1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800
|
#include <torch/csrc/python_headers.h>
#include <torch/csrc/utils/tensor_new.h>
#include <pybind11/pybind11.h>
#include <torch/csrc/DynamicTypes.h>
#include <torch/csrc/Exceptions.h>
#include <torch/csrc/Size.h>
#include <torch/csrc/autograd/variable.h>
#include <torch/csrc/utils/cuda_lazy_init.h>
#include <torch/csrc/utils/numpy_stub.h>
#include <torch/csrc/utils/python_arg_parser.h>
#include <torch/csrc/utils/python_numbers.h>
#include <torch/csrc/utils/python_scalars.h>
#include <torch/csrc/utils/python_strings.h>
#include <torch/csrc/utils/tensor_numpy.h>
#include <torch/csrc/autograd/generated/variable_factories.h>
#include <ATen/ATen.h>
#include <ATen/InitialTensorOptions.h>
#include <ATen/NamedTensorUtils.h>
#include <ATen/TracerMode.h>
#include <c10/core/Backend.h>
#include <c10/core/Layout.h>
#include <c10/util/Exception.h>
#include <c10/util/Optional.h>
#include <stdexcept>
#include <vector>
using at::Backend;
using at::Device;
using at::IntArrayRef;
using at::kCPU;
using at::kCUDA;
using at::kLong;
using at::Scalar;
using at::ScalarType;
using at::Storage;
using at::Tensor;
using at::TensorOptions;
using at::Type;
using c10::optional;
namespace torch { namespace utils {
namespace {
const int MAX_DIMS = 128;
Backend backendToBackendOfDeviceType(Backend b, DeviceType d) {
switch (d) {
case DeviceType::CPU:
return backendToCPU(b);
case DeviceType::CUDA:
return backendToCUDA(b);
case DeviceType::HIP:
return backendToHIP(b);
case DeviceType::MSNPU:
TORCH_CHECK(!isSparse(b), "Sparse not implemented for MSNPU");
return Backend::MSNPU;
case DeviceType::XLA:
TORCH_CHECK(!isSparse(b), "Sparse not implemented for XLA");
return Backend::XLA;
default:
AT_ERROR("Unknown device type");
}
}
TensorOptions options(c10::DispatchKey dispatch_key, at::ScalarType scalar_type, const c10::optional<Device>& device=c10::nullopt) {
auto options = TensorOptions(scalar_type)
.device(computeDeviceType(dispatch_key))
.layout(layout_from_backend(dispatchKeyToBackend(dispatch_key)));
if (device.has_value()) {
return options.device(device);
}
return options;
}
void maybe_initialize_cuda(c10::DispatchKey dispatch_key) {
if (backendToDeviceType(dispatchKeyToBackend(dispatch_key)) == kCUDA) {
torch::utils::cuda_lazy_init();
}
}
void maybe_initialize_cuda(const Device device) {
if (device.is_cuda()) {
torch::utils::cuda_lazy_init();
}
}
Tensor dispatch_zeros(c10::DispatchKey dispatch_key, at::ScalarType scalar_type, const optional<Device>& device, IntArrayRef sizes) {
maybe_initialize_cuda(dispatch_key);
pybind11::gil_scoped_release no_gil;
return torch::zeros(sizes, options(dispatch_key, scalar_type, device));
}
Tensor dispatch_ones(c10::DispatchKey dispatch_key, at::ScalarType scalar_type, const optional<Device>& device, IntArrayRef sizes) {
maybe_initialize_cuda(dispatch_key);
pybind11::gil_scoped_release no_gil;
return torch::ones(sizes, options(dispatch_key, scalar_type, device));
}
Tensor dispatch_full(c10::DispatchKey dispatch_key, at::ScalarType scalar_type, Scalar fill_value, const optional<Device>& device, IntArrayRef sizes) {
maybe_initialize_cuda(dispatch_key);
pybind11::gil_scoped_release no_gil;
return torch::full(sizes, fill_value, options(dispatch_key, scalar_type, device));
}
Tensor new_with_sizes(c10::DispatchKey dispatch_key, at::ScalarType scalar_type, const optional<Device>& device, IntArrayRef sizes) {
maybe_initialize_cuda(dispatch_key);
pybind11::gil_scoped_release no_gil;
return torch::empty(sizes, options(dispatch_key, scalar_type, device));
}
Tensor new_with_storage(c10::DispatchKey dispatch_key, at::ScalarType scalar_type, Storage storage) {
auto tensor = at::empty({}, options(dispatch_key, scalar_type));
tensor.set_(std::move(storage));
return tensor;
}
Tensor new_with_tensor(c10::DispatchKey dispatch_key, at::ScalarType scalar_type, const Tensor& other) {
TORCH_CHECK_TYPE(legacyExtractDispatchKey(other.key_set()) == dispatch_key, "expected ",
toString(dispatch_key), " (got ", toString(legacyExtractDispatchKey(other.key_set())), ")");
TORCH_CHECK_TYPE(other.scalar_type() == scalar_type, "expected ",
toString(scalar_type), " (got ", toString(other.scalar_type()), ")");
