File: __init__.py

package info (click to toggle)
pytorch 1.7.1-7
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 80,340 kB
  • sloc: cpp: 670,830; python: 343,991; ansic: 67,845; asm: 5,503; sh: 2,924; java: 2,888; xml: 266; makefile: 244; ruby: 148; yacc: 144; objc: 51; lex: 44
file content (551 lines) | stat: -rw-r--r-- 22,309 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
import sys

import torch
from torch._C import _add_docstr, _fft  # type: ignore

Tensor = torch.Tensor

# Note: This not only adds the doc strings for the spectral ops, but
# connects the torch.fft Python namespace to the torch._C._fft builtins.

fft = _add_docstr(_fft.fft_fft, r"""
fft(input, n=None, dim=-1, norm=None) -> Tensor

Computes the one dimensional discrete Fourier transform of :attr:`input`.

Note:

    The Fourier domain representation of any real signal satisfies the
    Hermitian property: `X[i] = conj(X[-i])`. This function always returns both
    the positive and negative frequency terms even though, for real inputs, the
    negative frequencies are redundant. :func:`~torch.fft.rfft` returns the
    more compact one-sided representation where only the positive frequencies
    are returned.

Args:
    input (Tensor): the input tensor
    n (int, optional): Signal length. If given, the input will either be zero-padded
        or trimmed to this length before computing the FFT.
    dim (int, optional): The dimension along which to take the one dimensional FFT.
    norm (str, optional): Normalization mode. For the forward transform
        (:func:`~torch.fft.fft`), these correspond to:

        * ``"forward"`` - normalize by ``1/n``
        * ``"backward"`` - no normalization
        * ``"ortho"`` - normalize by ``1/sqrt(n)`` (making the FFT orthonormal)

        Calling the backward transform (:func:`~torch.fft.ifft`) with the same
        normalization mode will apply an overall normalization of ``1/n`` between
        the two transforms. This is required to make :func:`~torch.fft.ifft`
        the exact inverse.

        Default is ``"backward"`` (no normalization).

Example:

    >>> import torch.fft
    >>> t = torch.arange(4)
    >>> t
    tensor([0, 1, 2, 3])
    >>> torch.fft.fft(t)
    tensor([ 6.+0.j, -2.+2.j, -2.+0.j, -2.-2.j])

    >>> t = tensor([0.+1.j, 2.+3.j, 4.+5.j, 6.+7.j])
    >>> torch.fft.fft(t)
    tensor([12.+16.j, -8.+0.j, -4.-4.j,  0.-8.j])
""")

ifft = _add_docstr(_fft.fft_ifft, r"""
ifft(input, n=None, dim=-1, norm=None) -> Tensor

Computes the one dimensional inverse discrete Fourier transform of :attr:`input`.

Args:
    input (Tensor): the input tensor
    n (int, optional): Signal length. If given, the input will either be zero-padded
        or trimmed to this length before computing the IFFT.
    dim (int, optional): The dimension along which to take the one dimensional IFFT.
    norm (str, optional): Normalization mode. For the backward transform
        (:func:`~torch.fft.ifft`), these correspond to:

        * ``"forward"`` - no normalization
        * ``"backward"`` - normalize by ``1/n``
        * ``"ortho"`` - normalize by ``1/sqrt(n)`` (making the IFFT orthonormal)

        Calling the forward transform (:func:`~torch.fft.fft`) with the same
        normalization mode will apply an overall normalization of ``1/n`` between
        the two transforms. This is required to make :func:`~torch.fft.ifft`
        the exact inverse.

        Default is ``"backward"`` (normalize by ``1/n``).

Example:

    >>> import torch.fft
    >>> t = torch.tensor([ 6.+0.j, -2.+2.j, -2.+0.j, -2.-2.j])
    >>> torch.fft.ifft(t)
    tensor([0.+0.j, 1.+0.j, 2.+0.j, 3.+0.j])
""")

fftn = _add_docstr(_fft.fft_fftn, r"""
fftn(input, s=None, dim=None, norm=None) -> Tensor

Computes the N dimensional discrete Fourier transform of :attr:`input`.

