1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
|
#pragma once
#include <ATen/core/stack.h>
#include <ATen/core/builtin_function.h>
#include <ATen/core/function_schema.h>
#include <ATen/core/ivalue.h>
#include <ATen/core/jit_type.h>
#include <ATen/core/op_registration/infer_schema.h>
#include <ATen/core/stack.h>
#include <c10/util/C++17.h>
#include <c10/util/Metaprogramming.h>
#include <c10/util/TypeList.h>
#include <c10/util/TypeTraits.h>
#include <torch/library.h>
#include <torch/custom_class_detail.h>
#include <iostream>
#include <sstream>
namespace torch {
/// This function is used in conjunction with `class_::def()` to register
/// a constructor for a given C++ class type. For example,
/// `torch::init<int, std::string>()` would register a two-argument constructor
/// taking an `int` and a `std::string` as argument.
template <class... Types>
detail::types<void, Types...> init() {
return detail::types<void, Types...>{};
}
/// Entry point for custom C++ class registration. To register a C++ class
/// in PyTorch, instantiate `torch::class_` with the desired class as the
/// template parameter. Typically, this instantiation should be done in
/// the initialization of a global variable, so that the class will be
/// made available on dynamic library loading without any additional API
/// calls needed. For example, to register a class named Foo, you might
/// create a global variable like so:
///
/// static auto register_foo = torch::class_<Foo>("myclasses", "Foo")
/// .def("myMethod", &Foo::myMethod)
/// .def("lambdaMethod", [](const c10::intrusive_ptr<Foo>& self) {
/// // Do something with `self`
/// });
///
/// In addition to registering the class, this registration also chains
/// `def()` calls to register methods. `myMethod()` is registered with
/// a pointer to the Foo class's `myMethod()` method. `lambdaMethod()`
/// is registered with a C++ lambda expression.
template <class CurClass>
class class_ {
static_assert(std::is_base_of<CustomClassHolder, CurClass>::value,
"torch::class_<T> requires T to inherit from CustomClassHolder");
public:
/// This constructor actually registers the class type.
/// String argument `namespaceName` is an identifier for the
/// namespace you would like this class to appear in.
/// String argument `className` is the name you would like to
/// see this class exposed as in Python and TorchScript. For example, if
/// you pass `foo` as the namespace name and `Bar` as the className, the
/// class will appear as `torch.classes.foo.Bar` in Python and TorchScript
explicit class_(const std::string& namespaceName, const std::string& className) {
detail::checkValidIdent(namespaceName, "Namespace name");
detail::checkValidIdent(className, "Class name");
qualClassName = std::string("__torch__.torch.classes.") + namespaceName + "." + className;
classTypePtr = at::ClassType::create(
c10::QualifiedName(qualClassName),
std::weak_ptr<jit::CompilationUnit>());
classTypePtr->addAttribute("capsule", at::CapsuleType::get());
c10::getCustomClassTypeMap().insert(
{std::type_index(typeid(c10::intrusive_ptr<CurClass>)), classTypePtr});
c10::getCustomClassTypeMap().insert(
{std::type_index(typeid(c10::tagged_capsule<CurClass>)), classTypePtr});
registerCustomClass(classTypePtr);
}
/// def() can be used in conjunction with `torch::init()` to register
/// a constructor for a given C++ class type. For example, passing
/// `torch::init<int, std::string>()` would register a two-argument constructor
/// taking an `int` and a `std::string` as argument.
template <typename... Types>
class_& def(detail::types<void, Types...>) { // Used in combination with
// torch::init<...>()
auto func = [](c10::tagged_capsule<CurClass> self, Types... args) {
auto classObj = c10::make_intrusive<CurClass>(args...);
auto object = self.ivalue.toObject();
object->setSlot(0, c10::IValue::make_capsule(std::move(classObj)));
};
defineMethod("__init__", std::move(func));
return *this;
}
/// This is the normal method registration API. `name` is the name that
/// the method will be made accessible by in Python and TorchScript.
