File: tensor_numpy.cpp

package info (click to toggle)
pytorch 1.7.1-7
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 80,340 kB
  • sloc: cpp: 670,830; python: 343,991; ansic: 67,845; asm: 5,503; sh: 2,924; java: 2,888; xml: 266; makefile: 244; ruby: 148; yacc: 144; objc: 51; lex: 44
file content (350 lines) | stat: -rw-r--r-- 12,058 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
#include <torch/csrc/THP.h>
#include <torch/csrc/utils/tensor_numpy.h>
#include <torch/csrc/utils/numpy_stub.h>

#ifndef USE_NUMPY
namespace torch { namespace utils {
PyObject* tensor_to_numpy(const at::Tensor& tensor) {
  throw std::runtime_error("PyTorch was compiled without NumPy support");
}
at::Tensor tensor_from_numpy(PyObject* obj) {
  throw std::runtime_error("PyTorch was compiled without NumPy support");
}
bool is_numpy_int(PyObject* obj) {
  throw std::runtime_error("PyTorch was compiled without NumPy support");
}
bool is_numpy_scalar(PyObject* obj) {
  throw std::runtime_error("PyTorch was compiled without NumPy support");
}
at::Tensor tensor_from_cuda_array_interface(PyObject* obj) {
  throw std::runtime_error("PyTorch was compiled without NumPy support");
}
}}
#else

#include <torch/csrc/DynamicTypes.h>
#include <torch/csrc/Exceptions.h>
#include <torch/csrc/autograd/python_variable.h>
#include <torch/csrc/utils/object_ptr.h>

#include <ATen/ATen.h>
#include <ATen/TensorUtils.h>
#include <memory>
#include <sstream>
#include <stdexcept>

using namespace at;
using namespace torch::autograd;

namespace torch { namespace utils {

static std::vector<npy_intp> to_numpy_shape(IntArrayRef x) {
  // shape and stride conversion from int64_t to npy_intp
  auto nelem = x.size();
  auto result = std::vector<npy_intp>(nelem);
  for (size_t i = 0; i < nelem; i++) {
    result[i] = static_cast<npy_intp>(x[i]);
  }
  return result;
}

static std::vector<int64_t> to_aten_shape(int ndim, npy_intp* values) {
  // shape and stride conversion from npy_intp to int64_t
  auto result = std::vector<int64_t>(ndim);
  for (int i = 0; i < ndim; i++) {
    result[i] = static_cast<int64_t>(values[i]);
  }
  return result;
}

static std::vector<int64_t> seq_to_aten_shape(PyObject *py_seq) {
  int ndim = PySequence_Length(py_seq);
  if (ndim == -1) {
    throw TypeError("shape and strides must be sequences");
  }
  auto result = std::vector<int64_t>(ndim);
  for (int i = 0; i < ndim; i++) {
    auto item = THPObjectPtr(PySequence_GetItem(py_seq, i));
    if (!item) throw python_error();

    result[i] = PyLong_AsLongLong(item);
    if (result[i] == -1 && PyErr_Occurred()) throw python_error();
  }
  return result;
}

PyObject* tensor_to_numpy(const at::Tensor& tensor) {
  if (tensor.device().type() != DeviceType::CPU) {
    throw TypeError(
      "can't convert %s device type tensor to numpy. Use Tensor.cpu() to "
      "copy the tensor to host memory first.", tensor.device().str().c_str());
  }
  if (tensor.layout() != Layout::Strided) {
      throw TypeError(
        "can't convert %s layout tensor to numpy."
        "convert the tensor to a strided layout first.", c10::str(tensor.layout()).c_str());
  }
  if (at::GradMode::is_enabled() && tensor.requires_grad()) {
    throw std::runtime_error(
        "Can't call numpy() on Tensor that requires grad. "
        "Use tensor.detach().numpy() instead.");
  }
  auto dtype = aten_to_numpy_dtype(tensor.scalar_type());
  auto sizes = to_numpy_shape(tensor.sizes());
  auto strides = to_numpy_shape(tensor.strides());
  // NumPy strides use bytes. Torch strides use element counts.
  auto element_size_in_bytes = tensor.element_size();
  for (auto& stride : strides) {
    stride *= element_size_in_bytes;
  }

  auto array = THPObjectPtr(PyArray_New(
      &PyArray_Type,
      tensor.dim(),
      sizes.data(),
      dtype,
      strides.data(),
      tensor.data_ptr(),
      0,
      NPY_ARRAY_ALIGNED | NPY_ARRAY_WRITEABLE,
      nullptr));
  if (!array) return nullptr;

