File: tensor.h

package info (click to toggle)
pytorch 1.7.1-7
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 80,340 kB
  • sloc: cpp: 670,830; python: 343,991; ansic: 67,845; asm: 5,503; sh: 2,924; java: 2,888; xml: 266; makefile: 244; ruby: 148; yacc: 144; objc: 51; lex: 44
file content (407 lines) | stat: -rw-r--r-- 11,614 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
#pragma once

#include <torch/csrc/WindowsTorchApiMacro.h>
#include <functional>
#include <vector>

#include <torch/csrc/jit/tensorexpr/dim_arg.h>
#include <torch/csrc/jit/tensorexpr/expr.h>
#include <torch/csrc/jit/tensorexpr/reduction.h>

namespace torch {
namespace jit {
namespace tensorexpr {

class Function : public KernelScopedObject {
 public:
  Function(
      const std::string& func_name,
      const std::vector<const Expr*>& dims,
      const std::vector<const Var*>& args,
      const Expr* body)
      // TODO: Function should not create buffers, they should be created
      // manually before constructing a function.
      : func_vars_({new Buf(func_name, dims, body->dtype())}),
        dims_(dims),
        args_(args),
        bodies_({body}) {}
  Function(
      const std::vector<std::string>& func_names,
      const std::vector<const Expr*>& dims,
      const std::vector<const Var*>& args,
      const std::vector<const Expr*>& bodies)
      : func_vars_(func_names.size()),
        dims_(dims),
        args_(args),
        bodies_(bodies) {
    for (size_t i = 0; i < func_names.size(); i++) {
      func_vars_[i] = new Buf(func_names[i], dims, bodies[i]->dtype());
    }
  }
  Function(
      const std::string& func_name,
      Buf* func_var,
      const std::vector<const Expr*>& dims,
      const std::vector<const Var*>& args,
      const Expr* body)
      : func_vars_({func_var}), dims_(dims), args_(args), bodies_({body}) {}

  size_t ndim() const {
    return dims_.size();
  }

  const Expr* dim(size_t index) const {
    if (index < 0 || index >= dims_.size()) {
      throw out_of_range_index();
    }

    return dims_[index];
  }
  const std::vector<const Expr*>& dims() const {
    return dims_;
  }

  const Var* arg(size_t index) const {
    if (index < 0 || index >= args_.size()) {
      throw out_of_range_index();
    }

    return args_[index];
  }
  const std::vector<const Var*>& args() const {
    return args_;
  }

  std::vector<const Expr*> bodies() const {
    return bodies_;
  }
  const Expr* body(size_t index) const {
    if (index >= bodies_.size()) {
      throw out_of_range_index();
    }

    return bodies_[index];
  }

  std::vector<const Buf*> func_vars() const {
    return func_vars_;
  }
  const Buf* func_var(size_t index) const {
    if (index >= func_vars_.size()) {
      throw out_of_range_index();
    }
    return func_vars_[index];
  }

  Stmt* ElementStmt(size_t index);

 private:
  std::vector<const Buf*> func_vars_;
  std::vector<const Expr*> dims_;
  std::vector<const Var*> args_;
  std::vector<const Expr*> bodies_;
};

class Tensor : KernelScopedObject {
 public:
  Tensor(Function* function, int output_index)
      : function_(function), output_index_(output_index) {}

  Function* function() const {
    return function_;
  }
  int output_index() const {
    return output_index_;
  }

  // Wrappers over accessors to fields of the underlying function
  const Expr* body() const {
    return function()->body(output_index());
  }
  const Buf* buf() const {
    return function()->func_var(output_index());
  }
  int ndim() const {
    return buf()->dims().size();
  }
  const Expr* dim(int index) const {
    return buf()->dim(index);
  }
  std::vector<const Expr*> dims() const {
    return buf()->dims();
  }
  const Var* arg(int index) const {
    return function()->arg(index);
  }
  const std::vector<const Var*>& args() const {
    return function()->args();
  }

  void initializeTo(const Expr* initializer) {
    initializer_ = initializer;
  }
  const Expr* initializer() const {
    return initializer_;
  }

  template <typename... Ts>
  inline ExprHandle operator()(const Ts&... ts);
  template <typename T>
  inline ExprHandle call(const std::vector<T>& args);
  template <typename... Ts>
  inline ExprHandle call(const Ts&... ts);

