1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551
|
import sys
import torch
from torch._C import _add_docstr, _fft # type: ignore
Tensor = torch.Tensor
# Note: This not only adds the doc strings for the spectral ops, but
# connects the torch.fft Python namespace to the torch._C._fft builtins.
fft = _add_docstr(_fft.fft_fft, r"""
fft(input, n=None, dim=-1, norm=None) -> Tensor
Computes the one dimensional discrete Fourier transform of :attr:`input`.
Note:
The Fourier domain representation of any real signal satisfies the
Hermitian property: `X[i] = conj(X[-i])`. This function always returns both
the positive and negative frequency terms even though, for real inputs, the
negative frequencies are redundant. :func:`~torch.fft.rfft` returns the
more compact one-sided representation where only the positive frequencies
are returned.
Args:
input (Tensor): the input tensor
n (int, optional): Signal length. If given, the input will either be zero-padded
or trimmed to this length before computing the FFT.
dim (int, optional): The dimension along which to take the one dimensional FFT.
norm (str, optional): Normalization mode. For the forward transform
(:func:`~torch.fft.fft`), these correspond to:
* ``"forward"`` - normalize by ``1/n``
* ``"backward"`` - no normalization
* ``"ortho"`` - normalize by ``1/sqrt(n)`` (making the FFT orthonormal)
Calling the backward transform (:func:`~torch.fft.ifft`) with the same
normalization mode will apply an overall normalization of ``1/n`` between
the two transforms. This is required to make :func:`~torch.fft.ifft`
the exact inverse.
Default is ``"backward"`` (no normalization).
Example:
>>> import torch.fft
>>> t = torch.arange(4)
>>> t
tensor([0, 1, 2, 3])
>>> torch.fft.fft(t)
tensor([ 6.+0.j, -2.+2.j, -2.+0.j, -2.-2.j])
>>> t = tensor([0.+1.j, 2.+3.j, 4.+5.j, 6.+7.j])
>>> torch.fft.fft(t)
tensor([12.+16.j, -8.+0.j, -4.-4.j, 0.-8.j])
""")
ifft = _add_docstr(_fft.fft_ifft, r"""
ifft(input, n=None, dim=-1, norm=None) -> Tensor
Computes the one dimensional inverse discrete Fourier transform of :attr:`input`.
Args:
input (Tensor): the input tensor
n (int, optional): Signal length. If given, the input will either be zero-padded
or trimmed to this length before computing the IFFT.
dim (int, optional): The dimension along which to take the one dimensional IFFT.
norm (str, optional): Normalization mode. For the backward transform
(:func:`~torch.fft.ifft`), these correspond to:
* ``"forward"`` - no normalization
* ``"backward"`` - normalize by ``1/n``
* ``"ortho"`` - normalize by ``1/sqrt(n)`` (making the IFFT orthonormal)
Calling the forward transform (:func:`~torch.fft.fft`) with the same
normalization mode will apply an overall normalization of ``1/n`` between
the two transforms. This is required to make :func:`~torch.fft.ifft`
the exact inverse.
Default is ``"backward"`` (normalize by ``1/n``).
Example:
>>> import torch.fft
>>> t = torch.tensor([ 6.+0.j, -2.+2.j, -2.+0.j, -2.-2.j])
>>> torch.fft.ifft(t)
tensor([0.+0.j, 1.+0.j, 2.+0.j, 3.+0.j])
""")
fftn = _add_docstr(_fft.fft_fftn, r"""
fftn(input, s=None, dim=None, norm=None) -> Tensor
Computes the N dimensional discrete Fourier transform of :attr:`input`.
Note:
The Fourier domain representation of any real signal satisfies the
Hermitian property: ``X[i_1, ..., i_n] = conj(X[-i_1, ..., -i_n])``. This
function always returns all positive and negative frequency terms even
though, for real inputs, half of these values are redundant.
:func:`~torch.fft.rfftn` returns the more compact one-sided representation
where only the positive frequencies of the last dimension are returned.
Args:
input (Tensor): the input tensor
s (Tuple[int], optional): Signal size in the transformed dimensions.
If given, each dimension ``dim[i]`` will either be zero-padded or
trimmed to the length ``s[i]`` before computing the FFT.
If a length ``-1`` is specified, no padding is done in that dimension.
Default: ``s = [input.size(d) for d in dim]``
dim (Tuple[int], optional): Dimensions to be transformed.
