File: ir_simplifier.h

package info (click to toggle)
pytorch 1.7.1-7
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 80,340 kB
  • sloc: cpp: 670,830; python: 343,991; ansic: 67,845; asm: 5,503; sh: 2,924; java: 2,888; xml: 266; makefile: 244; ruby: 148; yacc: 144; objc: 51; lex: 44
file content (620 lines) | stat: -rw-r--r-- 16,806 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
#pragma once

#include <torch/csrc/jit/tensorexpr/eval.h>
#include <torch/csrc/jit/tensorexpr/hash_provider.h>
#include <torch/csrc/jit/tensorexpr/ir.h>
#include <torch/csrc/jit/tensorexpr/ir_mutator.h>
#include <torch/csrc/jit/tensorexpr/ir_visitor.h>
#include <torch/csrc/jit/tensorexpr/types.h>

/* IR Simplification
 *
 * Simplfies expressions in two stages:
 *  1. Recursively traverse the map combining similar operations into Terms
 * (interacted via Multiplication) and Polynomials (interacted via Addition). We
 * reorder the components of each Term or Polynomial into a consistent order to
 * allow combination or cancelling of like terms.
 *  2. Once the format of the tree is minimal, expand each Term into a sequence
 * of Muls, and each Polynomial into a sequence of Ads.
 */

namespace torch {
namespace jit {
namespace tensorexpr {

// A bunch of helpers for determine the Dtype of the output of a multi argument
// Term or Polynomial.
template <class ExprType>
Dtype promoteTypesVec(const Expr* s, std::vector<const ExprType*>& v) {
  Dtype t = s->dtype();
  bool first = true;

  for (auto* e : v) {
    if (first) {
      t = Dtype(t.scalar_type(), e->dtype().lanes());
      first = false;
    }
    t = promoteTypes(t, e->dtype());
  }
  return t;
}

template <class ExprType>
Dtype promoteTypesVec(std::vector<const ExprType*>& v) {
  if (v.empty()) {
    throw malformed_input("empty list of types");
  }

  Dtype t = v[0]->dtype();
  for (auto* e : v) {
    t = promoteTypes(t, e->dtype());
  }
  return t;
}

template <class ExprType>
Dtype promoteTypesMap(
    const Expr* s,
    std::unordered_map<SimplifierHashType, const ExprType*>& m) {
  Dtype t = s->dtype();
  bool first = true;
  for (auto& e : m) {
    if (first) {
      t = Dtype(t.scalar_type(), e.second->dtype().lanes());
      first = false;
    }
    t = promoteTypes(t, e.second->dtype());
  }
  return t;
}

template <class ExprType>
Dtype promoteTypesVar(const ExprType* e) {
  return e->dtype();
}

template <class ExprType, class... Args>
Dtype promoteTypesVar(const ExprType* e, Args... es) {
  Dtype lhs = e->dtype();
  Dtype rhs = promoteTypesVar(es...);
  if (e->isConstant()) {
    lhs = Dtype(lhs.scalar_type(), rhs.lanes());
  }

  return promoteTypes(lhs, rhs);
}

// Creates a new Expr of the given type with the provided lhs and rhs.
inline const Expr* newBinaryOpOfType(
    IRNodeType expr_type,
    const Expr* lhs,
    const Expr* rhs,
    bool option) {
  switch (expr_type) {
    case IRNodeType::kAdd:
      return new Add(lhs, rhs);
    case IRNodeType::kSub:
      return new Sub(lhs, rhs);
    case IRNodeType::kMul:
      return new Mul(lhs, rhs);
    case IRNodeType::kDiv:
      return new Div(lhs, rhs);
    case IRNodeType::kMod:
      return new Mod(lhs, rhs);
    case IRNodeType::kMax:
      return new Max(lhs, rhs, option);
    case IRNodeType::kMin:
      return new Min(lhs, rhs, option);
    case IRNodeType::kAnd:
      return new And(lhs, rhs);
    case IRNodeType::kXor:
      return new Xor(lhs, rhs);
    case IRNodeType::kLshift:
      return new Lshift(lhs, rhs);
    case IRNodeType::kRshift:
      return new Rshift(lhs, rhs);
    default:
      LOG(FATAL) << "unsupported expr_type: " << static_cast<int>(expr_type);
      return nullptr;
  }
}

// Uses the evaluator to fold an Expression with constant terms.
// E.g. evaluateOp(Add(3, 4)) => 7.
// Expr v must not have any unbound Vars.
inline Expr* evaluateOp(const Expr* v) {
  ExprHandle handle(v);
  ExprEval<SimpleIREvaluator> eval(handle);

  switch (v->dtype().scalar_type()) {
#define TYPE_CASE(Type, Name)                                 \
  case ScalarType::Name: {                                    \
    Type val = eval.value<Type>();                            \
    return getImmediateByType(v->dtype().scalar_type(), val); \
  }
    AT_FORALL_SCALAR_TYPES_AND2(Half, Bool, TYPE_CASE);
#undef TYPE_CASE
    default:
      LOG(FATAL) << "Unsupported datatype: " << v->dtype();
      return nullptr;
  }
  return nullptr;
}