Note:

    The Fourier domain representation of any real signal satisfies the
    Hermitian property: ``X[i_1, ..., i_n] = conj(X[-i_1, ..., -i_n])``. This
    function always returns all positive and negative frequency terms even
    though, for real inputs, half of these values are redundant.
    :func:`~torch.fft.rfftn` returns the more compact one-sided representation
    where only the positive frequencies of the last dimension are returned.

Args:
    input (Tensor): the input tensor
    s (Tuple[int], optional): Signal size in the transformed dimensions.
        If given, each dimension ``dim[i]`` will either be zero-padded or
        trimmed to the length ``s[i]`` before computing the FFT.
        If a length ``-1`` is specified, no padding is done in that dimension.
        Default: ``s = [input.size(d) for d in dim]``
    dim (Tuple[int], optional): Dimensions to be transformed.
        Default: all dimensions, or the last ``len(s)`` dimensions if :attr:`s` is given.
    norm (str, optional): Normalization mode. For the forward transform
        (:func:`~torch.fft.fftn`), these correspond to:

        * ``"forward"`` - normalize by ``1/n``
        * ``"backward"`` - no normalization
        * ``"ortho"`` - normalize by ``1/sqrt(n)`` (making the FFT orthonormal)

        Where ``n = prod(s)`` is the logical FFT size.
        Calling the backward transform (:func:`~torch.fft.ifftn`) with the same
        normalization mode will apply an overall normalization of ``1/n``
        between the two transforms. This is required to make
        :func:`~torch.fft.ifftn` the exact inverse.

        Default is ``"backward"`` (no normalization).

Example:

    >>> import torch.fft
    >>> x = torch.rand(10, 10, dtype=torch.complex64)
    >>> fftn = torch.fft.fftn(t)

    The discrete Fourier transform is separable, so :func:`~torch.fft.fftn`
    here is equivalent to two one-dimensional :func:`~torch.fft.fft` calls:

    >>> two_ffts = torch.fft.fft(torch.fft.fft(x, dim=0), dim=1)
    >>> torch.allclose(fftn, two_ffts)

""")

ifftn = _add_docstr(_fft.fft_ifftn, r"""
ifftn(input, s=None, dim=None, norm=None) -> Tensor

Computes the N dimensional inverse discrete Fourier transform of :attr:`input`.

Args:
    input (Tensor): the input tensor
    s (Tuple[int], optional): Signal size in the transformed dimensions.
        If given, each dimension ``dim[i]`` will either be zero-padded or
        trimmed to the length ``s[i]`` before computing the IFFT.
        If a length ``-1`` is specified, no padding is done in that dimension.
        Default: ``s = [input.size(d) for d in dim]``
    dim (Tuple[int], optional): Dimensions to be transformed.
        Default: all dimensions, or the last ``len(s)`` dimensions if :attr:`s` is given.
    norm (str, optional): Normalization mode. For the backward transform
        (:func:`~torch.fft.ifftn`), these correspond to:

        * ``"forward"`` - no normalization
        * ``"backward"`` - normalize by ``1/n``
        * ``"ortho"`` - normalize by ``1/sqrt(n)`` (making the IFFT orthonormal)

        Where ``n = prod(s)`` is the logical IFFT size.
        Calling the forward transform (:func:`~torch.fft.fftn`) with the same
        normalization mode will apply an overall normalization of ``1/n`` between
        the two transforms. This is required to make :func:`~torch.fft.ifftn`
        the exact inverse.

        Default is ``"backward"`` (normalize by ``1/n``).