Default: all dimensions, or the last ``len(s)`` dimensions if :attr:`s` is given.
norm (str, optional): Normalization mode. For the forward transform
(:func:`~torch.fft.fftn`), these correspond to:
* ``"forward"`` - normalize by ``1/n``
* ``"backward"`` - no normalization
* ``"ortho"`` - normalize by ``1/sqrt(n)`` (making the FFT orthonormal)
Where ``n = prod(s)`` is the logical FFT size.
Calling the backward transform (:func:`~torch.fft.ifftn`) with the same
normalization mode will apply an overall normalization of ``1/n``
between the two transforms. This is required to make
:func:`~torch.fft.ifftn` the exact inverse.
Default is ``"backward"`` (no normalization).
Example:
>>> import torch.fft
>>> x = torch.rand(10, 10, dtype=torch.complex64)
>>> fftn = torch.fft.fftn(t)
The discrete Fourier transform is separable, so :func:`~torch.fft.fftn`
here is equivalent to two one-dimensional :func:`~torch.fft.fft` calls:
>>> two_ffts = torch.fft.fft(torch.fft.fft(x, dim=0), dim=1)
>>> torch.allclose(fftn, two_ffts)
""")
ifftn = _add_docstr(_fft.fft_ifftn, r"""
ifftn(input, s=None, dim=None, norm=None) -> Tensor
Computes the N dimensional inverse discrete Fourier transform of :attr:`input`.
Args:
input (Tensor): the input tensor
s (Tuple[int], optional): Signal size in the transformed dimensions.
If given, each dimension ``dim[i]`` will either be zero-padded or
trimmed to the length ``s[i]`` before computing the IFFT.
If a length ``-1`` is specified, no padding is done in that dimension.
Default: ``s = [input.size(d) for d in dim]``
dim (Tuple[int], optional): Dimensions to be transformed.
Default: all dimensions, or the last ``len(s)`` dimensions if :attr:`s` is given.
norm (str, optional): Normalization mode. For the backward transform
(:func:`~torch.fft.ifftn`), these correspond to:
* ``"forward"`` - no normalization
* ``"backward"`` - normalize by ``1/n``
* ``"ortho"`` - normalize by ``1/sqrt(n)`` (making the IFFT orthonormal)
Where ``n = prod(s)`` is the logical IFFT size.
Calling the forward transform (:func:`~torch.fft.fftn`) with the same
normalization mode will apply an overall normalization of ``1/n`` between
the two transforms. This is required to make :func:`~torch.fft.ifftn`
the exact inverse.
Default is ``"backward"`` (normalize by ``1/n``).
Example:
>>> import torch.fft
>>> x = torch.rand(10, 10, dtype=torch.complex64)
>>> ifftn = torch.fft.ifftn(t)
The discrete Fourier transform is separable, so :func:`~torch.fft.ifftn`
here is equivalent to two one-dimensional :func:`~torch.fft.ifft` calls:
>>> two_iffts = torch.fft.ifft(torch.fft.ifft(x, dim=0), dim=1)
>>> torch.allclose(ifftn, two_iffts)
""")
rfft = _add_docstr(_fft.fft_rfft, r"""
rfft(input, n=None, dim=-1, norm=None) -> Tensor
Computes the one dimensional Fourier transform of real-valued :attr:`input`.
The FFT of a real signal is Hermitian-symmetric, ``X[i] = conj(X[-i])`` so
the output contains only the positive frequencies below the Nyquist frequency.
To compute the full output, use :func:`~torch.fft.fft`
Args:
input (Tensor): the real input tensor
n (int, optional): Signal length. If given, the input will either be zero-padded
or trimmed to this length before computing the real FFT.
dim (int, optional): The dimension along which to take the one dimensional real FFT.
norm (str, optional): Normalization mode. For the forward transform
(:func:`~torch.fft.rfft`), these correspond to:
* ``"forward"`` - normalize by ``1/n``
* ``"backward"`` - no normalization
* ``"ortho"`` - normalize by ``1/sqrt(n)`` (making the FFT orthonormal)
Calling the backward transform (:func:`~torch.fft.irfft`) with the same
normalization mode will apply an overall normalization of ``1/n`` between
the two transforms. This is required to make :func:`~torch.fft.irfft`
the exact inverse.
Default is ``"backward"`` (no normalization).
Example:
>>> import torch.fft
>>> t = torch.arange(4)
>>> t
tensor([0, 1, 2, 3])
>>> torch.fft.rfft(t)
tensor([ 6.+0.j, -2.+2.j, -2.+0.j])
Compare against the full output from :func:`~torch.fft.fft`:
>>> torch.fft.fft(t)
tensor([ 6.+0.j, -2.+2.j, -2.+0.j, -2.-2.j])
Notice that the symmetric element ``T[-1] == T[1].conj()`` is omitted.