// A Term represents a grouping of Exprs through multiplication.
// E.g. product(scalar, *variables).
class Term : public ExprNode<Term> {
 public:
  template <class... Args>
  Term(HashProvider& hasher, const Expr* s, Args... ts)
      : ExprNodeBase(promoteTypesVar(s, ts...)), scalar_(s), hasher_(hasher) {
    CHECK(s->isConstant());
    addComponent(ts...);
    sort();
  }

  Term(HashProvider& hasher, const Expr* s, std::vector<const Expr*> v)
      : ExprNodeBase(promoteTypesVec(s, v)),
        variables_(std::move(v)),
        scalar_(s),
        hasher_(hasher) {
    sort();
  }

  // Convenience constructor from a map of hash -> var, used when merging Terms.
  Term(
      HashProvider& hasher,
      const Expr* s,
      std::unordered_map<SimplifierHashType, const Expr*> varmap)
      : ExprNodeBase(promoteTypesMap(s, varmap)), scalar_(s), hasher_(hasher) {
    for (auto& p : varmap) {
      addComponent(p.second);
    }
    sort();
  }

  const Expr* scalar() const {
    return scalar_;
  }
  const std::vector<const Expr*>& variables() const {
    return variables_;
  }
  HashProvider& hasher() const {
    return hasher_;
  }

  // Produce a hash of just the variable components of this term, to determine
  // if it can be combined with another term.
  SimplifierHashType hashVars() const;

 private:
  std::vector<const Expr*> variables_;
  const Expr* scalar_;
  HashProvider& hasher_;

  void addComponent() {}
  void addComponent(const Expr* e) {
    variables_.push_back(e);
  }
  template <class... Es>
  void addComponent(const Expr* e, Es... es) {
    addComponent(e);
    addComponent(es...);
  }

  // Sort by hash to normalize order of components.
  void sort();
};

// Polynomial represents a grouping of Exprs by addition.
// E.g. sum(*variables, scalar).
// This would better be called Expression, but, naming conflict...
class Polynomial : public ExprNode<Polynomial> {
 public:
  template <class... Args>
  Polynomial(HashProvider& hasher, const Expr* s, Args... ts)
      : ExprNodeBase(promoteTypesVar(s, ts...)), scalar_(s), hasher_(hasher) {
    CHECK(s->isConstant());
    addTerm(ts...);
    sort();
  }

  Polynomial(HashProvider& hasher, const Expr* s, std::vector<const Term*> v)
      : ExprNodeBase(promoteTypesVec(s, v)),
        variables_(std::move(v)),
        scalar_(s),
        hasher_(hasher) {
    sort();
  }

  // Helper constructor for list of terms with no scalar component.
  Polynomial(HashProvider& hasher, std::vector<const Term*> terms)
      : ExprNodeBase(promoteTypesVec(terms)),
        variables_(std::move(terms)),
        scalar_(getImmediateByType(dtype(), 0)),
        hasher_(hasher) {
    sort();
  }

  // Convenience constructor for map of hash -> var, used when merging
  // Polynomials.
  Polynomial(
      HashProvider& hasher,
      const Expr* s,
      std::unordered_map<SimplifierHashType, const Term*> varmap)
      : ExprNodeBase(promoteTypesMap(s, varmap)), scalar_(s), hasher_(hasher) {
    for (auto& p : varmap) {
      addTerm(p.second);
    }
    sort();
  }

  const Expr* scalar() const {
    return scalar_;
  }
  const std::vector<const Term*>& variables() const {
    return variables_;
  }
  HashProvider& hasher() const {
    return hasher_;
  }

  SimplifierHashType hashVars() const;

 private:
  std::vector<const Term*> variables_;
  const Expr* scalar_;
  HashProvider& hasher_;

  void addTerm(const Term* t) {
    variables_.push_back(t);
  }
  template <class... Ts>
  void addTerm(const Term* t, Ts... ts) {
    addTerm(t);
    addTerm(ts...);
  }

  // Sort by hash to normalize order of terms.
  void sort();
};

class RoundOff : public BinaryOpNode<RoundOff> {
 public:
  RoundOff(const Expr* lhs, const Expr* rhs)
      : BinaryOpNode(lhs, rhs, IRNodeType::kRoundOff) {}
};

class MaxTerm : public ExprNode<MaxTerm> {
 public:
  template <class... Args>
  MaxTerm(HashProvider& hasher, const Expr* s, bool p, Args... ts)
      : ExprNodeBase(s ? promoteTypesVar(s, ts...) : promoteTypesVar(ts...)),
        scalar_(s),
        hasher_(hasher),
        propagate_nans_(p) {
    addComponent(ts...);
    uniquefy();
  }