 private:
  Function* function_;
  int output_index_;
  const Expr* initializer_{nullptr};
};

class Placeholder {
 public:
  Placeholder(const BufHandle& data) : data_(data.node()) {
    if (data_->base_handle()->dtype() != kHandle) {
      throw malformed_input("Placeholder dtype must be Handle");
    }

    std::vector<ExprHandle> stride_handles(ndim());
    for (int i = (int)ndim() - 1; i >= 0; i--) {
      if (i == ndim() - 1) {
        stride_handles[i] = 1;
      } else {
        stride_handles[i] = stride_handles[i + 1] * ExprHandle(dim(i + 1));
      }
    }
    strides_ = ExprHandleVectorToExprVector(stride_handles);
  }
  Placeholder(
      const std::string& name,
      const Dtype& dtype,
      const std::vector<ExprHandle>& dims)
      : Placeholder(BufHandle(name, dims, dtype)) {}

  const Buf* data() const {
    return data_;
  }
  Dtype dtype() const {
    return data_->dtype();
  }
  int ndim() const {
    return data_->ndim();
  }
  const Expr* dim(int index) const {
    return data_->dim(index);
  }
  std::vector<const Expr*> dims() const {
    return data_->dims();
  }

  template <typename... Ts>
  inline ExprHandle load(const Ts&... ts) const;

  template <typename T>
  inline ExprHandle load(const std::vector<T>& args) const;

  inline ExprHandle loadWithMask(
      const std::vector<ExprHandle>& args,
      const ExprHandle& mask) const {
    return ExprHandle(
        new Load(data(), ExprHandleVectorToExprVector(args), mask.node()));
  }

  inline Store* store(
      const std::vector<ExprHandle>& args,
      const ExprHandle& val) const {
    return new Store(
        data(), ExprHandleVectorToExprVector(args), val.node(), new IntImm(1));
  }

  inline Store* storeWithMask(
      const std::vector<ExprHandle>& args,
      const ExprHandle& val,
      const ExprHandle& mask) const {
    return new Store(
        data(), ExprHandleVectorToExprVector(args), val.node(), mask.node());
  }

 private:
  const Buf* data_;
  std::vector<const Expr*> strides_;
};

TORCH_API Tensor* Compute(
    const std::string& func_name,
    const std::vector<DimArg>& dim_args,
    const std::function<ExprHandle(const VarHandle&)>& body_func);
TORCH_API Tensor* Compute(
    const std::string& func_name,
    const std::vector<DimArg>& dim_args,
    const std::function<ExprHandle(const VarHandle&, const VarHandle&)>&
        body_func);
TORCH_API Tensor* Compute(
    const std::string& func_name,
    const std::vector<DimArg>& dim_args,
    const std::function<
        ExprHandle(const VarHandle&, const VarHandle&, const VarHandle&)>&
        body_func);
TORCH_API Tensor* Compute(
    const std::string& func_name,
    const std::vector<DimArg>& dim_args,
    const std::function<ExprHandle(
        const VarHandle&,
        const VarHandle&,
        const VarHandle&,
        const VarHandle&)>& body_func);
TORCH_API Tensor* Compute(
    const std::string& func_name,
    const std::vector<DimArg>& dim_args,
    const std::function<ExprHandle(const std::vector<VarHandle>&)>& body_func);

inline void unpack_dim_args(
    const std::vector<DimArg>& dim_args,
    std::vector<const Expr*>* dims,
    std::vector<const Var*>* vars) {
  dims->clear();
  vars->clear();
  for (const DimArg& dim_arg : dim_args) {
    dims->push_back(dim_arg.dim().node());
    vars->push_back(new Var(dim_arg.name_hint(), kInt));
  }
}

// Handle reductions over a Reducer and a body_func which produces values.
template <typename BodyFunc>
Tensor* Reduce(
    const std::string& func_name,
    const std::vector<DimArg>& dim_args,
    const Reducer& reducer,
    const BodyFunc& body_func,
    const std::vector<DimArg>& reduce_args) {
  std::vector<const Expr*> dims;
  std::vector<const Var*> vars;
  unpack_dim_args(dim_args, &dims, &vars);

  std::vector<const Expr*> reduce_dims;
  std::vector<const Var*> reduce_vars;
  unpack_dim_args(reduce_args, &reduce_dims, &reduce_vars);

  std::vector<const Var*> all_vars;
  all_vars.insert(all_vars.end(), vars.begin(), vars.end());
  all_vars.insert(all_vars.end(), reduce_vars.begin(), reduce_vars.end());