At the Nyquist frequency ``T[-2] == T[2]`` is it's own symmetric pair,
and therefore must always be real-valued.
""")
irfft = _add_docstr(_fft.fft_irfft, r"""
irfft(input, n=None, dim=-1, norm=None) -> Tensor
Computes the inverse of :func:`~torch.fft.rfft`.
:attr:`input` is interpreted as a one-sided Hermitian signal in the Fourier
domain, as produced by :func:`~torch.fft.rfft`. By the Hermitian property, the
output will be real-valued.
Note:
Some input frequencies must be real-valued to satisfy the Hermitian
property. In these cases the imaginary component will be ignored.
For example, any imaginary component in the zero-frequency term cannot
be represented in a real output and so will always be ignored.
Note:
The correct interpretation of the Hermitian input depends on the length of
the original data, as given by :attr:`n`. This is because each input shape
could correspond to either an odd or even length signal. By default, the
signal is assumed to be even length and odd signals will not round-trip
properly. So, it is recommended to always pass the signal length :attr:`n`.
Args:
input (Tensor): the input tensor representing a half-Hermitian signal
n (int, optional): Output signal length. This determines the length of the
output signal. If given, the input will either be zero-padded or trimmed to this
length before computing the real IFFT.
Defaults to even output: ``n=2*(input.size(dim) - 1)``.
dim (int, optional): The dimension along which to take the one dimensional real IFFT.
norm (str, optional): Normalization mode. For the backward transform
(:func:`~torch.fft.irfft`), these correspond to:
* ``"forward"`` - no normalization
* ``"backward"`` - normalize by ``1/n``
* ``"ortho"`` - normalize by ``1/sqrt(n)`` (making the real IFFT orthonormal)
Calling the forward transform (:func:`~torch.fft.rfft`) with the same
normalization mode will apply an overall normalization of ``1/n`` between
the two transforms. This is required to make :func:`~torch.fft.irfft`
the exact inverse.
Default is ``"backward"`` (normalize by ``1/n``).
Example:
>>> import torch.fft
>>> t = torch.arange(5)
>>> t
tensor([0, 1, 2, 3, 4])
>>> T = torch.fft.rfft(t)
>>> T
tensor([10.0000+0.0000j, -2.5000+3.4410j, -2.5000+0.8123j])
Without specifying the output length to :func:`~torch.fft.irfft`, the output
will not round-trip properly because the input is odd-length:
>>> torch.fft.irfft(T)
tensor([0.6250, 1.4045, 3.1250, 4.8455])
So, it is recommended to always pass the signal length :attr:`n`:
>>> torch.fft.irfft(T, t.numel())
tensor([0.0000, 1.0000, 2.0000, 3.0000, 4.0000])
""")
rfftn = _add_docstr(_fft.fft_rfftn, r"""
rfftn(input, s=None, dim=None, norm=None) -> Tensor
Computes the N-dimensional discrete Fourier transform of real :attr:`input`.
The FFT of a real signal is Hermitian-symmetric,
``X[i_1, ..., i_n] = conj(X[-i_1, ..., -i_n])`` so the full
:func:`~torch.fft.fftn` output contains redundant information.
:func:`~torch.fft.rfftn` instead omits the negative frequencies in the
last dimension.
Args:
input (Tensor): the input tensor
s (Tuple[int], optional): Signal size in the transformed dimensions.
If given, each dimension ``dim[i]`` will either be zero-padded or
trimmed to the length ``s[i]`` before computing the real FFT.
If a length ``-1`` is specified, no padding is done in that dimension.
Default: ``s = [input.size(d) for d in dim]``
dim (Tuple[int], optional): Dimensions to be transformed.
Default: all dimensions, or the last ``len(s)`` dimensions if :attr:`s` is given.
norm (str, optional): Normalization mode. For the forward transform
(:func:`~torch.fft.rfftn`), these correspond to:
* ``"forward"`` - normalize by ``1/n``
* ``"backward"`` - no normalization
* ``"ortho"`` - normalize by ``1/sqrt(n)`` (making the real FFT orthonormal)
Where ``n = prod(s)`` is the logical FFT size.
Calling the backward transform (:func:`~torch.fft.irfftn`) with the same
normalization mode will apply an overall normalization of ``1/n`` between
the two transforms. This is required to make :func:`~torch.fft.irfftn`
the exact inverse.
