1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
|
#include <torch/csrc/jit/tensorexpr/ir.h>
#include <torch/csrc/jit/tensorexpr/tensor.h>
namespace torch {
namespace jit {
namespace tensorexpr {
static Dtype ChooseDtype(const Dtype& buffer_dtype, const Dtype& index_dtype) {
return Dtype(buffer_dtype, index_dtype.lanes());
}
static Dtype dtypeOfIndices(const std::vector<const Expr*>& indices) {
if (!indices.size()) {
// Return something so we can handle scalar buffers.
return kInt;
}
Dtype dt = indices.at(0)->dtype();
for (size_t i = 1; i < indices.size(); ++i) {
if (indices.at(i)->dtype() != dt) {
throw malformed_input("dtype mismatch in dtypeOfIndices");
}
}
return dt;
}
static bool indicesValid(const std::vector<const Expr*>& indices) {
if (indices.size() == 0) {
return true;
}
Dtype index_dtype = dtypeOfIndices(indices);
if (indices.size() > 1 && index_dtype.lanes() > 1) {
// Multilane is only allowed in a flattened (i.e. 1D) index
return false;
}
if (index_dtype.scalar_type() != ScalarType::Int) {
return false;
}
return true;
}
void Load::verify_dtypes() const {
if (indices_.size() > 0 && buf_->base_handle()->dtype() != kHandle) {
throw malformed_input(
"Load base handle dtype must be Handle", buf_->base_handle());
}
if (!indicesValid(indices_)) {
throw malformed_input("invalid indices in Load");
}
Dtype index_dtype = dtypeOfIndices(indices_);
if (index_dtype.lanes() != mask_->dtype().lanes()) {
throw malformed_input("lane mismatch in Load mask");
}
}
Load::Load(
Dtype dtype,
const Buf* buf,
const std::vector<const Expr*>& indices,
const Expr* mask)
: ExprNodeBase(dtype), buf_(buf), indices_(indices), mask_(mask) {
verify_dtypes();
}
Load::Load(
const Buf* buf,
const std::vector<const Expr*>& indices,
const Expr* mask)
: Load(
ChooseDtype(buf->dtype(), dtypeOfIndices(indices)),
buf,
indices,
mask) {}
ExprHandle Load::make(
Dtype dtype,
const BufHandle& buf,
const std::vector<ExprHandle>& indices,
const ExprHandle& mask) {
return ExprHandle(new Load(
dtype, buf.node(), ExprHandleVectorToExprVector(indices), mask.node()));
}
ExprHandle Load::make(
const BufHandle& buf,
const std::vector<ExprHandle>& indices,
const ExprHandle& mask) {
return Load::make(buf.dtype(), buf, indices, mask);
}
Store::Store(
const Buf* buf,
std::vector<const Expr*> indices,
const Expr* value,
const Expr* mask)
: buf_(buf), indices_(std::move(indices)), value_(value), mask_(mask) {
if (indices_.size() > 0 && buf->base_handle()->dtype() != kHandle) {
throw malformed_input("Store base handle must be Handle");
}
/*
TODO: Reenable the checks.
The reason they are disabled is that kernel.cpp is using Buffers somewhat
loosely: we don't set dimensions properly and just construct index expressions
directly. We should harden that part and then we'd be able to turn on these
checks.