/// `f` is a callable object that defines the method. Typically `f`
/// will either be a pointer to a method on `CurClass`, or a lambda
/// expression that takes a `c10::intrusive_ptr<CurClass>` as the first
/// argument (emulating a `this` argument in a C++ method.)
///
/// Examples:
///
/// // Exposes method `foo` on C++ class `Foo` as `call_foo()` in
/// // Python and TorchScript
/// .def("call_foo", &Foo::foo)
///
/// // Exposes the given lambda expression as method `call_lambda()`
/// // in Python and TorchScript.
/// .def("call_lambda", [](const c10::intrusive_ptr<Foo>& self) {
/// // do something
/// })
template <typename Func>
class_& def(std::string name, Func f) {
auto wrapped_f = detail::wrap_func<CurClass, Func>(std::move(f));
defineMethod(std::move(name), std::move(wrapped_f));
return *this;
}
/// This is an unsafe method registration API added for adding custom JIT backend support via custom
/// C++ classes. It is not for general purpose use.
class_& _def_unboxed(std::string name, std::function<void(jit::Stack&)> func, c10::FunctionSchema schema) {
auto qualMethodName = qualClassName + "." + name;
auto method = std::make_unique<jit::BuiltinOpFunction>(
qualMethodName, std::move(schema), std::move(func));
classTypePtr->addMethod(method.get());
registerCustomClassMethod(std::move(method));
return *this;
}
/// def_pickle() is used to define exactly what state gets serialized
/// or deserialized for a given instance of a custom C++ class in
/// Python or TorchScript. This protocol is equivalent to the Pickle
/// concept of `__getstate__` and `__setstate__` from Python
/// (https://docs.python.org/2/library/pickle.html#object.__getstate__)
///
/// Currently, both the `get_state` and `set_state` callables must be
/// C++ lambda expressions. They should have the following signatures,
/// where `CurClass` is the class you're registering and `T1` is some object
/// that encapsulates the state of the object.
///
/// __getstate__(intrusive_ptr<CurClass>) -> T1
/// __setstate__(T2) -> intrusive_ptr<CurClass>
///
/// `T1` must be an object that is convertable to IValue by the same rules
/// for custom op/method registration.
///
/// For the common case, T1 == T2. T1 can also be a subtype of T2. An
/// example where it makes sense for T1 and T2 to differ is if __setstate__
/// handles legacy formats in a backwards compatible way.
///
/// Example:
///
/// .def_pickle(
/// // __getstate__
/// [](const c10::intrusive_ptr<MyStackClass<std::string>>& self) {
/// return self->stack_;
/// },
/// [](std::vector<std::string> state) { // __setstate__
/// return c10::make_intrusive<MyStackClass<std::string>>(
/// std::vector<std::string>{"i", "was", "deserialized"});
/// })
template <typename GetStateFn, typename SetStateFn>
class_& def_pickle(GetStateFn&& get_state, SetStateFn&& set_state) {
static_assert(
c10::guts::is_stateless_lambda<std::decay_t<GetStateFn>>::value &&
c10::guts::is_stateless_lambda<std::decay_t<SetStateFn>>::value,
"def_pickle() currently only supports lambdas as "
"__getstate__ and __setstate__ arguments.");
def("__getstate__", std::forward<GetStateFn>(get_state));
// __setstate__ needs to be registered with some custom handling:
// We need to wrap the invocation of of the user-provided function
// such that we take the return value (i.e. c10::intrusive_ptr<CurrClass>)
// and assign it to the `capsule` attribute.