return other.slice();
}
std::vector<int64_t> compute_sizes(PyObject* seq) {
std::vector<int64_t> sizes;
THPObjectPtr handle;
while (PySequence_Check(seq)) {
auto length = PySequence_Length(seq);
if (length < 0) throw python_error();
sizes.push_back(length);
if (sizes.size() > MAX_DIMS) {
throw ValueError("too many dimensions '%s'", Py_TYPE(seq)->tp_name);
}
if (length == 0) break;
handle = THPObjectPtr(PySequence_GetItem(seq, 0));
if (!handle) {
throw ValueError("could not determine the shape of object type '%s'", Py_TYPE(seq)->tp_name);
}
seq = handle.get();
}
return sizes;
}
ScalarType infer_scalar_type(PyObject *obj) {
#ifdef USE_NUMPY
if (PyArray_Check(obj)) {
return numpy_dtype_to_aten(PyArray_TYPE((PyArrayObject*)obj));
}
if (PyArray_CheckScalar(obj)) {
THPObjectPtr arr(PyArray_FromScalar(obj, nullptr));
return numpy_dtype_to_aten(PyArray_TYPE((PyArrayObject*) arr.get()));
}
#endif
if (PyFloat_Check(obj)) {
// this is always guaranteed to be a floating-point type, and makes it more
// convenient to write e.g. torch.tensor(0.) than torch.tensor(0., dtype=torch.Tensor.dtype).
return torch::tensors::get_default_scalar_type();
}
if (THPUtils_checkLong(obj)) {
return ScalarType::Long;
}
if (PyBool_Check(obj)) {
return ScalarType::Bool;
}
if (PyComplex_Check(obj)) {
switch (torch::tensors::get_default_scalar_type()) {
case ScalarType::Float: return ScalarType::ComplexFloat;
case ScalarType::Double: return ScalarType::ComplexDouble;
default: TORCH_CHECK(false, "invalid default scalar type for complex");
}
}
if (THPVariable_Check(obj)) {
auto var = reinterpret_cast<THPVariable*>(obj)->cdata;
return var.scalar_type();
}
if (THPUtils_checkString(obj)) {
throw TypeError("new(): invalid data type '%s'", Py_TYPE(obj)->tp_name);
}
if (PySequence_Check(obj)) {
c10::optional<ScalarType> scalarType;
auto length = PySequence_Length(obj);
if (length < 0) throw python_error();
// match NumPy semantics, except use default tensor type instead of double.
if (length == 0) return torch::tensors::get_default_scalar_type();
for (int i = 0; i < length; ++i) {
THPObjectPtr handle(PySequence_GetItem(obj, i));
if (!handle) throw python_error();
auto cur_item = handle.get();
if (cur_item == obj) throw TypeError("new(): self-referential lists are incompatible");
ScalarType item_scalarType = infer_scalar_type(cur_item);
scalarType = (scalarType) ?
at::promoteTypes(*scalarType, item_scalarType) : item_scalarType;
if (scalarType == ScalarType::ComplexDouble) {
// this won't change (unless we hit undefined, but that will fail later).
return *scalarType;
}
}
return *scalarType;
}
AT_ERROR("Could not infer dtype of ", Py_TYPE(obj)->tp_name);
}
void recursive_store(char* data, IntArrayRef sizes, IntArrayRef strides, int64_t dim,
ScalarType scalarType, int elementSize, PyObject* obj) {
int64_t ndim = sizes.size();
if (dim == ndim) {
torch::utils::store_scalar(data, scalarType, obj);
return;
}
auto n = sizes[dim];
auto seq = THPObjectPtr(PySequence_Fast(obj, "not a sequence"));
if (!seq) throw python_error();
auto seq_size = PySequence_Fast_GET_SIZE(seq.get());
if (seq_size != n) {
throw ValueError("expected sequence of length %lld at dim %lld (got %lld)",
(long long)n, (long long)dim, (long long)seq_size);
}
PyObject** items = PySequence_Fast_ITEMS(seq.get());
for (int64_t i = 0; i < n; i++) {
recursive_store(data, sizes, strides, dim + 1, scalarType, elementSize, items[i]);
data += strides[dim] * elementSize;
}
}
Tensor internal_new_from_data(
c10::DispatchKey dispatch_key,
at::ScalarType scalar_type,
c10::optional<Device> device_opt,
PyObject* data,
bool copy_variables,
bool copy_numpy,
bool type_inference,
bool pin_memory = false) {
if (THPUtils_checkString(data)) {
throw TypeError("new(): invalid data type '%s'", Py_TYPE(data)->tp_name);
}
if (THPVariable_Check(data)) {
TORCH_CHECK(!pin_memory, "Can't pin tensor constructed from a variable");
auto var = reinterpret_cast<THPVariable*>(data)->cdata;
if (copy_variables) {
var = var.detach();
}
// infer the scalar type and device type; it's not expected to infer the layout since these constructors
// are defined per-layout-type (e.g. tensor vs sparse_coo_tensor).