  MaxTerm(
      HashProvider& hasher,
      const Expr* s,
      bool p,
      std::vector<const Expr*> v)
      : ExprNodeBase(s ? promoteTypesVec(s, v) : promoteTypesVec(v)),
        variables_(std::move(v)),
        scalar_(s),
        hasher_(hasher),
        propagate_nans_(p) {
    uniquefy();
  }

  bool propagate_nans() const {
    return propagate_nans_;
  }

  const Expr* scalar() const {
    return scalar_;
  }
  const std::vector<const Expr*>& variables() const {
    return variables_;
  }
  HashProvider& hasher() const {
    return hasher_;
  }

 private:
  std::vector<const Expr*> variables_;
  const Expr* scalar_;
  HashProvider& hasher_;
  bool propagate_nans_;

  void addComponent() {}
  void addComponent(const Expr* e) {
    variables_.push_back(e);
  }
  template <class... Es>
  void addComponent(const Expr* e, Es... es) {
    addComponent(e);
    addComponent(es...);
  }

  // Uniquefy the terms using their hash.
  void uniquefy();
};

class MinTerm : public ExprNode<MinTerm> {
 public:
  template <class... Args>
  MinTerm(HashProvider& hasher, const Expr* s, bool p, Args... ts)
      : ExprNodeBase(s ? promoteTypesVar(s, ts...) : promoteTypesVar(ts...)),
        scalar_(s),
        hasher_(hasher),
        propagate_nans_(p) {
    addComponent(ts...);
    uniquefy();
  }

  MinTerm(
      HashProvider& hasher,
      const Expr* s,
      bool p,
      std::vector<const Expr*> v)
      : ExprNodeBase(s ? promoteTypesVec(s, v) : promoteTypesVec(v)),
        variables_(std::move(v)),
        scalar_(s),
        hasher_(hasher),
        propagate_nans_(p) {
    uniquefy();
  }

  bool propagate_nans() const {
    return propagate_nans_;
  }

  const Expr* scalar() const {
    return scalar_;
  }
  const std::vector<const Expr*>& variables() const {
    return variables_;
  }
  HashProvider& hasher() const {
    return hasher_;
  }

 private:
  std::vector<const Expr*> variables_;
  const Expr* scalar_;
  HashProvider& hasher_;
  bool propagate_nans_;

  void addComponent() {}
  void addComponent(const Expr* e) {
    variables_.push_back(e);
  }
  template <class... Es>
  void addComponent(const Expr* e, Es... es) {
    addComponent(e);
    addComponent(es...);
  }

  // Uniquefy the terms using their hash.
  void uniquefy();
};

// Stmt simplification should occur in both modes.
class TORCH_API IRSimplifierBase : public IRMutator {
 public:
  virtual ~IRSimplifierBase() {}

  Stmt* mutate(const Block* v) override;

  Stmt* mutate(const Cond* v) override;

  Stmt* mutate(const For* v) override;

  HashProvider& hasher() {
    return hasher_;
  }

 protected:
  HashProvider hasher_;
};

// Simplify the IR by combining arithmetic expressions over common terms.
class TORCH_API PolynomialTransformer : public IRSimplifierBase {
 public:
  using IRSimplifierBase::mutate;
  // Inserts term into the provided map, in the case of a hash collision
  // combines the term with the existing and updates the map.
  void addOrUpdateTerm(
      std::unordered_map<SimplifierHashType, const Term*>& varmap,
      const Term* term);

  // Add Polynomial expressions, combining Terms representing the same
  // variables.
  const Expr* addPolynomials(const Polynomial* lhs, const Polynomial* rhs);

  // Insert a new Term into the provided polynomial. If the new term has common
  // variables to an existing term it is combined.
  const Expr* insertTerm(const Polynomial* poly, const Term* term);

  // Merge and simplify addition.
  const Expr* mutate(const Add* v) override;

  // Subtract one term from another, cancelling if necessary.
  const Expr* subTerms(const Term* lhs, const Term* rhs, bool negated);

  // Subtract the RHS Polynomial from the LHS Polynomial, cancelling out where
  // possible.
  const Expr* subPolynomials(const Polynomial* lhs, const Polynomial* rhs);

  // Merge and simplify subtraction.
  const Expr* mutate(const Sub* v) override;

  // Multiply two terms together, usually creating a new term with the variable
  // lists concatenated.
  const Term* mulTerms(const Term* lhs, const Term* rhs);

  // Multiply a Polynomial by a Term.
  const Expr* polyByTerm(const Polynomial* poly, const Term* term);

