1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
|
#pragma once
#include <torch/csrc/jit/tensorexpr/dim_arg.h>
#include <torch/csrc/jit/tensorexpr/expr.h>
#include <torch/csrc/jit/tensorexpr/ir.h>
#include <torch/csrc/jit/tensorexpr/ir_printer.h>
#include <torch/csrc/jit/tensorexpr/tensor.h>
#include <torch/csrc/jit/tensorexpr/types.h>
#include <functional>
#include <vector>
namespace torch {
namespace jit {
namespace tensorexpr {
using ParameterList = const std::vector<VarHandle>;
using ReduceInteraction = std::function<ExprHandle(ExprHandle, ExprHandle)>;
// An expression representing a Reduction operation (e.g. Sum, Max) broken into
// it's component parts: initialization, accumulation var, acquisition of value
// to be reduced and interaction.
//
// This is intended to be expanded in the loopnest and not make it to codegen.
class ReduceOp : public ExprNode<ReduceOp> {
public:
ReduceOp(
const Buf* accum,
ExprHandle body,
ReduceInteraction c,
const std::vector<const Expr*>& output_args,
const std::vector<const Var*>& reduce_args)
: ExprNodeBase(body.dtype()),
accumulator_(accum),
body_(body),
interaction_(c),
output_args_(output_args),
reduce_args_(reduce_args) {}
// return the accumulation load expression.
const Buf* accumulator() const {
return accumulator_;
}
// return the body expression which obtains the value to be reduced.
ExprHandle body() const {
return body_;
}
// returns a function encoding the interaction between accumulator and the
// reduction value.
ReduceInteraction interaction() const {
return interaction_;
}
// returns variables associated with the output Tensor.
const std::vector<const Expr*>& output_args() const {
return output_args_;
}
// returns variables associated with the axes of reduction.
const std::vector<const Var*>& reduce_args() const {
return reduce_args_;
}
// Completes the reduction operator by applying the interaction function to
// the accumulation and the body expression.
ExprHandle complete() const {
std::vector<const Expr*> indices(output_args_.begin(), output_args_.end());
ExprHandle accum = ExprHandle(
new Load(body_.dtype(), accumulator_, indices, new IntImm(1)));
auto e = interaction_(accum, body_);
return e;
}
private:
const Buf* accumulator_;
ExprHandle body_;
ReduceInteraction interaction_;
std::vector<const Expr*> output_args_;
std::vector<const Var*> reduce_args_;
};
// A Reducer is a user interface describing a particular reduction
// operation. It has three components: An initialization value, a way of
// interacting each value with the accumulation, and a method for obtaining the
// current value to be reduced. It is materialized into a ReduceOp when loop
// variables are known.
class Reducer {
public:
Reducer(ExprHandle init, ReduceInteraction& interaction)
: init_(init.node()), interaction_(interaction) {}
Reducer(ExprHandle init, ReduceInteraction& interaction, Placeholder& buf)
: init_(init.node()), interaction_(interaction) {}
template <typename RI>
Reducer(ExprHandle init, RI interaction) : init_(init.node()) {
interaction_ = interaction;
}
const Expr* initializer() const {
return init_;
}
ReduceOp* operator()(
Buf* result_buf,
ExprHandle body,
std::vector<const Expr*> output,
std::vector<const Var*> inner) const {
return new ReduceOp(result_buf, body, interaction_, output, inner);
}
// Polymorphic handling of Body functions with a variety of parameters.
static ExprHandle getReduceBody(
const std::function<ExprHandle(ParameterList&)>& func,
const std::vector<VarHandle>& vars) {
return func(vars);
}
static ExprHandle getReduceBody(
const std::function<ExprHandle(const VarHandle&)>& func,
const std::vector<VarHandle>& vars) {
if (vars.size() != 1) {
throw malformed_input("mismatch between reduce body and arg size (1)");
}
return func(vars[0]);
}
static ExprHandle getReduceBody(
const std::function<ExprHandle(const VarHandle&, const VarHandle&)>& func,
const std::vector<VarHandle>& vars) {
if (vars.size() != 2) {
throw malformed_input("mismatch between reduce body and arg size (2)");
}
return func(vars[0], vars[1]);
}
static ExprHandle getReduceBody(
const std::function<
ExprHandle(const VarHandle&, const VarHandle&, const VarHandle&)>&
func,
const std::vector<VarHandle>& vars) {
if (vars.size() != 3) {
throw malformed_input("mismatch between reduce body and arg size (3)");
}
return func(vars[0], vars[1], vars[2]);
}
static ExprHandle getReduceBody(
const std::function<ExprHandle(
const VarHandle&,
const VarHandle&,
const VarHandle&,
const VarHandle&)>& func,
const std::vector<VarHandle>& vars) {
if (vars.size() != 4) {
throw malformed_input("mismatch between reduce body and arg size (4)");
}
return func(vars[0], vars[1], vars[2], vars[3]);
}
private:
const Expr* init_;
ReduceInteraction interaction_;
};
class Sum : public Reducer {
public:
Sum()
: Reducer(ExprHandle(0), [](ExprHandle a, ExprHandle b) {
return a + b;
}) {}
};
inline ExprHandle maximumVal(ScalarType type) {
switch (type) {
#define MAX_BY_TYPE_CASE(Type, Name) \
case ScalarType::Name: \
return ExprHandle(std::numeric_limits<Type>::max());
AT_FORALL_SCALAR_TYPES_AND2(Bool, Half, MAX_BY_TYPE_CASE)
#undef MAX_BY_TYPE_CASE
default:
throw unsupported_dtype();
}
return ExprHandle();
}
inline ExprHandle minimumVal(ScalarType type) {
switch (type) {
#define MAX_BY_TYPE_CASE(Type, Name) \
case ScalarType::Name: \
return ExprHandle(std::numeric_limits<Type>::min());
AT_FORALL_SCALAR_TYPES_AND2(Bool, Half, MAX_BY_TYPE_CASE)
#undef MAX_BY_TYPE_CASE
default:
throw unsupported_dtype();
}
}
class Maximum : public Reducer {
public:
// TODO possible to remove this arg by deferring the init value until we know
// the dtype of the body.
Maximum(Dtype dtype)
: Reducer(
minimumVal(dtype.scalar_type()),
[](ExprHandle a, ExprHandle b) { return Max::make(a, b, true); }) {}
Maximum(ExprHandle initializer)
: Reducer(initializer, [](ExprHandle a, ExprHandle b) {
return Max::make(a, b, true);
}) {}
};
class Minimum : public Reducer {
public:
Minimum(Dtype dtype)
: Reducer(
maximumVal(dtype.scalar_type()),
[](ExprHandle a, ExprHandle b) { return Min::make(a, b, true); }) {}
Minimum(ExprHandle initializer)
: Reducer(initializer, [](ExprHandle a, ExprHandle b) {
return Min::make(a, b, true);
}) {}
};
class ReductionExpander : public IRMutator {
public:
Stmt* expand(Stmt* s) {
return s->accept_mutator(this);
}
const Expr* mutate(const ReduceOp* v) override {
return v->complete().node();
}
};
} // namespace tensorexpr
} // namespace jit
} // namespace torch
|