h>
namespace torch {
namespace jit {
namespace tensorexpr {
// A class that analyzes the given program relevant for Cuda backends.
class CudaAnalysis : public IRVisitor {
public:
CudaAnalysis() {
gpu_block_extents_ = {new IntImm(1), new IntImm(1), new IntImm(1)};
gpu_thread_extents_ = {new IntImm(1), new IntImm(1), new IntImm(1)};
}
bool is_buf_store_target(const Buf* buf) const {
return store_targets_.count(buf) > 0;
}
const std::unordered_set<const Var*>& thread_local_bufs() const {
return thread_local_bufs_;
}
const std::unordered_set<const Var*>& cross_block_bufs() const {
return cross_block_bufs_;
}
const std::vector<const Expr*>& gpu_block_extents() const {
return gpu_block_extents_;
}
const std::vector<const Expr*>& gpu_thread_extents() const {
return gpu_thread_extents_;
}
private:
void visit(const Store* v) override {
store_targets_.insert(v->buf());
}
void visit(const Allocate* v) override;
void visit(const Free* v) override;
void visit(const For* v) override;
std::unordered_set<const Buf*> store_targets_;
std::unordered_set<const Var*> thread_local_bufs_;
std::unordered_set<const Var*> cross_block_bufs_;
std::vector<const Expr*> gpu_block_extents_;
std::vector<const Expr*> gpu_thread_extents_;
};
// An IRMutator that replaces binding loop options with Cuda metavars, and masks
// statements blocks which should execute with less reach than the launch
// parameter extent.
//
// We do this by segmenting each block into chunks which should have the same
// execution parameters, then if those params differ from the max mask each dim.
class GPUMetaVarRewriter : public IRMutator {
public:
explicit GPUMetaVarRewriter(const CudaAnalysis* cuda_analysis)
: cuda_analysis_(cuda_analysis) {
gpu_block_vars_ = {new Var("blockIdx.x", kInt),
new Var("blockIdx.y", kInt),
new Var("blockIdx.z", kInt)};
gpu_thread_vars_ = {new Var("threadIdx.x", kInt),
new Var("threadIdx.y", kInt),
new Var("threadIdx.z", kInt)};
current_block_reach_ = {new IntImm(1), new IntImm(1), new IntImm(1)};
current_thread_reach_ = {new IntImm(1), new IntImm(1), new IntImm(1)};
}
Stmt* mutate(const For* v) override;
Stmt* mutate(const Block* v) override;
const std::vector<const Var*>& gpu_block_vars() const {
return gpu_block_vars_;
}
const std::vector<const Var*>& gpu_thread_vars() const {
return gpu_thread_vars_;
}
const std::vector<const Expr*>& gpu_block_extents() const {
return cuda_analysis_->gpu_block_extents();
}
const std::vector<const Expr*>& gpu_thread_extents() const {
return cuda_analysis_->gpu_thread_extents();
}
private:
// When processing a block, stores the contents of each sub-segment.
class Segment {
public:
void reset(bool mask) {
stmts_.clear();
mask_ = mask;
}
bool empty() const {
return stmts_.empty();
}
std::vector<Stmt*>& stmts() {
return stmts_;
}
bool mask() {
return mask_;
}
private:
std::vector<Stmt*> stmts_;
bool mask_{true};
};
// Returns true if the current execution scope is equivalent to the launch
// parameters.
bool isFullExtent();
std::vector<const Var*> gpu_block_vars_;
std::vector<const Var*> gpu_thread_vars_;
std::vector<const Expr*> current_block_reach_;
std::vector<const Expr*> current_thread_reach_;
const CudaAnalysis* cuda_analysis_;
};
// A class that overrides the underlying IRPrinter to produce Cuda C.
class CudaPrinter : public IRPrinter {
public:
explicit CudaPrinter(
std::ostream* os,
const CudaAnalysis* cuda_analysis,
bool has_random)
: IRPrinter(*os), cuda_analysis_(cuda_analysis) {
if (has_random) {
rand_func_ = new Var("rand", kHandle);
}
}
void visit(const Cast* v) override;
void visit(const Intrinsics* v) override;
void visit(const For* v) override;
void visit(const Load* v) override;
void visit(const Store* v) override;
void visit(const AtomicAdd* v) override;
void visit(const Max* v) override;
void visit(const Min* v) override;
void visit(const IfThenElse* v) override;
void visit(const Block* v) override;
void visit(const Allocate* v) override;
void visit(const Free* v) override;
void visit(const Let* v) override;
const Var* rand_func() const {
return rand_func_;
}
using IRPrinter::name_manager;
using IRPrinter::visit;
private:
const Var* rand_func_;
const CudaAnalysis* cuda_analysis_;
};
// Construct Cuda C from the buffer and tensor input, and invoke the kernel
// when real arguments are provided.
class TORCH_CUDA_API CudaCodeGen : public CodeGen {
public:
template <typename... Ts>
CudaCodeGen(Stmt* stmt, Ts... ts)
: CodeGen(
stmt,
std::vector<BufferArg>({BufferArg(ts)...}),
at::Device(at::kCUDA, at::cuda::current_device())) {
Initialize();
}
CudaCodeGen(
Stmt* stmt,
const std::vector<BufferArg>& buffer_args,
at::Device device = at::Device(at::kCUDA, at::cuda::current_device()))
: CodeGen(stmt, buffer_args, device) {
Initialize();
}
~CudaCodeGen() override;
void call(const std::vector<CallArg>& args) override;
template <typename... Ts>
void operator()(const Ts&... ts) {
call(std::vector<CallArg>({CallArg(ts)...}));
}
const std::vector<const Expr*>& gpu_block_extents() const {
return cuda_analysis_->gpu_block_extents();
}
const std::vector<const Expr*>& gpu_thread_extents() const {
return cuda_analysis_->gpu_thread_extents();
}
private:
void Initialize();
void CompileToNVRTC(const std::string& code, const std::string& func_name);
UniqueNameManager* name_manager() {
if (!printer_) {
throw std::runtime_error("Null IRPrinter is not expected");
}
return printer_->name_manager();
}
std::ostream& os() {
return printer_->os();
}
std::ostringstream oss_;
std::unique_ptr<CudaPrinter> printer_;
std::unique_ptr<CudaAnalysis> cuda_analysis_;
std::unique_ptr<GPUMetaVarRewriter> metavar_rewriter_;
CUfunction function_;
bool has_random_ = false;
std::string GetUniqueFuncName(const std::string& func_prefix);
};
} // namespace tensorexpr
} // namespace jit
} // namespace torch
|