  // Match a rounding pattern and create a RoundOff if found.
  const Expr* isRoundOff(const Expr* lhs, const Expr* rhs);

  // Inserts a new component into a term, simplifying if possible.
  const Expr* insertIntoTerm(const Term* term, const Expr* expr);

  // Merge and simplify multiplication.
  const Expr* mutate(const Mul* v) override;

  const Expr* mutate(const Div* v) override;

  const Expr* mutate(const Mod* v) override {
    return mutateBinaryOp(v, this);
  }

  const Expr* mutate(const And* v) override {
    return mutateBinaryOp(v, this);
  }

  const Expr* mutate(const Xor* v) override {
    return mutateBinaryOp(v, this);
  }

  const Expr* mutate(const Lshift* v) override {
    return mutateBinaryOp(v, this);
  }

  const Expr* mutate(const Rshift* v) override {
    return mutateBinaryOp(v, this);
  }

  const Expr* mutate(const Max* v) override;

  const Expr* mutate(const Min* v) override;

  const Expr* mutate(const CompareSelect* v) override;

  const Expr* mutate(const Intrinsics* v) override;

  const Expr* mutate(const Cast* v) override;

  const Expr* mutate(const IfThenElse* v) override;

  template <typename Op>
  static const Expr* mutateBinaryOp(
      const BinaryOpNode<Op>* v,
      IRMutator* mutator,
      bool option = false) {
    const Expr* lhs = v->lhs();
    const Expr* rhs = v->rhs();
    const Expr* lhs_new = lhs->accept_mutator(mutator);
    const Expr* rhs_new = rhs->accept_mutator(mutator);

    const Expr* node = v;

    if (lhs != lhs_new || rhs != rhs_new) {
      node = newBinaryOpOfType(v->expr_type(), lhs_new, rhs_new, option);
    }

    // Can only fold if both sides are constant.
    if (!lhs_new->isConstant() || !rhs_new->isConstant()) {
      return node;
    }

    return evaluateOp(node);
  }

  static const Expr* simplify(const Expr* e);
  static ExprHandle simplify(const ExprHandle& e);
  static Stmt* simplify(Stmt* e);
};

// Expands Terms and Polynomial expressions into primitive operations.
// Does some simple factorization and reordering.
class TORCH_API TermExpander : public IRSimplifierBase {
  PolynomialTransformer* simplifier_;
  std::set<const Var*> eliminated_allocations_;

 public:
  using IRSimplifierBase::mutate;
  TermExpander(PolynomialTransformer* simplifier) : simplifier_(simplifier) {}
  bool check_safe() {
    return eliminated_allocations_.empty();
  }

  // Expand Terms out to a series of Muls.
  const Expr* mutate(const Term* v) override;

  // Trivially factorize terms by GCD of scalar components.
  const Expr* factorizePolynomial(const Polynomial* poly);

  // Expand Polynomials out to a series of Adds.
  const Expr* mutate(const Polynomial* v) override;

  // Expand MaxTerms to a series of Max ops.
  const Expr* mutate(const MaxTerm* v) override;

  // Expand MinTerms to a series of Min ops.
  const Expr* mutate(const MinTerm* v) override;

  // Expand RoundOff to it's component: Mul(Div(lhs, rhs), rhs).
  const Expr* mutate(const RoundOff* v) override;

  // Eliminate zero length allocations.
  Stmt* mutate(const Allocate* v) override;

  Stmt* mutate(const Free* v) override;

  // Override to enable condition fusing.
  Block* fuseConditions(Block* v);
  Stmt* fuseSyncThreads(Block* block);
  Stmt* mutate(const Block* v) override;
};

class TORCH_API IRSimplifier {
 public:
  static const Expr* simplify(const Expr* e) {
    PolynomialTransformer simplifier;
    e = e->accept_mutator(&simplifier);

    // There may be terms left in the IR, expand them.
    TermExpander expander(&simplifier);
    e = e->accept_mutator(&expander);
    if (!expander.check_safe()) {
      throw malformed_input("eliminated null Allocation without free");
    }

    return e;
  }

  static ExprHandle simplify(const ExprHandle& e) {
    return ExprHandle(simplify(e.node()));
  }

  static Stmt* simplify(Stmt* s) {
    PolynomialTransformer simplifier;
    s = s->accept_mutator(&simplifier);
    if (s == nullptr) {
      return nullptr;
    }

    // There may be terms left in the IR, expand them.
    TermExpander expander(&simplifier);
    s = s->accept_mutator(&expander);
    if (!expander.check_safe()) {
      throw malformed_input("eliminated null Allocation without free");
    }

    return s;
  }
};

// Returns true if expressions A and B can be simplified to an equal expression.
TORCH_API bool exprEquals(const Expr* A, const Expr* B);

} // namespace tensorexpr
} // namespace jit
} // namespace torch