const auto& inferred_scalar_type = type_inference ? var.scalar_type() : scalar_type;
auto device = device_opt.has_value() ? *device_opt : var.device();
pybind11::gil_scoped_release no_gil;
maybe_initialize_cuda(device);
return var.to(device, inferred_scalar_type, /*non_blocking=*/false, /*copy=*/copy_variables);
}
#ifdef USE_NUMPY
if (PyObject_HasAttrString(data, "__cuda_array_interface__")) {
TORCH_CHECK(!pin_memory, "Can't pin tensor constructed from __cuda_array_interface__");
auto tensor = tensor_from_cuda_array_interface(data);
const auto& inferred_scalar_type = type_inference ? tensor.scalar_type() : scalar_type;
auto device = device_opt.has_value() ? *device_opt : at::Device(computeDeviceType(dispatch_key));
pybind11::gil_scoped_release no_gil;
maybe_initialize_cuda(device);
return tensor.to(device, inferred_scalar_type, /*non_blocking=*/false, /*copy=*/copy_numpy);
}
if (PyArray_Check(data)) {
TORCH_CHECK(!pin_memory, "Can't pin tensor constructed from numpy");
auto tensor = tensor_from_numpy(data);
const auto& inferred_scalar_type = type_inference ? tensor.scalar_type() : scalar_type;
auto device = device_opt.has_value() ? *device_opt : at::Device(computeDeviceType(dispatch_key));
pybind11::gil_scoped_release no_gil;
maybe_initialize_cuda(device);
return tensor.to(device, inferred_scalar_type, /*non_blocking=*/false, /*copy=*/copy_numpy);
}
#endif
auto sizes = compute_sizes(data);
ScalarType inferred_scalar_type = type_inference ? infer_scalar_type(data) : scalar_type;
// This exists to prevent us from tracing the call to empty(). The actual
// autograd code doesn't really matter, because requires_grad is always false
// here.
Tensor tensor;
{
at::AutoNonVariableTypeMode guard; // TODO: remove
at::tracer::impl::NoTracerDispatchMode tracer_guard;
tensor = at::empty(sizes, at::initialTensorOptions().dtype(inferred_scalar_type).pinned_memory(pin_memory));
recursive_store(
(char*)tensor.data_ptr(), tensor.sizes(), tensor.strides(), 0,
inferred_scalar_type, tensor.dtype().itemsize(), data);
}
auto device = device_opt.has_value() ? *device_opt : at::Device(computeDeviceType(dispatch_key));
pybind11::gil_scoped_release no_gil;
maybe_initialize_cuda(device);
// However, it is VERY important that we trace the to() call here (even
// though the reason this is important is a hack). Without *some* factory
// function call that is traced at construction time, we will consider
// a tensor constant as originating from "outside" the trace, and if you
// try to return it directly we will fail with the error saying no
// "no observable data dependence". In an ideal world, we wouldn't trace
// a to() call but I need to think harder about what exactly we should trace
// in this case.
return tensor.to(device, inferred_scalar_type, /*non_blocking=*/false, /*copy=*/false);
}
Tensor new_from_data_copy(
c10::DispatchKey dispatch_key,
at::ScalarType scalar_type,
c10::optional<Device> device,
PyObject* data) {
return internal_new_from_data(dispatch_key, scalar_type, std::move(device), data,
/*copy_variables=*/true, /*copy_numpy=*/true,
/*type_inference=*/false);
}
Tensor legacy_new_from_sequence(
c10::DispatchKey dispatch_key,
at::ScalarType scalar_type,
c10::optional<Device> device,
PyObject* data) {
if (!PySequence_Check(data)) {
throw TypeError("new(): data must be a sequence (got %s)", Py_TYPE(data)->tp_name);
}
return internal_new_from_data(dispatch_key, scalar_type, std::move(device), data,
/*copy_variables=*/false, /*copy_numpy=*/false,
/*type_inference=*/false);
}
// "base" here refers to the Tensor type on which the function was invoked, e.g.:
// in x.new(y), 'x' is the base.