Default is ``"backward"`` (no normalization).
Example:
>>> import torch.fft
>>> t = torch.rand(10, 10)
>>> rfftn = torch.fft.rfftn(t)
>>> rfftn.size()
torch.Size([10, 6])
Compared against the full output from :func:`~torch.fft.fftn`, we have all
elements up to the Nyquist frequency.
>>> fftn = torch.fft.fftn(t)
>>> torch.allclose(fftn[..., :6], rfftn)
True
The discrete Fourier transform is separable, so :func:`~torch.fft.rfftn`
here is equivalent to a combination of :func:`~torch.fft.fft` and
:func:`~torch.fft.rfft`:
>>> two_ffts = torch.fft.fft(torch.fft.rfft(x, dim=1), dim=0)
>>> torch.allclose(rfftn, two_ffts)
""")
irfftn = _add_docstr(_fft.fft_irfftn, r"""
irfftn(input, s=None, dim=None, norm=None) -> Tensor
Computes the inverse of :func:`~torch.fft.rfftn`.
:attr:`input` is interpreted as a one-sided Hermitian signal in the Fourier
domain, as produced by :func:`~torch.fft.rfftn`. By the Hermitian property, the
output will be real-valued.
Note:
Some input frequencies must be real-valued to satisfy the Hermitian
property. In these cases the imaginary component will be ignored.
For example, any imaginary component in the zero-frequency term cannot
be represented in a real output and so will always be ignored.
Note:
The correct interpretation of the Hermitian input depends on the length of
the original data, as given by :attr:`s`. This is because each input shape
could correspond to either an odd or even length signal. By default, the
signal is assumed to be even length and odd signals will not round-trip
properly. So, it is recommended to always pass the signal shape :attr:`s`.
Args:
input (Tensor): the input tensor
s (Tuple[int], optional): Signal size in the transformed dimensions.
If given, each dimension ``dim[i]`` will either be zero-padded or
trimmed to the length ``s[i]`` before computing the real FFT.
If a length ``-1`` is specified, no padding is done in that dimension.
Defaults to even output in the last dimension:
``s[-1] = 2*(input.size(dim[-1]) - 1)``.
dim (Tuple[int], optional): Dimensions to be transformed.
The last dimension must be the half-Hermitian compressed dimension.
Default: all dimensions, or the last ``len(s)`` dimensions if :attr:`s` is given.
norm (str, optional): Normalization mode. For the backward transform
(:func:`~torch.fft.irfftn`), these correspond to:
* ``"forward"`` - no normalization
* ``"backward"`` - normalize by ``1/n``
* ``"ortho"`` - normalize by ``1/sqrt(n)`` (making the real IFFT orthonormal)
Where ``n = prod(s)`` is the logical IFFT size.
Calling the forward transform (:func:`~torch.fft.rfftn`) with the same
normalization mode will apply an overall normalization of ``1/n`` between
the two transforms. This is required to make :func:`~torch.fft.irfftn`
the exact inverse.
Default is ``"backward"`` (normalize by ``1/n``).
Example:
>>> import torch.fft
>>> t = torch.rand(10, 9)
>>> T = torch.fft.rfftn(t)
Without specifying the output length to :func:`~torch.fft.irfft`, the output
will not round-trip properly because the input is odd-length in the last
dimension:
>>> torch.fft.irfftn(T).size()
torch.Size([10, 10])
So, it is recommended to always pass the signal shape :attr:`s`.
>>> roundtrip = torch.fft.irfftn(T, t.size())
>>> roundtrip.size()
torch.Size([10, 9])
>>> torch.allclose(roundtrip, t)
True
""")
hfft = _add_docstr(_fft.fft_hfft, r"""
hfft(input, n=None, dim=-1, norm=None) -> Tensor
Computes the one dimensional discrete Fourier transform of a Hermitian
symmetric :attr:`input` signal.
Note:
:func:`~torch.fft.hfft`/:func:`~torch.fft.ihfft` are analogous to
:func:`~torch.fft.rfft`/:func:`~torch.fft.irfft`. The real FFT expects
a real signal in the time-domain and gives a Hermitian symmetry in the
frequency-domain. The Hermitian FFT is the opposite; Hermitian symmetric in
the time-domain and real-valued in the frequency-domain. For this reason,
special care needs to be taken with the length argument :attr:`n`, in the
same way as with :func:`~torch.fft.irfft`.