Example:

    >>> import torch.fft
    >>> x = torch.rand(10, 10, dtype=torch.complex64)
    >>> ifftn = torch.fft.ifftn(t)

    The discrete Fourier transform is separable, so :func:`~torch.fft.ifftn`
    here is equivalent to two one-dimensional :func:`~torch.fft.ifft` calls:

    >>> two_iffts = torch.fft.ifft(torch.fft.ifft(x, dim=0), dim=1)
    >>> torch.allclose(ifftn, two_iffts)

""")

rfft = _add_docstr(_fft.fft_rfft, r"""
rfft(input, n=None, dim=-1, norm=None) -> Tensor

Computes the one dimensional Fourier transform of real-valued :attr:`input`.

The FFT of a real signal is Hermitian-symmetric, ``X[i] = conj(X[-i])`` so
the output contains only the positive frequencies below the Nyquist frequency.
To compute the full output, use :func:`~torch.fft.fft`

Args:
    input (Tensor): the real input tensor
    n (int, optional): Signal length. If given, the input will either be zero-padded
        or trimmed to this length before computing the real FFT.
    dim (int, optional): The dimension along which to take the one dimensional real FFT.
    norm (str, optional): Normalization mode. For the forward transform
        (:func:`~torch.fft.rfft`), these correspond to:

        * ``"forward"`` - normalize by ``1/n``
        * ``"backward"`` - no normalization
        * ``"ortho"`` - normalize by ``1/sqrt(n)`` (making the FFT orthonormal)

        Calling the backward transform (:func:`~torch.fft.irfft`) with the same
        normalization mode will apply an overall normalization of ``1/n`` between
        the two transforms. This is required to make :func:`~torch.fft.irfft`
        the exact inverse.

        Default is ``"backward"`` (no normalization).

Example:

    >>> import torch.fft
    >>> t = torch.arange(4)
    >>> t
    tensor([0, 1, 2, 3])
    >>> torch.fft.rfft(t)
    tensor([ 6.+0.j, -2.+2.j, -2.+0.j])

    Compare against the full output from :func:`~torch.fft.fft`:

    >>> torch.fft.fft(t)
    tensor([ 6.+0.j, -2.+2.j, -2.+0.j, -2.-2.j])

    Notice that the symmetric element ``T[-1] == T[1].conj()`` is omitted.
    At the Nyquist frequency ``T[-2] == T[2]`` is it's own symmetric pair,
    and therefore must always be real-valued.
""")

irfft = _add_docstr(_fft.fft_irfft, r"""
irfft(input, n=None, dim=-1, norm=None) -> Tensor

Computes the inverse of :func:`~torch.fft.rfft`.

:attr:`input` is interpreted as a one-sided Hermitian signal in the Fourier
domain, as produced by :func:`~torch.fft.rfft`. By the Hermitian property, the
output will be real-valued.

Note:
    Some input frequencies must be real-valued to satisfy the Hermitian
    property. In these cases the imaginary component will be ignored.
    For example, any imaginary component in the zero-frequency term cannot
    be represented in a real output and so will always be ignored.

Note:
    The correct interpretation of the Hermitian input depends on the length of
    the original data, as given by :attr:`n`. This is because each input shape
    could correspond to either an odd or even length signal. By default, the
    signal is assumed to be even length and odd signals will not round-trip
    properly. So, it is recommended to always pass the signal length :attr:`n`.

Args:
    input (Tensor): the input tensor representing a half-Hermitian signal
    n (int, optional): Output signal length. This determines the length of the
        output signal. If given, the input will either be zero-padded or trimmed to this
        length before computing the real IFFT.
        Defaults to even output: ``n=2*(input.size(dim) - 1)``.
    dim (int, optional): The dimension along which to take the one dimensional real IFFT.
    norm (str, optional): Normalization mode. For the backward transform
        (:func:`~torch.fft.irfft`), these correspond to:

        * ``"forward"`` - no normalization
        * ``"backward"`` - normalize by ``1/n``
        * ``"ortho"`` - normalize by ``1/sqrt(n)`` (making the real IFFT orthonormal)

        Calling the forward transform (:func:`~torch.fft.rfft`) with the same
        normalization mode will apply an overall normalization of ``1/n`` between
        the two transforms. This is required to make :func:`~torch.fft.irfft`
        the exact inverse.