void check_base_legacy_new(c10::DispatchKey dispatch_key, at::Layout expected_layout) {
if (expected_layout == c10::kStrided) {
TORCH_CHECK(dispatch_key == c10::DispatchKey::CPU
|| dispatch_key == c10::DispatchKey::CUDA
|| dispatch_key == c10::DispatchKey::HIP
|| dispatch_key == c10::DispatchKey::XLA,
"new(): expected DispatchKey: ", c10::DispatchKey::CPU,
" or ", c10::DispatchKey::CUDA,
" or ", c10::DispatchKey::HIP,
" or ", c10::DispatchKey::XLA,
" but got: ", dispatch_key);
} else if(expected_layout == c10::kSparse) {
// NOTE: no sparse XLA
TORCH_CHECK(dispatch_key == c10::DispatchKey::SparseCPU
|| dispatch_key == c10::DispatchKey::SparseCUDA
|| dispatch_key == c10::DispatchKey::SparseHIP,
"new(): expected DispatchKey: ", c10::DispatchKey::SparseCPU,
" or ", c10::DispatchKey::SparseCUDA,
" or ", c10::DispatchKey::SparseHIP,
" but got: ", dispatch_key);
} else {
TORCH_INTERNAL_ASSERT(false, "unexpected layout");
}
}
void check_legacy_ctor_device(c10::DispatchKey dispatch_key, c10::optional<Device> device) {
if (device.has_value()) {
TORCH_CHECK(computeDeviceType(dispatch_key) == device.value().type(),
"legacy constructor for device type: ", computeDeviceType(dispatch_key),
" was passed device type: ", device.value().type(),
", but device type must be: ", computeDeviceType(dispatch_key));
}
}
Tensor legacy_sparse_tensor_ctor(c10::DispatchKey dispatch_key, at::ScalarType scalar_type, PyObject* args, PyObject* kwargs) {
static PythonArgParser parser({
"new(*, Device? device=None)",
"new(*, int64_t cdata)|hidden",
"new(Tensor indices, Tensor values, *, Device? device=None)",
"new(Tensor indices, Tensor values, IntArrayRef size, *, Device? device=None)",
"new(IntArrayRef size, *, Device? device=None)",
});
ParsedArgs<4> parsed_args;
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
auto deviceOptional = r.deviceOptional(0);
check_legacy_ctor_device(dispatch_key, deviceOptional);
return at::empty({0}, options(dispatch_key, scalar_type, deviceOptional));
} else if (r.idx == 1) {
auto cdata = reinterpret_cast<void*>(r.toInt64(0));
return at::unsafeTensorFromTH(cdata, true);
} else if (r.idx == 2) {
auto deviceOptional = r.deviceOptional(2);
check_legacy_ctor_device(dispatch_key, deviceOptional);
at::OptionalDeviceGuard device_guard(deviceOptional);
return at::sparse_coo_tensor(r.tensor(0), r.tensor(1));
} else if (r.idx == 3) {
auto deviceOptional = r.deviceOptional(3);
check_legacy_ctor_device(dispatch_key, deviceOptional);
at::OptionalDeviceGuard device_guard(deviceOptional);
return at::sparse_coo_tensor(r.tensor(0), r.tensor(1), r.intlist(2));
} else if (r.idx == 4) {
PyObject* arg = r.pyobject(0);
auto deviceOptional = r.deviceOptional(1);
check_legacy_ctor_device(dispatch_key, deviceOptional);
if (!THPSize_Check(arg) && PyTuple_GET_SIZE(args) >= 1 && arg == PyTuple_GET_ITEM(args, 0)) {
// new(sequence) binds to this signature but should be treated differently
// unless the sequences is a torch.Size
throw TypeError("torch.SparseTensor(sequence) only accepts sizes. Please use torch.sparse_coo_tensor() " \
"or construct a strided tensor and convert it to sparse via to_sparse.");
}
return new_with_sizes(dispatch_key, scalar_type, r.deviceOptional(1), r.intlist(0));
}
throw std::runtime_error("new(): invalid arguments");
}
Tensor legacy_sparse_tensor_new(c10::DispatchKey dispatch_key, at::ScalarType scalar_type, PyObject* args, PyObject* kwargs) {
static PythonArgParser parser({
"new(*, Device? device=None)",
"new(*, int64_t cdata)|hidden",
"new(Tensor indices, Tensor values, *, Device? device=None)",
"new(Tensor indices, Tensor values, IntArrayRef size, *, Device? device=None)",
"new(IntArrayRef size, *, Device? device=None)",
});
check_base_legacy_new(dispatch_key, c10::kSparse);
ParsedArgs<5> parsed_args;
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
auto deviceOptional = r.deviceOptional(0);
check_legacy_ctor_device(dispatch_key, deviceOptional);
at::OptionalDeviceGuard device_guard(deviceOptional);
return at::empty({0}, options(dispatch_key, scalar_type));
} else if (r.idx == 1) {
auto cdata = reinterpret_cast<void*>(r.toInt64(0));
return at::unsafeTensorFromTH(cdata, true);
} else if (r.idx == 2) {
// Note: this signature doesn't have a dtype, even though it has a device; it probably shouldn't
// have a device (we should infer it).
