File: __init__.py

package info (click to toggle)
pytorch 1.7.1-7
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 80,340 kB
  • sloc: cpp: 670,830; python: 343,991; ansic: 67,845; asm: 5,503; sh: 2,924; java: 2,888; xml: 266; makefile: 244; ruby: 148; yacc: 144; objc: 51; lex: 44
file content (142 lines) | stat: -rw-r--r-- 5,053 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import sys

import torch
from torch._C import _add_docstr, _linalg  # type: ignore

Tensor = torch.Tensor

# Note: This not only adds doc strings for functions in the linalg namespace, but
# also connects the torch.linalg Python namespace to the torch._C._linalg builtins.

det = _add_docstr(_linalg.linalg_det, r"""
linalg.det(input) -> Tensor

Alias of :func:`torch.det`.
""")

norm = _add_docstr(_linalg.linalg_norm, r"""
linalg.norm(input, ord=None, dim=None, keepdim=False, *, out=None, dtype=None) -> Tensor

Returns the matrix norm or vector norm of a given tensor.

This function can calculate one of eight different types of matrix norms, or one
of an infinite number of vector norms, depending on both the number of reduction
dimensions and the value of the `ord` parameter.

Args:
    input (Tensor): The input tensor. If dim is None, x must be 1-D or 2-D, unless :attr:`ord`
        is None. If both :attr:`dim` and :attr:`ord` are None, the 2-norm of the input flattened to 1-D
        will be returned.

    ord (int, float, inf, -inf, 'fro', 'nuc', optional): The order of norm.
        inf refers to :attr:`float('inf')`, numpy's :attr:`inf` object, or any equivalent object.
        The following norms can be calculated:

        =====  ============================  ==========================
        ord    norm for matrices             norm for vectors
        =====  ============================  ==========================
        None   Frobenius norm                2-norm
        'fro'  Frobenius norm                -- not supported --
        'nuc'  nuclear norm                  -- not supported --
        inf    max(sum(abs(x), dim=1))       max(abs(x))
        -inf   min(sum(abs(x), dim=1))       min(abs(x))
        0      -- not supported --           sum(x != 0)
        1      max(sum(abs(x), dim=0))       as below
        -1     min(sum(abs(x), dim=0))       as below
        2      2-norm (largest sing. value)  as below
        -2     smallest singular value       as below
        other  -- not supported --           sum(abs(x)**ord)**(1./ord)
        =====  ============================  ==========================

        Default: ``None``

    dim (int, 2-tuple of ints, 2-list of ints, optional): If :attr:`dim` is an int,
        vector norm will be calculated over the specified dimension. If :attr:`dim`
        is a 2-tuple of ints, matrix norm will be calculated over the specified
        dimensions. If :attr:`dim` is None, matrix norm will be calculated
        when the input tensor has two dimensions, and vector norm will be
        calculated when the input tensor has one dimension. Default: ``None``

    keepdim (bool, optional): If set to True, the reduced dimensions are retained
        in the result as dimensions with size one. Default: ``False``

Keyword args:

    out (Tensor, optional): The output tensor. Ignored if ``None``. Default: ``None``

    dtype (:class:`torch.dtype`, optional): If specified, the input tensor is cast to
        :attr:`dtype` before performing the operation, and the returned tensor's type
        will be :attr:`dtype`. If this argument is used in conjunction with the
        :attr:`out` argument, the output tensor's type must match this argument or a
        RuntimeError will be raised. This argument is not currently supported for
        :attr:`ord='nuc'` or :attr:`ord='fro'`. Default: ``None``

Examples::

    >>> import torch
    >>> from torch import linalg as LA
    >>> a = torch.arange(9, dtype=torch.float) - 4
    >>> a
    tensor([-4., -3., -2., -1.,  0.,  1.,  2.,  3.,  4.])
    >>> b = a.reshape((3, 3))
    >>> b
    tensor([[-4., -3., -2.],
            [-1.,  0.,  1.],
            [ 2.,  3.,  4.]])

    >>> LA.norm(a)
    tensor(7.7460)
    >>> LA.norm(b)
    tensor(7.7460)
    >>> LA.norm(b, 'fro')
    tensor(7.7460)
    >>> LA.norm(a, float('inf'))
    tensor(4.)
    >>> LA.norm(b, float('inf'))
    tensor(9.)
    >>> LA.norm(a, -float('inf'))
    tensor(0.)
    >>> LA.norm(b, -float('inf'))
    tensor(2.)

    >>> LA.norm(a, 1)
    tensor(20.)
    >>> LA.norm(b, 1)
    tensor(7.)
    >>> LA.norm(a, -1)
    tensor(0.)
    >>> LA.norm(b, -1)
    tensor(6.)
    >>> LA.norm(a, 2)
    tensor(7.7460)
    >>> LA.norm(b, 2)
    tensor(7.3485)

    >>> LA.norm(a, -2)
    tensor(0.)
    >>> LA.norm(b.double(), -2)
    tensor(1.8570e-16, dtype=torch.float64)
    >>> LA.norm(a, 3)
    tensor(5.8480)
    >>> LA.norm(a, -3)
    tensor(0.)

Using the :attr:`dim` argument to compute vector norms::

    >>> c = torch.tensor([[1., 2., 3.],
    ...                   [-1, 1, 4]])
    >>> LA.norm(c, dim=0)
    tensor([1.4142, 2.2361, 5.0000])
    >>> LA.norm(c, dim=1)
    tensor([3.7417, 4.2426])
    >>> LA.norm(c, ord=1, dim=1)
    tensor([6., 6.])

Using the :attr:`dim` argument to compute matrix norms::

    >>> m = torch.arange(8, dtype=torch.float).reshape(2, 2, 2)
    >>> LA.norm(m, dim=(1,2))
    tensor([ 3.7417, 11.2250])
    >>> LA.norm(m[0, :, :]), LA.norm(m[1, :, :])
    (tensor(3.7417), tensor(11.2250))
""")