  ExprHandle body =
      Reducer::getReduceBody(body_func, VarVectorToVarHandleVector(all_vars));
  std::vector<const Expr*> output_args(vars.begin(), vars.end());
  Buf* func_result = new Buf(func_name, dims, body.dtype());
  const ReduceOp* reduce_op =
      reducer(func_result, body, output_args, reduce_vars);
  dims.insert(dims.end(), reduce_dims.begin(), reduce_dims.end());
  Function* func =
      new Function(func_name, func_result, dims, all_vars, reduce_op);
  Tensor* t = new Tensor(func, 0);
  t->initializeTo(new Cast(body.dtype(), reducer.initializer()));
  return t;
}

// Overload which allows inline lambda functions for the body_func.
template <typename BodyFunc>
Tensor* Reduce(
    const std::string& func_name,
    const std::vector<DimArg>& dim_args,
    const Reducer& reducer,
    const BodyFunc&& body_func,
    const std::vector<DimArg>& reduce_args) {
  return Reduce(func_name, dim_args, reducer, body_func, reduce_args);
}

// Overload for the common case of all dimensions of a Placeholder.
TORCH_API Tensor* Reduce(
    const std::string& func_name,
    const std::vector<DimArg>& dim_args,
    const Reducer& reducer,
    const Placeholder& buffer,
    const std::vector<DimArg>& reduce_args);

// Overload for the common case of all dimensions of a prevously Computed
// Tensor.
TORCH_API Tensor* Reduce(
    const std::string& func_name,
    const std::vector<DimArg>& dim_args,
    const Reducer& reducer,
    Tensor* tensor,
    const std::vector<DimArg>& reduce_args);

class FunctionCall : public CallNode<FunctionCall> {
 public:
  using BaseClass = CallNode<FunctionCall>;
  static ExprHandle make(
      Tensor* tensor,
      const std::vector<ExprHandle>& params) {
    std::vector<const Expr*> params_nodes(params.size());
    for (size_t i = 0; i < params.size(); i++) {
      params_nodes[i] = params[i].node();
    }
    return ExprHandle(new FunctionCall(tensor, params_nodes));
  }

  const Tensor* tensor() const {
    return tensor_;
  }
  Tensor* tensor() {
    return tensor_;
  }

  FunctionCall(Tensor* tensor, const std::vector<const Expr*>& params)
      : BaseClass(
            tensor->function()->body(tensor->output_index())->dtype(),
            kFunctionCall,
            params),
        tensor_(tensor) {}

 private:
  const Expr* DefaultMutator(
      const std::vector<const Expr*>& new_params) const override {
    return new FunctionCall(tensor_, new_params);
  }

  std::string func_name() const override {
    return tensor_->buf()->name_hint();
  }

  Tensor* tensor_;
};
template <typename... Ts>
inline ExprHandle Tensor::operator()(const Ts&... ts) {
  std::vector<ExprHandle> params({ExprHandle(ts)...});
  return FunctionCall::make(this, std::move(params));
}

template <typename... Ts>
inline ExprHandle Tensor::call(const Ts&... ts) {
  std::vector<ExprHandle> params({ExprHandle(ts)...});
  return FunctionCall::make(this, std::move(params));
}

template <typename T>
inline ExprHandle Tensor::call(const std::vector<T>& args) {
  std::vector<ExprHandle> params(args.begin(), args.end());
  return FunctionCall::make(this, params);
}

template <typename... Ts>
inline ExprHandle Placeholder::load(const Ts&... ts) const {
  std::vector<ExprHandle> params({ExprHandle(ts)...});
  return ExprHandle(
      new Load(data(), ExprHandleVectorToExprVector(params), new IntImm(1)));
}

template <typename T>
inline ExprHandle Placeholder::load(const std::vector<T>& args) const {
  std::vector<ExprHandle> params(args.begin(), args.end());
  return ExprHandle(
      new Load(data(), ExprHandleVectorToExprVector(params), new IntImm(1)));
}

} // namespace tensorexpr
} // namespace jit
} // namespace torch