auto deviceOptional = r.deviceOptional(2);
check_legacy_ctor_device(dispatch_key, deviceOptional);
at::OptionalDeviceGuard device_guard(deviceOptional);
return at::sparse_coo_tensor(r.tensor(0), r.tensor(1));
} else if (r.idx == 3) {
// Note: this signature doesn't have a dtype, even though it has a device; it probably shouldn't
// have a device (we should infer it).
auto deviceOptional = r.deviceOptional(3);
check_legacy_ctor_device(dispatch_key, deviceOptional);
at::OptionalDeviceGuard device_guard(deviceOptional);
return at::sparse_coo_tensor(r.tensor(0), r.tensor(1), r.intlist(2));
} else if (r.idx == 4) {
PyObject* arg = r.pyobject(0);
auto deviceOptional = r.deviceOptional(1);
check_legacy_ctor_device(dispatch_key, deviceOptional);
if (!THPSize_Check(arg) && PyTuple_GET_SIZE(args) >= 1 && arg == PyTuple_GET_ITEM(args, 0)) {
// new(sequence) binds to this signature but should be treated differently
// unless the sequences is a torch.Size
throw TypeError("SparseTensor.new(sequence) only accepts sizes. Please use torch.sparse_coo_tensor() " \
"or construct a strided tensor and convert it to sparse via to_sparse.");
}
return new_with_sizes(dispatch_key, scalar_type, r.deviceOptional(1), r.intlist(0));
}
throw std::runtime_error("new(): invalid arguments");
}
// NB: device_idx here is NOT a DeviceIndex, but index into PythonArgs
c10::DispatchKey typeIdWithDefault(PythonArgs& r, int64_t device_idx, c10::DispatchKey dispatch_key) {
auto device_type = r.isNone(device_idx) ? computeDeviceType(dispatch_key) : r.device(device_idx).type();
return backendToDispatchKey(backendToBackendOfDeviceType(dispatchKeyToBackend(dispatch_key), device_type));
}
// NB: device_idx here is NOT a DeviceIndex, but index into PythonArgs
c10::DispatchKey denseTypeIdWithDefault(PythonArgs& r, int64_t device_idx, c10::DispatchKey dispatch_key) {
auto device_type = r.isNone(device_idx) ? computeDeviceType(dispatch_key) : r.device(device_idx).type();
return backendToDispatchKey(toDense(backendToBackendOfDeviceType(dispatchKeyToBackend(dispatch_key), device_type)));
}
} // namespace
Tensor legacy_tensor_ctor(c10::DispatchKey dispatch_key, at::ScalarType scalar_type, PyObject* args, PyObject* kwargs) {
static PythonArgParser parser({
"new(*, Device? device=None)",
"new(Storage storage)",
"new(*, int64_t cdata)|hidden",
"new(Tensor other)",
"new(IntArrayRef size, *, Device? device=None)",
"new(PyObject* data, *, Device? device=None)",
});
if (isSparse(dispatchKeyToBackend(dispatch_key))) {
return legacy_sparse_tensor_ctor(dispatch_key, scalar_type, args, kwargs);
}
ParsedArgs<2> parsed_args;
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
auto deviceOptional = r.deviceOptional(0);
check_legacy_ctor_device(dispatch_key, deviceOptional);
at::OptionalDeviceGuard device_guard(deviceOptional);
return at::empty({0}, options(dispatch_key, scalar_type));
} else if (r.idx == 1) {
THPObjectPtr dtype_attr(PyObject_GetAttrString(r.pyobject(0), "dtype"));
if (!dtype_attr) throw python_error();
at::ScalarType storage_scalar_type = reinterpret_cast<THPDtype*>(
dtype_attr.get())->scalar_type;
TORCH_CHECK(
storage_scalar_type == scalar_type,
"Expected Storage of type ",
scalar_type,
" but got type ",
storage_scalar_type,
" for argument 1 'storage'");
return new_with_storage(dispatch_key, scalar_type, r.storage(0));
} else if (r.idx == 2) {
auto cdata = reinterpret_cast<void*>(r.toInt64(0));
return at::unsafeTensorFromTH(cdata, true);
} else if (r.idx == 3) {
return new_with_tensor(dispatch_key, scalar_type, r.tensor(0));
} else if (r.idx == 4) {
PyObject* arg = r.pyobject(0);
auto deviceOptional = r.deviceOptional(1);
check_legacy_ctor_device(dispatch_key, deviceOptional);
if (!THPSize_Check(arg) && PyTuple_GET_SIZE(args) >= 1 && arg == PyTuple_GET_ITEM(args, 0)) {
// new(sequence) binds to this signature but should be treated differently
// unless the sequences is a torch.Size
return legacy_new_from_sequence(dispatch_key, scalar_type, deviceOptional, r.pyobject(0));
}
return new_with_sizes(dispatch_key, scalar_type, r.deviceOptional(1), r.intlist(0));
} else if (r.idx == 5) {
auto deviceOptional = r.deviceOptional(1);
check_legacy_ctor_device(dispatch_key, deviceOptional);
return legacy_new_from_sequence(dispatch_key, scalar_type, deviceOptional, r.pyobject(0));
}
throw std::runtime_error("new(): invalid arguments");
}
Tensor legacy_tensor_new(c10::DispatchKey dispatch_key, at::ScalarType scalar_type, PyObject* args, PyObject* kwargs) {
static PythonArgParser parser({
"new(*, Device? device=None)",
"new(Storage storage)",
"new(*, int64_t cdata)|hidden",
"new(Tensor other)", // this doesn't have a dtype/device because it creates an alias.
