File: execution_counter.h

package info (click to toggle)
pytorch 1.7.1-7
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 80,340 kB
  • sloc: cpp: 670,830; python: 343,991; ansic: 67,845; asm: 5,503; sh: 2,924; java: 2,888; xml: 266; makefile: 244; ruby: 148; yacc: 144; objc: 51; lex: 44
file content (118 lines) | stat: -rw-r--r-- 3,333 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
#pragma once

#include <torch/csrc/WindowsTorchApiMacro.h>

#include <string>
#include <unordered_map>

namespace torch {
namespace jit {
namespace tensorexpr {

/*
ExecutionTrigger and ExecutionCounter builds instrumentation counters so
underlying functionalities can be checked.

In the code to be instrumented:

// worker.cpp
DEFINE_TRIGGER(useful_work_done);  // this defines a trigger "useful_work_done"
void run() {
  USE_TRIGGER(useful_work_done);   // this triggers the underlying counter
                                   // in  "useful_work_done"
}

// in C++ client.cpp

DECLARE_TRIGGER(useful_work_done);  // Optional: this declares a trigger that
                                    // will be defined elsewhere
ExecutionCounter counter(useful_work_done); // This starts the counter from the
                                            // underlying trigger.
... call run() ...
counter.elapsed_value();   // this returns the incremented value from the
                           // trigger since the creation of the counter

// in Python client.py
counter = ExecutionCounter("useful_work_done") // this starts the counter from
                                               // the underlying trigger
... call C++ run() ...
counter.elapsed_value()    // This returns the incremented value from the
                           // trigger since the creation of the counter.
*/

class ExecutionTrigger;
class ExecutionTriggerList {
 public:
  TORCH_API static ExecutionTriggerList& GetInstance() {
    static ExecutionTriggerList instance;
    return instance;
  }

  ExecutionTrigger* FindByName(const std::string& name) const {
    auto iter = trigger_list_.find(name);
    if (iter == trigger_list_.end()) {
      throw std::runtime_error("Invalid trigger name: " + name);
    }
    return iter->second;
  }

 private:
  friend class ExecutionTrigger;

  ExecutionTriggerList() {}
  ExecutionTriggerList(const ExecutionTriggerList&) = delete;
  ExecutionTriggerList& operator=(const ExecutionTriggerList&) = delete;

  void AddTrigger(const std::string& name, ExecutionTrigger* trigger) {
    auto insert_ret = trigger_list_.insert(std::make_pair(name, trigger));
    if (!insert_ret.second) {
      std::cerr << "Warning: duplicated trigger name: " << name << "\n";
    }
  }

  std::unordered_map<std::string, ExecutionTrigger*> trigger_list_;
};

class ExecutionTrigger {
 public:
  explicit ExecutionTrigger(const std::string& name) : name_(name) {
    ExecutionTriggerList::GetInstance().AddTrigger(name, this);
  }

  int value() const {
    return value_;
  }

  void trigger() {
    value_++;
  }

 private:
  ExecutionTrigger(const ExecutionTrigger&) = delete;
  ExecutionTrigger& operator=(const ExecutionTrigger&) = delete;
  int value_ = 0;
  const std::string name_;
};

class ExecutionCounter {
 public:
  explicit ExecutionCounter(ExecutionTrigger& trigger) : trigger_(trigger) {
    start_value_ = trigger_.value();
  }

  int elapsed_value() const {
    return trigger_.value() - start_value_;
  }

 private:
  ExecutionTrigger& trigger_;
  int start_value_ = 0;
};

#define DEFINE_TRIGGER(name) ExecutionTrigger name(#name)
#define DECLARE_TRIGGER(name) TORCH_API extern ExecutionTrigger name
#define USE_TRIGGER(name) (name).trigger()

} // namespace tensorexpr
} // namespace jit
} // namespace torch