using SetStateTraits =
c10::guts::infer_function_traits_t<std::decay_t<SetStateFn>>;
using SetStateArg = typename c10::guts::typelist::head_t<
typename SetStateTraits::parameter_types>;
auto setstate_wrapper = [set_state = std::move(set_state)](
c10::tagged_capsule<CurClass> self,
SetStateArg&& arg) {
c10::intrusive_ptr<CurClass> classObj =
at::guts::invoke(set_state, std::forward<SetStateArg>(arg));
auto object = self.ivalue.toObject();
object->setSlot(0, c10::IValue::make_capsule(classObj));
};
defineMethod(
"__setstate__",
detail::wrap_func<CurClass, decltype(setstate_wrapper)>(
std::move(setstate_wrapper)));
// type validation
auto getstate_schema = classTypePtr->getMethod("__getstate__").getSchema();
auto format_getstate_schema = [&getstate_schema]() {
std::stringstream ss;
ss << getstate_schema;
return ss.str();
};
TORCH_CHECK(
getstate_schema.arguments().size() == 1,
"__getstate__ should take exactly one argument: self. Got: ",
format_getstate_schema());
auto first_arg_type = getstate_schema.arguments().at(0).type();
TORCH_CHECK(
*first_arg_type == *classTypePtr,
"self argument of __getstate__ must be the custom class type. Got ",
first_arg_type->repr_str());
TORCH_CHECK(
getstate_schema.returns().size() == 1,
"__getstate__ should return exactly one value for serialization. Got: ",
format_getstate_schema());
auto ser_type = getstate_schema.returns().at(0).type();
auto setstate_schema = classTypePtr->getMethod("__setstate__").getSchema();
auto arg_type = setstate_schema.arguments().at(1).type();
TORCH_CHECK(
ser_type->isSubtypeOf(arg_type),
"__getstate__'s return type should be a subtype of "
"input argument of __setstate__. Got ",
ser_type->repr_str(),
" but expected ",
arg_type->repr_str());
return *this;
}
private:
template <typename Func>
void defineMethod(std::string name, Func func) {
auto qualMethodName = qualClassName + "." + name;
auto schema = c10::inferFunctionSchemaSingleReturn<Func>(std::move(name), "");
auto wrapped_func = [func = std::move(func)](jit::Stack& stack) mutable -> void {
// TODO: we need to figure out how to profile calls to custom functions
// like this! Currently can't do it because the profiler stuff is in
// libtorch and not ATen
using RetType =
typename c10::guts::infer_function_traits_t<Func>::return_type;
detail::BoxedProxy<RetType, Func>()(stack, func);
};
auto method = std::make_unique<jit::BuiltinOpFunction>(
qualMethodName, std::move(schema), std::move(wrapped_func));
// Register the method here to keep the Method alive.
// ClassTypes do not hold ownership of their methods (normally it
// those are held by the CompilationUnit), so we need a proxy for
// that behavior here.
classTypePtr->addMethod(method.get());
registerCustomClassMethod(std::move(method));
}
std::string qualClassName;
at::ClassTypePtr classTypePtr;
};
/// make_custom_class() is a convenient way to create an instance of a registered
/// custom class and wrap it in an IValue, for example when you want to pass the
/// object to TorchScript. Its syntax is equivalent to APIs like `std::make_shared<>`
/// or `c10::make_intrusive<>`.
///
/// For example, if you have a custom C++ class that can be constructed from an `int`
/// and `std::string`, you might use this API like so:
///
/// IValue custom_class_iv = torch::make_custom_class<MyClass>(3, "foobarbaz");
template <typename CurClass, typename... CtorArgs>
c10::IValue make_custom_class(CtorArgs&&... args) {
auto userClassInstance = c10::make_intrusive<CurClass>(std::forward<CtorArgs>(args)...);
return c10::IValue(std::move(userClassInstance));
}
// jit namespace for backward-compatibility
// We previously defined everything in torch::jit but moved it out to
// better reflect that these features are not limited only to TorchScript
namespace jit {
using ::torch::getCustomClass;
using ::torch::isCustomClass;
using ::torch::init;
using ::torch::class_;
} // namespace jit
template <class CurClass>
inline class_<CurClass> Library::class_(const std::string& className) {
TORCH_CHECK(kind_ == DEF || kind_ == FRAGMENT,
"class_(\"", className, "\"): Cannot define a class inside of a TORCH_LIBRARY_IMPL block. "
"All class_()s should be placed in the (unique) TORCH_LIBRARY block for their namespace. "
"(Error occurred at ", file_, ":", line_, ")");
TORCH_INTERNAL_ASSERT(ns_.has_value(), file_, ":", line_);
return torch::class_<CurClass>(*ns_, className);
}
}
|