"new(IntArrayRef size, *, Device? device=None)",
"new(PyObject* data, *, Device? device=None)",
});
if (isSparse(dispatchKeyToBackend(dispatch_key))) {
return legacy_sparse_tensor_new(dispatch_key, scalar_type, args, kwargs);
}
check_base_legacy_new(dispatch_key, c10::kStrided);
ParsedArgs<3> parsed_args;
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
auto deviceOptional = r.deviceOptional(0);
check_legacy_ctor_device(dispatch_key, deviceOptional);
at::OptionalDeviceGuard device_guard(deviceOptional);
return at::empty({0}, options(dispatch_key, scalar_type));
} else if (r.idx == 1) {
THPObjectPtr dtype_attr(PyObject_GetAttrString(r.pyobject(0), "dtype"));
if (!dtype_attr) throw python_error();
at::ScalarType storage_scalar_type = reinterpret_cast<THPDtype*>(
dtype_attr.get())->scalar_type;
TORCH_CHECK(
storage_scalar_type == scalar_type,
"Expected Storage of type ",
scalar_type,
" but got type ",
storage_scalar_type,
" for argument 1 'storage'");
return new_with_storage(dispatch_key, scalar_type, r.storage(0));
} else if (r.idx == 2) {
auto cdata = reinterpret_cast<void*>(r.toInt64(0));
return at::unsafeTensorFromTH(cdata, true);
} else if (r.idx == 3) {
return new_with_tensor(dispatch_key, scalar_type, r.tensor(0));
} else if (r.idx == 4) {
PyObject* arg = r.pyobject(0);
auto deviceOptional = r.deviceOptional(1);
check_legacy_ctor_device(dispatch_key, deviceOptional);
if (!THPSize_Check(arg) && PyTuple_GET_SIZE(args) >= 1 && arg == PyTuple_GET_ITEM(args, 0)) {
// new(sequence) binds to this signature but should be treated differently
// unless the sequences is a torch.Size
return legacy_new_from_sequence(dispatch_key, scalar_type, deviceOptional, r.pyobject(0));
}
return new_with_sizes(dispatch_key, scalar_type, r.deviceOptional(1), r.intlist(0));
} else if (r.idx == 5) {
auto deviceOptional = r.deviceOptional(1);
check_legacy_ctor_device(dispatch_key, deviceOptional);
return legacy_new_from_sequence(dispatch_key, scalar_type, r.deviceOptional(1), r.pyobject(0));
}
throw std::runtime_error("new(): invalid arguments");
}
Tensor indexing_tensor_from_data(
c10::DispatchKey dispatch_key,
at::ScalarType scalar_type,
c10::optional<Device> device,
PyObject* data) {
// Specific to tensor indexing, converts an indexing list to an
// indexing tensor (type Byte or Long)
ScalarType inferred_scalar_type = infer_scalar_type(data);
if (inferred_scalar_type == ScalarType::Byte || inferred_scalar_type == ScalarType::Bool) {
return internal_new_from_data(dispatch_key, inferred_scalar_type, std::move(device), data,
/*copy_variables=*/false, /*copy_numpy=*/false,
/*type_inference=*/false);
} else {
return internal_new_from_data(dispatch_key, scalar_type, std::move(device), data,
/*copy_variables=*/false, /*copy_numpy=*/false,
/*type_inference=*/false);
}
}
Tensor sparse_coo_tensor_ctor(c10::DispatchKey dispatch_key, at::ScalarType scalar_type, PyObject* args, PyObject* kwargs) {
static PythonArgParser parser({
"sparse_coo_tensor(PyObject* indices, PyObject* values, *, ScalarType dtype=None, Device? device=None, bool requires_grad=False)",
"sparse_coo_tensor(PyObject* indices, PyObject* values, IntArrayRef size, *, ScalarType dtype=None, Device? device=None, bool requires_grad=False)",
"sparse_coo_tensor(IntArrayRef size, *, ScalarType dtype=None, Device? device=None, bool requires_grad=False)",
});
ParsedArgs<6> parsed_args;
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
bool type_inference = r.isNone(2);
const auto inferred_dispatch_key = denseTypeIdWithDefault(r, 3, dispatch_key);
const auto inferred_scalar_type = r.scalartypeWithDefault(2, scalar_type);
at::OptionalDeviceGuard device_guard(r.deviceOptional(3));
// if no dtype provided, infer type based on value type.