        Default is ``"backward"`` (normalize by ``1/n``).

Example:

    >>> import torch.fft
    >>> t = torch.arange(5)
    >>> t
    tensor([0, 1, 2, 3, 4])
    >>> T = torch.fft.rfft(t)
    >>> T
    tensor([10.0000+0.0000j, -2.5000+3.4410j, -2.5000+0.8123j])

    Without specifying the output length to :func:`~torch.fft.irfft`, the output
    will not round-trip properly because the input is odd-length:

    >>> torch.fft.irfft(T)
    tensor([0.6250, 1.4045, 3.1250, 4.8455])

    So, it is recommended to always pass the signal length :attr:`n`:

    >>> torch.fft.irfft(T, t.numel())
    tensor([0.0000, 1.0000, 2.0000, 3.0000, 4.0000])
""")

rfftn = _add_docstr(_fft.fft_rfftn, r"""
rfftn(input, s=None, dim=None, norm=None) -> Tensor

Computes the N-dimensional discrete Fourier transform of real :attr:`input`.

The FFT of a real signal is Hermitian-symmetric,
``X[i_1, ..., i_n] = conj(X[-i_1, ..., -i_n])`` so the full
:func:`~torch.fft.fftn` output contains redundant information.
:func:`~torch.fft.rfftn` instead omits the negative frequencies in the
last dimension.

Args:
    input (Tensor): the input tensor
    s (Tuple[int], optional): Signal size in the transformed dimensions.
        If given, each dimension ``dim[i]`` will either be zero-padded or
        trimmed to the length ``s[i]`` before computing the real FFT.
        If a length ``-1`` is specified, no padding is done in that dimension.
        Default: ``s = [input.size(d) for d in dim]``
    dim (Tuple[int], optional): Dimensions to be transformed.
        Default: all dimensions, or the last ``len(s)`` dimensions if :attr:`s` is given.
    norm (str, optional): Normalization mode. For the forward transform
        (:func:`~torch.fft.rfftn`), these correspond to:

        * ``"forward"`` - normalize by ``1/n``
        * ``"backward"`` - no normalization
        * ``"ortho"`` - normalize by ``1/sqrt(n)`` (making the real FFT orthonormal)

        Where ``n = prod(s)`` is the logical FFT size.
        Calling the backward transform (:func:`~torch.fft.irfftn`) with the same
        normalization mode will apply an overall normalization of ``1/n`` between
        the two transforms. This is required to make :func:`~torch.fft.irfftn`
        the exact inverse.

        Default is ``"backward"`` (no normalization).

Example:

    >>> import torch.fft
    >>> t = torch.rand(10, 10)
    >>> rfftn = torch.fft.rfftn(t)
    >>> rfftn.size()
    torch.Size([10, 6])

    Compared against the full output from :func:`~torch.fft.fftn`, we have all
    elements up to the Nyquist frequency.

    >>> fftn = torch.fft.fftn(t)
    >>> torch.allclose(fftn[..., :6], rfftn)
    True

    The discrete Fourier transform is separable, so :func:`~torch.fft.rfftn`
    here is equivalent to a combination of :func:`~torch.fft.fft` and
    :func:`~torch.fft.rfft`:

    >>> two_ffts = torch.fft.fft(torch.fft.rfft(x, dim=1), dim=0)
    >>> torch.allclose(rfftn, two_ffts)

""")

irfftn = _add_docstr(_fft.fft_irfftn, r"""
irfftn(input, s=None, dim=None, norm=None) -> Tensor

Computes the inverse of :func:`~torch.fft.rfftn`.

:attr:`input` is interpreted as a one-sided Hermitian signal in the Fourier
domain, as produced by :func:`~torch.fft.rfftn`. By the Hermitian property, the
output will be real-valued.