  // TODO: This attempts to keep the underlying memory alive by setting the base
  // object of the ndarray to the tensor and disabling resizes on the storage.
  // This is not sufficient. For example, the tensor's storage may be changed
  // via Tensor.set_, which can free the underlying memory.
  PyObject* py_tensor = THPVariable_Wrap(tensor);
  if (!py_tensor) throw python_error();
  if (PyArray_SetBaseObject((PyArrayObject*)array.get(), py_tensor) == -1) {
    return nullptr;
  }
  // Use the private storage API
  tensor.storage().unsafeGetStorageImpl()->set_resizable(false);

  return array.release();
}

at::Tensor tensor_from_numpy(PyObject* obj) {
  if (!PyArray_Check(obj)) {
    throw TypeError("expected np.ndarray (got %s)", Py_TYPE(obj)->tp_name);
  }
  auto array = (PyArrayObject*)obj;

  if (!PyArray_ISWRITEABLE(array)) {
    TORCH_WARN_ONCE(
      "The given NumPy array is not writeable, and PyTorch does "
      "not support non-writeable tensors. This means you can write to the "
      "underlying (supposedly non-writeable) NumPy array using the tensor. "
      "You may want to copy the array to protect its data or make it writeable "
      "before converting it to a tensor. This type of warning will be "
      "suppressed for the rest of this program.");

  }

  int ndim = PyArray_NDIM(array);
  auto sizes = to_aten_shape(ndim, PyArray_DIMS(array));
  auto strides = to_aten_shape(ndim, PyArray_STRIDES(array));
  // NumPy strides use bytes. Torch strides use element counts.
  auto element_size_in_bytes = PyArray_ITEMSIZE(array);
  for (auto& stride : strides) {
    if (stride%element_size_in_bytes != 0) {
      throw ValueError(
        "given numpy array strides not a multiple of the element byte size. "
        "Copy the numpy array to reallocate the memory.");
    }
    stride /= element_size_in_bytes;
  }

  size_t storage_size = 1;
  for (int i = 0; i < ndim; i++) {
    if (strides[i] < 0) {
      throw ValueError(
          "At least one stride in the given numpy array is negative, "
          "and tensors with negative strides are not currently supported. "
          "(You can probably work around this by making a copy of your array "
          " with array.copy().) ");
    }
    // XXX: this won't work for negative strides
    storage_size += (sizes[i] - 1) * strides[i];
  }

  void* data_ptr = PyArray_DATA(array);
  if (!PyArray_EquivByteorders(PyArray_DESCR(array)->byteorder, NPY_NATIVE)) {
    throw ValueError(
        "given numpy array has byte order different from the native byte order. "
        "Conversion between byte orders is currently not supported.");
  }
  Py_INCREF(obj);
  return at::from_blob(
      data_ptr,
      sizes,
      strides,
      [obj](void* data) {
        pybind11::gil_scoped_acquire gil;
        Py_DECREF(obj);
      },
      at::device(kCPU).dtype(numpy_dtype_to_aten(PyArray_TYPE(array)))
  );
}

int aten_to_numpy_dtype(const ScalarType scalar_type) {
  switch (scalar_type) {
    case kDouble: return NPY_DOUBLE;
    case kFloat: return NPY_FLOAT;
    case kHalf: return NPY_HALF;
    case kComplexDouble: return NPY_COMPLEX128;
    case kComplexFloat: return NPY_COMPLEX64;
    case kLong: return NPY_INT64;
    case kInt: return NPY_INT32;
    case kShort: return NPY_INT16;
    case kChar: return NPY_INT8;
    case kByte: return NPY_UINT8;
    case kBool: return NPY_BOOL;
    default:
      throw TypeError("Got unsupported ScalarType %s", toString(scalar_type));
  }
}

ScalarType numpy_dtype_to_aten(int dtype) {
  switch (dtype) {
    case NPY_DOUBLE: return kDouble;
    case NPY_FLOAT: return kFloat;
    case NPY_HALF: return kHalf;
    case NPY_COMPLEX64: return kComplexFloat;
    case NPY_COMPLEX128: return kComplexDouble;
    case NPY_INT16: return kShort;
    case NPY_INT8: return kChar;
    case NPY_UINT8: return kByte;
    case NPY_BOOL: return kBool;
    default:
      // Workaround: MSVC does not support two switch cases that have the same value
      if (dtype == NPY_INT || dtype == NPY_INT32) {
        // To cover all cases we must use NPY_INT because
        // NPY_INT32 is an alias which maybe equal to:
        // - NPY_INT, when sizeof(int) = 4 and sizeof(long) = 8
        // - NPY_LONG, when sizeof(int) = 4 and sizeof(long) = 4
        return kInt;
      } else if (dtype == NPY_LONGLONG || dtype == NPY_INT64) {
        // NPY_INT64 is an alias which maybe equal to:
        // - NPY_LONG, when sizeof(long) = 8 and sizeof(long long) = 8
        // - NPY_LONGLONG, when sizeof(long) = 4 and sizeof(long long) = 8
        return kLong;
      } else {
        break;  // break as if this is one of the cases above because this is only a workaround
      }
  }
  auto pytype = THPObjectPtr(PyArray_TypeObjectFromType(dtype));
  if (!pytype) throw python_error();
  throw TypeError(
      "can't convert np.ndarray of type %s. The only supported types are: "
      "float64, float32, float16, complex64, complex128, int64, int32, int16, int8, uint8, and bool.",
      ((PyTypeObject*)pytype.get())->tp_name);
}