Tensor values = internal_new_from_data(inferred_dispatch_key, inferred_scalar_type, r.deviceOptional(3), r.pyobject(1),
/*copy_variables=*/false, /*copy_numpy=*/true,
/*type_inference=*/type_inference);
Tensor indices = internal_new_from_data(legacyExtractDispatchKey(values.key_set()), kLong, r.deviceOptional(3), r.pyobject(0),
/*copy_variables=*/false, /*copy_numpy=*/true,
/*type_inference=*/false);
return at::sparse_coo_tensor(indices, values, values.options().layout(at::kSparse)).set_requires_grad(r.toBool(4));
} else if (r.idx == 1) {
bool type_inference = r.isNone(3);
const auto inferred_dispatch_key = denseTypeIdWithDefault(r, 4, dispatch_key);
const auto inferred_scalar_type = r.scalartypeWithDefault(3, scalar_type);
at::OptionalDeviceGuard device_guard(r.deviceOptional(4));
Tensor values = internal_new_from_data(inferred_dispatch_key, inferred_scalar_type, r.deviceOptional(4), r.pyobject(1),
/*copy_variables=*/false, /*copy_numpy=*/true,
/*type_inference=*/type_inference);
Tensor indices = internal_new_from_data(legacyExtractDispatchKey(values.key_set()), kLong, r.deviceOptional(4), r.pyobject(0),
/*copy_variables=*/false, /*copy_numpy=*/true,
/*type_inference=*/false);
return at::sparse_coo_tensor(indices, values, r.intlist(2), values.options().layout(at::kSparse)).set_requires_grad(r.toBool(5));
} else if (r.idx == 2) {
const auto inferred_dispatch_key = typeIdWithDefault(r, 2, dispatch_key);
const auto inferred_scalar_type = r.scalartypeWithDefault(1, scalar_type);
at::OptionalDeviceGuard device_guard(r.deviceOptional(2));
return at::sparse_coo_tensor(r.intlist(0), options(inferred_dispatch_key, inferred_scalar_type).layout(at::kSparse)).set_requires_grad(r.toBool(3));
}
throw std::runtime_error("sparse_coo_tensor(): invalid arguments");
}
Tensor _sparse_coo_tensor_unsafe_ctor(c10::DispatchKey dispatch_key, at::ScalarType scalar_type, PyObject* args, PyObject* kwargs) {
enum {
ARG_INDICES = 0,
ARG_VALUES,
ARG_SIZE,
ARG_TYPE,
ARG_DEVICE,
ARG_REQUIRES_GRAD,
ARGS_COUNT
};
static PythonArgParser parser({
"_sparse_coo_tensor_unsafe(PyObject* indices, PyObject* values, IntArrayRef size, *, ScalarType dtype=None, Device? device=None, bool requires_grad=False)",
});
ParsedArgs<ARGS_COUNT> parsed_args;
auto r = parser.parse(args, kwargs, parsed_args);
bool type_inference = r.isNone(ARG_TYPE);
const auto inferred_dispatch_key = denseTypeIdWithDefault(r, ARG_DEVICE, dispatch_key);
const auto inferred_scalar_type = r.scalartypeWithDefault(ARG_TYPE, scalar_type);
at::OptionalDeviceGuard device_guard(r.deviceOptional(ARG_DEVICE));
Tensor values = internal_new_from_data(inferred_dispatch_key, inferred_scalar_type, r.deviceOptional(ARG_DEVICE), r.pyobject(ARG_VALUES),
/*copy_variables=*/false, /*copy_numpy=*/true,
/*type_inference=*/type_inference);
Tensor indices = internal_new_from_data(legacyExtractDispatchKey(values.key_set()), kLong, r.deviceOptional(ARG_DEVICE), r.pyobject(ARG_INDICES),
/*copy_variables=*/false, /*copy_numpy=*/true,
/*type_inference=*/false);
return at::_sparse_coo_tensor_unsafe(indices, values, r.intlist(ARG_SIZE), values.options().layout(at::kSparse)).set_requires_grad(r.toBool(ARG_REQUIRES_GRAD));
}
void _validate_sparse_coo_tensor_args(c10::DispatchKey dispatch_key, at::ScalarType scalar_type, PyObject* args, PyObject* kwargs) {
static PythonArgParser parser({
"_validate_sparse_coo_tensor(PyObject* indices, PyObject* values, IntArrayRef size)",
});
ParsedArgs<3> parsed_args;
auto r = parser.parse(args, kwargs, parsed_args);
Tensor values = internal_new_from_data(
dispatch_key, scalar_type, c10::nullopt, r.pyobject(1),
/*copy_variables=*/false, /*copy_numpy=*/true, /*type_inference=*/true);
Tensor indices = internal_new_from_data(
legacyExtractDispatchKey(values.key_set()), kLong, c10::nullopt, r.pyobject(0),
/*copy_variables=*/false, /*copy_numpy=*/true, /*type_inference=*/false);