Note:
    Some input frequencies must be real-valued to satisfy the Hermitian
    property. In these cases the imaginary component will be ignored.
    For example, any imaginary component in the zero-frequency term cannot
    be represented in a real output and so will always be ignored.

Note:
    The correct interpretation of the Hermitian input depends on the length of
    the original data, as given by :attr:`s`. This is because each input shape
    could correspond to either an odd or even length signal. By default, the
    signal is assumed to be even length and odd signals will not round-trip
    properly. So, it is recommended to always pass the signal shape :attr:`s`.

Args:
    input (Tensor): the input tensor
    s (Tuple[int], optional): Signal size in the transformed dimensions.
        If given, each dimension ``dim[i]`` will either be zero-padded or
        trimmed to the length ``s[i]`` before computing the real FFT.
        If a length ``-1`` is specified, no padding is done in that dimension.
        Defaults to even output in the last dimension:
        ``s[-1] = 2*(input.size(dim[-1]) - 1)``.
    dim (Tuple[int], optional): Dimensions to be transformed.
        The last dimension must be the half-Hermitian compressed dimension.
        Default: all dimensions, or the last ``len(s)`` dimensions if :attr:`s` is given.
    norm (str, optional): Normalization mode. For the backward transform
        (:func:`~torch.fft.irfftn`), these correspond to:

        * ``"forward"`` - no normalization
        * ``"backward"`` - normalize by ``1/n``
        * ``"ortho"`` - normalize by ``1/sqrt(n)`` (making the real IFFT orthonormal)

        Where ``n = prod(s)`` is the logical IFFT size.
        Calling the forward transform (:func:`~torch.fft.rfftn`) with the same
        normalization mode will apply an overall normalization of ``1/n`` between
        the two transforms. This is required to make :func:`~torch.fft.irfftn`
        the exact inverse.

        Default is ``"backward"`` (normalize by ``1/n``).

Example:

    >>> import torch.fft
    >>> t = torch.rand(10, 9)
    >>> T = torch.fft.rfftn(t)

    Without specifying the output length to :func:`~torch.fft.irfft`, the output
    will not round-trip properly because the input is odd-length in the last
    dimension:

    >>> torch.fft.irfftn(T).size()
    torch.Size([10, 10])

    So, it is recommended to always pass the signal shape :attr:`s`.

    >>> roundtrip = torch.fft.irfftn(T, t.size())
    >>> roundtrip.size()
    torch.Size([10, 9])
    >>> torch.allclose(roundtrip, t)
    True

""")

hfft = _add_docstr(_fft.fft_hfft, r"""
hfft(input, n=None, dim=-1, norm=None) -> Tensor

Computes the one dimensional discrete Fourier transform of a Hermitian
symmetric :attr:`input` signal.

Note:

    :func:`~torch.fft.hfft`/:func:`~torch.fft.ihfft` are analogous to
    :func:`~torch.fft.rfft`/:func:`~torch.fft.irfft`. The real FFT expects
    a real signal in the time-domain and gives a Hermitian symmetry in the
    frequency-domain. The Hermitian FFT is the opposite; Hermitian symmetric in
    the time-domain and real-valued in the frequency-domain. For this reason,
    special care needs to be taken with the length argument :attr:`n`, in the
    same way as with :func:`~torch.fft.irfft`.

Note:
    Because the signal is Hermitian in the time-domain, the result will be
    real in the frequency domain. Note that some input frequencies must be
    real-valued to satisfy the Hermitian property. In these cases the imaginary
    component will be ignored. For example, any imaginary component in
    ``input[0]`` would result in one or more complex frequency terms which
    cannot be represented in a real output and so will always be ignored.

Note:
    The correct interpretation of the Hermitian input depends on the length of
    the original data, as given by :attr:`n`. This is because each input shape
    could correspond to either an odd or even length signal. By default, the
    signal is assumed to be even length and odd signals will not round-trip
    properly. So, it is recommended to always pass the signal length :attr:`n`.