Note:
Because the signal is Hermitian in the time-domain, the result will be
real in the frequency domain. Note that some input frequencies must be
real-valued to satisfy the Hermitian property. In these cases the imaginary
component will be ignored. For example, any imaginary component in
``input[0]`` would result in one or more complex frequency terms which
cannot be represented in a real output and so will always be ignored.
Note:
The correct interpretation of the Hermitian input depends on the length of
the original data, as given by :attr:`n`. This is because each input shape
could correspond to either an odd or even length signal. By default, the
signal is assumed to be even length and odd signals will not round-trip
properly. So, it is recommended to always pass the signal length :attr:`n`.
Args:
input (Tensor): the input tensor representing a half-Hermitian signal
n (int, optional): Output signal length. This determines the length of the
real output. If given, the input will either be zero-padded or trimmed to this
length before computing the Hermitian FFT.
Defaults to even output: ``n=2*(input.size(dim) - 1)``.
dim (int, optional): The dimension along which to take the one dimensional Hermitian FFT.
norm (str, optional): Normalization mode. For the forward transform
(:func:`~torch.fft.hfft`), these correspond to:
* ``"forward"`` - normalize by ``1/n``
* ``"backward"`` - no normalization
* ``"ortho"`` - normalize by ``1/sqrt(n)`` (making the Hermitian FFT orthonormal)
Calling the backward transform (:func:`~torch.fft.ihfft`) with the same
normalization mode will apply an overall normalization of ``1/n`` between
the two transforms. This is required to make :func:`~torch.fft.ihfft`
the exact inverse.
Default is ``"backward"`` (no normalization).
Example:
Taking a real-valued frequency signal and bringing it into the time domain
gives Hermitian symmetric output:
>>> import torch.fft
>>> t = torch.arange(5)
>>> t
tensor([0, 1, 2, 3, 4])
>>> T = torch.fft.ifft(t)
>>> T
tensor([ 2.0000+-0.0000j, -0.5000-0.6882j, -0.5000-0.1625j, -0.5000+0.1625j,
-0.5000+0.6882j])
Note that ``T[1] == T[-1].conj()`` and ``T[2] == T[-2].conj()`` is
redundant. We can thus compute the forward transform without considering
negative frequencies:
>>> torch.fft.hfft(T[:3], n=5)
tensor([0., 1., 2., 3., 4.])
Like with :func:`~torch.fft.irfft`, the output length must be given in order
to recover an even length output:
>>> torch.fft.hfft(T[:3])
tensor([0.5000, 1.1236, 2.5000, 3.8764])
""")
ihfft = _add_docstr(_fft.fft_ihfft, r"""
ihfft(input, n=None, dim=-1, norm=None) -> Tensor
Computes the inverse of :func:`~torch.fft.hfft`.
:attr:`input` must be a real-valued signal, interpreted in the Fourier domain.
The IFFT of a real signal is Hermitian-symmetric, ``X[i] = conj(X[-i])``.
:func:`~torch.fft.ihfft` represents this in the one-sided form where only the
positive frequencies below the Nyquist frequency are included. To compute the
full output, use :func:`~torch.fft.ifft`.
Args:
input (Tensor): the real input tensor
n (int, optional): Signal length. If given, the input will either be zero-padded
or trimmed to this length before computing the Hermitian IFFT.
dim (int, optional): The dimension along which to take the one dimensional Hermitian IFFT.
norm (str, optional): Normalization mode. For the backward transform
(:func:`~torch.fft.ihfft`), these correspond to:
* ``"forward"`` - no normalization
* ``"backward"`` - normalize by ``1/n``
* ``"ortho"`` - normalize by ``1/sqrt(n)`` (making the IFFT orthonormal)
Calling the forward transform (:func:`~torch.fft.hfft`) with the same
normalization mode will apply an overall normalization of ``1/n`` between
the two transforms. This is required to make :func:`~torch.fft.ihfft`
the exact inverse.
Default is ``"backward"`` (normalize by ``1/n``).
Example:
>>> import torch.fft
>>> t = torch.arange(5)
>>> t
tensor([0, 1, 2, 3, 4])
>>> torch.fft.ihfft(t)
tensor([ 2.0000+-0.0000j, -0.5000-0.6882j, -0.5000-0.1625j])
Compare against the full output from :func:`~torch.fft.ifft`:
>>> torch.fft.ifft(t)
tensor([ 2.0000+-0.0000j, -0.5000-0.6882j, -0.5000-0.1625j, -0.5000+0.1625j,
-0.5000+0.6882j])
""")
|