1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
|
#pragma once
#include <torch/csrc/jit/ir/ir.h>
#include <torch/csrc/jit/runtime/interpreter.h>
#include <torch/csrc/jit/tensorexpr/analysis.h>
#include <torch/csrc/jit/tensorexpr/codegen.h>
#include <torch/csrc/jit/tensorexpr/tensor.h>
namespace torch {
namespace jit {
namespace tensorexpr {
template <typename T>
inline std::vector<int64_t> bufferSizes(const T& t) {
std::vector<int64_t> sizes;
for (size_t i = 0; i < t->buf()->ndim(); i++) {
sizes.push_back(dynamic_cast<const IntImm*>(t->buf()->dim(i))->value());
}
return sizes;
}
class TORCH_API TensorExprKernel {
public:
explicit TensorExprKernel(const std::shared_ptr<Graph>& subgraph);
void run(Stack& stack);
void fallback(Stack& stack) {
InterpreterState(code_).run(stack);
}
Stmt* getCodeGenStmt();
std::string getCodeText() {
return codegen_->getCodeText();
}
private:
enum BackendType {
kUninitialized,
kSimpleIREval,
kLLVMCodeGen,
kCudaCodeGen,
kBlockCodeGen,
};
void compile();
void runKernel(Stack& stack);
std::vector<DimArg> dimsFromSizes(const std::vector<ExprHandle>& sizes);
std::vector<ExprHandle> sizesForValue(const torch::jit::Value* v);
std::vector<ExprHandle> inferSizesForValue(const torch::jit::Value* v);
std::vector<ExprHandle> sizesFromVaryingShape(
const c10::VaryingShape<int64_t>& shape);
std::vector<ExprHandle> broadcastShapes(
const std::vector<ExprHandle>& a,
const std::vector<ExprHandle>& b);
std::vector<ExprHandle> broadcastShapes(
std::vector<std::vector<ExprHandle>> shapes);
ExprHandle constant(const torch::jit::Value* v);
ExprHandle broadcast(Tensor* t, const std::vector<ExprHandle>& axes);
ExprHandle chunk(
Tensor* t,
size_t chunkIdx,
int64_t dim,
int64_t chunks,
const std::vector<ExprHandle>& axes);
std::vector<ExprHandle> valueShape(const torch::jit::Value* v);
void promoteInputs(std::vector<ExprHandle>& inputs);
ExprHandle demoteOutput(const ExprHandle& e, const torch::jit::Value* v);
ExprHandle tensorOrConstant(
const torch::jit::Value* v,
const std::vector<ExprHandle>& axes);
Tensor* computeOneOperand(
const std::string& name,
const torch::jit::Value* v,
const std::function<ExprHandle(const ExprHandle&)>& innerExpr);
Tensor* computeTwoOperand(
const std::string& name,
const torch::jit::Value* v,
const std::function<ExprHandle(const ExprHandle&, const ExprHandle&)>&
innerExpr);
Tensor* computeTwoOperandWithAlpha(
const std::string& name,
const torch::jit::Value* v,
const std::function<ExprHandle(const ExprHandle&, const ExprHandle&)>&
innerExpr);
Tensor* computeThreeOperand(
const std::string& name,
const torch::jit::Value* v,
const std::function<
ExprHandle(const ExprHandle&, const ExprHandle&, const ExprHandle&)>&
innerExpr);
Tensor* computeConditionWithTwoOperand(
const std::string& name,
const torch::jit::Value* v,
const std::function<
ExprHandle(const ExprHandle&, const ExprHandle&, const ExprHandle&)>&
innerExpr);
Tensor* computeFourOperand(
const std::string& name,
const torch::jit::Value* v,
const std::function<ExprHandle(
const ExprHandle&,
const ExprHandle&,
const ExprHandle&,
const ExprHandle&)>& innerExpr);
Tensor* computeSum(const torch::jit::Value* v);
Tensor* computeValue(const torch::jit::Value* v);
void flattenTensors(BackendType backendType);
Stmt* generateStmt(BackendType backendType);
std::vector<CodeGen::BufferArg> prepareBufferArgs();
std::string getCodeGenName(BackendType backendType);
std::vector<CodeGen::CallArg> prepareRunArgs(
const at::ArrayRef<IValue>& inputs,
std::vector<at::Tensor>& outputs);
BackendType inferBackendTypeFromDevice(at::Device device);
void bindInput(const torch::jit::Value* input);
// Captures the information for reduction operation nodes.
struct ReductionInfo {
std::vector<DimArg> reductionDims;
std::vector<DimArg> outputDims;
std::vector<size_t> axes;
bool keepdim;
c10::optional<Dtype> dtype;
};
// Get the reduction info for the given node, based on properties and inputs.
ReductionInfo getReductionInfo(const torch::jit::Node* node);
// Get the reduction axes for the given node, based on properties and inputs.
std::vector<int64_t> getReductionAxes(const torch::jit::Node* node);
private:
struct ShapeArg {
size_t idx;
VarHandle var;
ShapeArg(size_t i, VarHandle v) : idx(i), var(v) {}
};
struct KernelArg {
template <typename B>
KernelArg(B&& b) : bufferArg_(std::forward<B>(b)) {}
template <typename B, typename T>
KernelArg(B&& b, T&& sizes, T&& strides)
: bufferArg_(b),
sizeArgs_(std::forward<T>(sizes)),
strideArgs_(std::forward<T>(strides)) {}
const CodeGen::BufferArg& buffer() const {
return bufferArg_;
}
const std::vector<ShapeArg>& sizes() const {
return sizeArgs_;
}
const std::vector<ShapeArg>& strides() const {
return strideArgs_;
}
CodeGen::BufferArg bufferArg_;
std::vector<ShapeArg> sizeArgs_;
std::vector<ShapeArg> strideArgs_;
};
int64_t nInputs_ = 0;
std::vector<KernelArg> kernelArgs_;
std::vector<Tensor*> tensorOutputs_;
std::vector<Tensor*> flatTensorOutputs_;
std::unordered_map<int64_t, Tensor*> tensors_;
std::unordered_map<int64_t, VarHandle> scalars_;
std::unique_ptr<CodeGen> codegen_;
at::Device device_ = at::kCPU;
KernelArena kernelArena_;
std::vector<TypePtr> inputTypes_;
std::shared_ptr<Graph> graph_;
Code code_;
bool fallback_{false};
bool hasRandom_{false};
bool hasBroadcast_{false};
std::unordered_map<const torch::jit::Value*, std::vector<ExprHandle>>
known_sizes_;
};
TORCH_API int& getTECudaPointwiseLoopLevels();
TORCH_API int& getTECudaPointwiseBlockCount();
TORCH_API int& getTECudaPointwiseBlockSize();
TORCH_API bool& getTEGenerateBlockCode();
TORCH_API bool fallbackAllowed();
TORCH_API bool setFallbackAllowed(bool value);
TORCH_API c10::optional<at::Device> pickDeviceType(
const at::ArrayRef<torch::jit::Value*>& inputs);
} // namespace tensorexpr
} // namespace jit
} // namespace torch
|