Args:
    input (Tensor): the input tensor representing a half-Hermitian signal
    n (int, optional): Output signal length. This determines the length of the
        real output. If given, the input will either be zero-padded or trimmed to this
        length before computing the Hermitian FFT.
        Defaults to even output: ``n=2*(input.size(dim) - 1)``.
    dim (int, optional): The dimension along which to take the one dimensional Hermitian FFT.
    norm (str, optional): Normalization mode. For the forward transform
        (:func:`~torch.fft.hfft`), these correspond to:

        * ``"forward"`` - normalize by ``1/n``
        * ``"backward"`` - no normalization
        * ``"ortho"`` - normalize by ``1/sqrt(n)`` (making the Hermitian FFT orthonormal)

        Calling the backward transform (:func:`~torch.fft.ihfft`) with the same
        normalization mode will apply an overall normalization of ``1/n`` between
        the two transforms. This is required to make :func:`~torch.fft.ihfft`
        the exact inverse.

        Default is ``"backward"`` (no normalization).

Example:

    Taking a real-valued frequency signal and bringing it into the time domain
    gives Hermitian symmetric output:

    >>> import torch.fft
    >>> t = torch.arange(5)
    >>> t
    tensor([0, 1, 2, 3, 4])
    >>> T = torch.fft.ifft(t)
    >>> T
    tensor([ 2.0000+-0.0000j, -0.5000-0.6882j, -0.5000-0.1625j, -0.5000+0.1625j,
            -0.5000+0.6882j])

    Note that ``T[1] == T[-1].conj()`` and ``T[2] == T[-2].conj()`` is
    redundant. We can thus compute the forward transform without considering
    negative frequencies:

    >>> torch.fft.hfft(T[:3], n=5)
    tensor([0., 1., 2., 3., 4.])

    Like with :func:`~torch.fft.irfft`, the output length must be given in order
    to recover an even length output:

    >>> torch.fft.hfft(T[:3])
    tensor([0.5000, 1.1236, 2.5000, 3.8764])
""")

ihfft = _add_docstr(_fft.fft_ihfft, r"""
ihfft(input, n=None, dim=-1, norm=None) -> Tensor

Computes the inverse of :func:`~torch.fft.hfft`.

:attr:`input` must be a real-valued signal, interpreted in the Fourier domain.
The IFFT of a real signal is Hermitian-symmetric, ``X[i] = conj(X[-i])``.
:func:`~torch.fft.ihfft` represents this in the one-sided form where only the
positive frequencies below the Nyquist frequency are included. To compute the
full output, use :func:`~torch.fft.ifft`.

Args:
    input (Tensor): the real input tensor
    n (int, optional): Signal length. If given, the input will either be zero-padded
        or trimmed to this length before computing the Hermitian IFFT.
    dim (int, optional): The dimension along which to take the one dimensional Hermitian IFFT.
    norm (str, optional): Normalization mode. For the backward transform
        (:func:`~torch.fft.ihfft`), these correspond to:

        * ``"forward"`` - no normalization
        * ``"backward"`` - normalize by ``1/n``
        * ``"ortho"`` - normalize by ``1/sqrt(n)`` (making the IFFT orthonormal)

        Calling the forward transform (:func:`~torch.fft.hfft`) with the same
        normalization mode will apply an overall normalization of ``1/n`` between
        the two transforms. This is required to make :func:`~torch.fft.ihfft`
        the exact inverse.

        Default is ``"backward"`` (normalize by ``1/n``).

Example:

    >>> import torch.fft
    >>> t = torch.arange(5)
    >>> t
    tensor([0, 1, 2, 3, 4])
    >>> torch.fft.ihfft(t)
    tensor([ 2.0000+-0.0000j, -0.5000-0.6882j, -0.5000-0.1625j])

    Compare against the full output from :func:`~torch.fft.ifft`:

    >>> torch.fft.ifft(t)
    tensor([ 2.0000+-0.0000j, -0.5000-0.6882j, -0.5000-0.1625j, -0.5000+0.1625j,
        -0.5000+0.6882j])
""")