bool is_numpy_int(PyObject* obj) {
  return PyArray_IsScalar((obj), Integer);
}

bool is_numpy_scalar(PyObject* obj) {
  return is_numpy_int(obj) || PyArray_IsScalar(obj, Bool) ||
         PyArray_IsScalar(obj, Floating) || PyArray_IsScalar(obj, ComplexFloating);
}

at::Tensor tensor_from_cuda_array_interface(PyObject* obj) {
  auto cuda_dict = THPObjectPtr(PyObject_GetAttrString(obj, "__cuda_array_interface__"));
  TORCH_INTERNAL_ASSERT(cuda_dict);

  if (!PyDict_Check(cuda_dict)) {
    throw TypeError("`__cuda_array_interface__` must be a dict");
  }

  // Extract the `obj.__cuda_array_interface__['shape']` attribute
  std::vector<int64_t> sizes;
  {
    PyObject *py_shape = PyDict_GetItemString(cuda_dict, "shape");
    if (py_shape == nullptr) {
      throw TypeError("attribute `shape` must exist");
    }
    sizes = seq_to_aten_shape(py_shape);
  }

  // Extract the `obj.__cuda_array_interface__['typestr']` attribute
  ScalarType dtype;
  int dtype_size_in_bytes;
  {
    PyObject *py_typestr = PyDict_GetItemString(cuda_dict, "typestr");
    if (py_typestr == nullptr) {
      throw TypeError("attribute `typestr` must exist");
    }
    PyArray_Descr *descr;
    if(!PyArray_DescrConverter(py_typestr, &descr)) {
      throw ValueError("cannot parse `typestr`");
    }
    dtype = numpy_dtype_to_aten(descr->type_num);
    dtype_size_in_bytes = descr->elsize;
    TORCH_INTERNAL_ASSERT(dtype_size_in_bytes > 0);
  }

  // Extract the `obj.__cuda_array_interface__['data']` attribute
  void *data_ptr;
  {
    PyObject *py_data = PyDict_GetItemString(cuda_dict, "data");
    if (py_data == nullptr) {
      throw TypeError("attribute `shape` data exist");
    }
    if(!PyTuple_Check(py_data) || PyTuple_GET_SIZE(py_data) != 2) {
      throw TypeError("`data` must be a 2-tuple of (int, bool)");
    }
    data_ptr = PyLong_AsVoidPtr(PyTuple_GET_ITEM(py_data, 0));
    if (data_ptr == nullptr && PyErr_Occurred()) {
      throw python_error();
    }
    int read_only = PyObject_IsTrue(PyTuple_GET_ITEM(py_data, 1));
    if (read_only == -1) {
      throw python_error();
    }
    if (read_only) {
      throw TypeError("the read only flag is not supported, should always be False");
    }
  }

  // Extract the `obj.__cuda_array_interface__['strides']` attribute
  std::vector<int64_t> strides;
  {
    PyObject *py_strides = PyDict_GetItemString(cuda_dict, "strides");
    if (py_strides != nullptr && py_strides != Py_None) {
      if (PySequence_Length(py_strides) == -1 || PySequence_Length(py_strides) != sizes.size()) {
        throw TypeError("strides must be a sequence of the same length as shape");
      }
      strides = seq_to_aten_shape(py_strides);

      // __cuda_array_interface__ strides use bytes. Torch strides use element counts.
      for (auto& stride : strides) {
        if (stride%dtype_size_in_bytes != 0) {
          throw ValueError(
              "given array strides not a multiple of the element byte size. "
              "Make a copy of the array to reallocate the memory.");
          }
        stride /= dtype_size_in_bytes;
      }
    } else {
      strides = at::detail::defaultStrides(sizes);
    }
  }

  Py_INCREF(obj);
  return at::from_blob(
      data_ptr,
      sizes,
      strides,
      [obj](void* data) {
        pybind11::gil_scoped_acquire gil;
        Py_DECREF(obj);
      },
      at::device(kCUDA).dtype(dtype)
  );
}
}} // namespace torch::utils

#endif  // USE_NUMPY