if (!indicesValid(indices)) {
throw malformed_input();
}
if (!mask || !value) {
throw malformed_input();
}
Dtype index_dtype = dtypeOfIndices(indices);
if (index_dtype.lanes() != mask->dtype().lanes()) {
throw malformed_input();
}
if (index_dtype.lanes() != value->dtype().lanes()) {
throw malformed_input();
}
*/
}
Store* Store::make(
const BufHandle& buf,
const std::vector<ExprHandle>& indices,
const ExprHandle& value,
const ExprHandle& mask) {
return new Store(
buf.node(),
ExprHandleVectorToExprVector(indices),
value.node(),
mask.node());
}
Store* Store::make(
const BufHandle& buf,
const std::vector<ExprHandle>& indices,
const ExprHandle& value) {
return new Store(
buf.node(),
ExprHandleVectorToExprVector(indices),
value.node(),
ExprHandle(1).node());
}
const Expr* flatten_index(
const std::vector<const Expr*>& dims,
const std::vector<const Expr*>& indices) {
// Handle already flattened indices first
if (indices.size() == 1) {
return indices[0];
}
size_t ndim = dims.size();
if (ndim != indices.size()) {
throw malformed_input("dimensions mismatch in flatten_index");
}
if (ndim == 0) {
return new IntImm(0);
}
std::vector<const Expr*> strides(ndim);
// stride[i] = stride[i+1]*dims[i+1], i < ndim-1
// stride[i] = 1, i = ndim-1
strides[ndim - 1] = new IntImm(1);
for (size_t i = 1; i < ndim; i++) {
strides[ndim - 1 - i] = new Mul(strides[ndim - i], dims[ndim - i]);
}
const Expr* total_index = new IntImm(0);
for (size_t i = 0; i < ndim; i++) {
total_index = new Add(total_index, new Mul(indices[i], strides[i]));
}
return total_index;
}
Dtype Intrinsics::IntrinsicsDtype(IntrinsicsOp op_type, Dtype dt1) {
// TODO: check the op_type and make a real decision
return dt1;
}
Dtype Intrinsics::IntrinsicsDtype(IntrinsicsOp op_type, Dtype dt1, Dtype dt2) {
// TODO: check the op_type and make a real decision
return dt1;
}
Dtype Intrinsics::IntrinsicsDtype(
IntrinsicsOp op_type,
const std::vector<const Expr*>& params) {
// TODO: check the op_type an dmake a real decision
if (params.size() == 0) {
throw malformed_input("invalid params in Intrinsics");
}
return params[0]->dtype();
}
int Intrinsics::OpArgCount(IntrinsicsOp op_type) {
switch (op_type) {
case kSin:
case kCos:
case kTan:
case kAsin:
case kAcos:
case kAtan:
case kSinh:
case kCosh:
case kTanh:
case kSigmoid:
case kExp:
case kExpm1:
case kFabs:
case kLog:
case kLog2:
case kLog10:
case kLog1p:
case kErf:
case kErfc:
case kSqrt:
case kRsqrt:
case kCeil:
case kFloor:
case kRound:
case kTrunc:
case kFrac:
case kLgamma:
return 1;
case kRand:
return 0;
case kAtan2:
case kFmod:
case kPow:
case kRemainder:
return 2;
default:
throw std::runtime_error("invalid op_type: " + c10::to_string(op_type));
}
}
std::vector<const Expr*> ExprHandleVectorToExprVector(
const std::vector<ExprHandle>& v) {
std::vector<const Expr*> result(v.size());
for (size_t i = 0; i < v.size(); i++) {
result[i] = v[i].node();
}
return result;
}
std::vector<ExprHandle> ExprVectorToExprHandleVector(
const std::vector<const Expr*>& v) {
std::vector<ExprHandle> result(v.size());
for (size_t i = 0; i < v.size(); i++) {
result[i] = ExprHandle(v[i]);
}
return result;
}
std::vector<const Var*> VarHandleVectorToVarVector(
const std::vector<VarHandle>& v) {
std::vector<const Var*> result(v.size());
for (size_t i = 0; i < v.size(); i++) {
result[i] = v[i].node();
}
return result;
}
std::vector<VarHandle> VarVectorToVarHandleVector(
const std::vector<const Var*>& v) {
std::vector<VarHandle> result(v.size());
for (size_t i = 0; i < v.size(); i++) {
result[i] = VarHandle(v[i]);
}
return result;
}
} // namespace tensorexpr
} // namespace jit
} // namespace torch
|