File: gamma.py

package info (click to toggle)
pytorch 1.7.1-7
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 80,340 kB
  • sloc: cpp: 670,830; python: 343,991; ansic: 67,845; asm: 5,503; sh: 2,924; java: 2,888; xml: 266; makefile: 244; ruby: 148; yacc: 144; objc: 51; lex: 44
file content (82 lines) | stat: -rw-r--r-- 3,121 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
from numbers import Number

import torch
from torch.distributions import constraints
from torch.distributions.exp_family import ExponentialFamily
from torch.distributions.utils import broadcast_all


def _standard_gamma(concentration):
    return torch._standard_gamma(concentration)


class Gamma(ExponentialFamily):
    r"""
    Creates a Gamma distribution parameterized by shape :attr:`concentration` and :attr:`rate`.

    Example::

        >>> m = Gamma(torch.tensor([1.0]), torch.tensor([1.0]))
        >>> m.sample()  # Gamma distributed with concentration=1 and rate=1
        tensor([ 0.1046])

    Args:
        concentration (float or Tensor): shape parameter of the distribution
            (often referred to as alpha)
        rate (float or Tensor): rate = 1 / scale of the distribution
            (often referred to as beta)
    """
    arg_constraints = {'concentration': constraints.positive, 'rate': constraints.positive}
    support = constraints.positive
    has_rsample = True
    _mean_carrier_measure = 0

    @property
    def mean(self):
        return self.concentration / self.rate

    @property
    def variance(self):
        return self.concentration / self.rate.pow(2)

    def __init__(self, concentration, rate, validate_args=None):
        self.concentration, self.rate = broadcast_all(concentration, rate)
        if isinstance(concentration, Number) and isinstance(rate, Number):
            batch_shape = torch.Size()
        else:
            batch_shape = self.concentration.size()
        super(Gamma, self).__init__(batch_shape, validate_args=validate_args)

    def expand(self, batch_shape, _instance=None):
        new = self._get_checked_instance(Gamma, _instance)
        batch_shape = torch.Size(batch_shape)
        new.concentration = self.concentration.expand(batch_shape)
        new.rate = self.rate.expand(batch_shape)
        super(Gamma, new).__init__(batch_shape, validate_args=False)
        new._validate_args = self._validate_args
        return new

    def rsample(self, sample_shape=torch.Size()):
        shape = self._extended_shape(sample_shape)
        value = _standard_gamma(self.concentration.expand(shape)) / self.rate.expand(shape)
        value.detach().clamp_(min=torch.finfo(value.dtype).tiny)  # do not record in autograd graph
        return value

    def log_prob(self, value):
        value = torch.as_tensor(value, dtype=self.rate.dtype, device=self.rate.device)
        if self._validate_args:
            self._validate_sample(value)
        return (self.concentration * torch.log(self.rate) +
                (self.concentration - 1) * torch.log(value) -
                self.rate * value - torch.lgamma(self.concentration))

    def entropy(self):
        return (self.concentration - torch.log(self.rate) + torch.lgamma(self.concentration) +
                (1.0 - self.concentration) * torch.digamma(self.concentration))

    @property
    def _natural_params(self):
        return (self.concentration - 1, -self.rate)

    def _log_normalizer(self, x, y):
        return torch.lgamma(x + 1) + (x + 1) * torch.log(-y.reciprocal())