at::native::_validate_sparse_coo_tensor_args(indices, values, r.intlist(2));
}
Tensor tensor_ctor(c10::DispatchKey dispatch_key, at::ScalarType scalar_type, PyObject* args, PyObject* kwargs) {
static PythonArgParser parser({
"tensor(PyObject* data, *, ScalarType dtype=None, Device? device=None, bool pin_memory=False, bool requires_grad=False, DimnameList? names=None)",
});
constexpr int ctor_num_args = 6;
ParsedArgs<ctor_num_args> parsed_args;
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
PyObject* data = r.pyobject(0);
if (THPVariable_Check(data)) {
auto ret = PyErr_WarnEx(PyExc_UserWarning,
"To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() "
"or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).", 1);
if (ret != 0) throw python_error();
}
bool type_inference = r.isNone(1);
bool pin_memory = r.toBool(3);
bool args_requires_grad = r.toBool(4);
auto new_tensor = internal_new_from_data(
typeIdWithDefault(r, 2, dispatch_key),
r.scalartypeWithDefault(1, scalar_type),
r.deviceOptional(2),
data,
/*copy_variables=*/true,
/*copy_numpy=*/true,
/*type_inference=*/type_inference,
pin_memory);
auto names = r.toDimnameListOptional(5);
if (names) {
at::namedinference::propagate_names(new_tensor, *names, /*validate_names=*/true);
}
new_tensor.detach_(); // ensure new_tensor a leaf node
new_tensor.set_requires_grad(args_requires_grad);
return new_tensor;
}
throw std::runtime_error("tensor(): invalid arguments");
}
Tensor as_tensor(c10::DispatchKey dispatch_key, at::ScalarType scalar_type, PyObject* args, PyObject* kwargs) {
// TODO: add requires_grad once we decide on semantics for sharing data.
static PythonArgParser parser({
"as_tensor(PyObject* data, *, ScalarType dtype=None, Device? device=None)",
});
ParsedArgs<3> parsed_args;
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
bool type_inference = r.isNone(1);
return internal_new_from_data(
typeIdWithDefault(r, 2, dispatch_key),
r.scalartypeWithDefault(1, scalar_type),
r.deviceOptional(2),
r.pyobject(0),
/*copy_variables=*/false,
/*copy_numpy=*/false,
/*type_inference=*/type_inference);
}
throw std::runtime_error("tensor(): invalid arguments");
}
Tensor new_tensor(c10::DispatchKey dispatch_key, at::ScalarType scalar_type, PyObject* args, PyObject* kwargs) {
static PythonArgParser parser({
"new_tensor(PyObject* data, *, ScalarType dtype=None, Device? device=None, bool requires_grad=False)",
});
ParsedArgs<4> parsed_args;
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
PyObject* data = r.pyobject(0);
if (THPVariable_Check(data)) {
auto ret = PyErr_WarnEx(PyExc_UserWarning,
"To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() "
"or sourceTensor.clone().detach().requires_grad_(True), rather than tensor.new_tensor(sourceTensor).", 1);
if (ret != 0) throw python_error();
}
bool args_requires_grad = r.toBool(3);
auto new_tensor = new_from_data_copy(
typeIdWithDefault(r, 2, dispatch_key),
r.scalartypeWithDefault(1, scalar_type),
r.deviceOptional(2),
data);
new_tensor.detach_(); // ensure new_tensor a leaf node
new_tensor.set_requires_grad(args_requires_grad);
return new_tensor;
}
throw std::runtime_error("new_tensor(): invalid arguments");
}
Tensor new_ones(c10::DispatchKey dispatch_key, at::ScalarType scalar_type, PyObject* args, PyObject* kwargs) {
static PythonArgParser parser({
"new_ones(IntArrayRef size, *, ScalarType dtype=None, Device? device=None, bool requires_grad=False)",
}, /*traceable=*/true);
ParsedArgs<4> parsed_args;
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
const auto actual_dispatch_key = typeIdWithDefault(r, 2, dispatch_key);
const auto actual_scalar_type = r.scalartypeWithDefault(1, scalar_type);
return dispatch_ones(actual_dispatch_key, actual_scalar_type, r.deviceOptional(2), r.intlist(0)).set_requires_grad(r.toBool(3));
}
throw std::runtime_error("new_ones(): invalid arguments");
}
}} // namespace torch::utils
|