1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326
|
r"""Functional interface"""
import warnings
import math
import torch
from torch._C import _infer_size, _add_docstr
from . import _reduction as _Reduction
from .modules import utils
from .modules.utils import _single, _pair, _triple, _list_with_default
from . import grad # noqa: F401
from torch import _VF
from .._jit_internal import boolean_dispatch, List, Optional, _overload, Tuple
from ..overrides import has_torch_function, handle_torch_function
Tensor = torch.Tensor
conv1d = _add_docstr(torch.conv1d, r"""
conv1d(input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1) -> Tensor
Applies a 1D convolution over an input signal composed of several input
planes.
This operator supports :ref:`TensorFloat32<tf32_on_ampere>`.
See :class:`~torch.nn.Conv1d` for details and output shape.
Note:
In some circumstances when using the CUDA backend with CuDNN, this operator
may select a nondeterministic algorithm to increase performance. If this is
undesirable, you can try to make the operation deterministic (potentially at
a performance cost) by setting ``torch.backends.cudnn.deterministic =
True``.
Please see the notes on :doc:`/notes/randomness` for background.
Args:
input: input tensor of shape :math:`(\text{minibatch} , \text{in\_channels} , iW)`
weight: filters of shape :math:`(\text{out\_channels} , \frac{\text{in\_channels}}{\text{groups}} , kW)`
bias: optional bias of shape :math:`(\text{out\_channels})`. Default: ``None``
stride: the stride of the convolving kernel. Can be a single number or
a one-element tuple `(sW,)`. Default: 1
padding: implicit paddings on both sides of the input. Can be a
single number or a one-element tuple `(padW,)`. Default: 0
dilation: the spacing between kernel elements. Can be a single number or
a one-element tuple `(dW,)`. Default: 1
groups: split input into groups, :math:`\text{in\_channels}` should be divisible by
the number of groups. Default: 1
Examples::
>>> filters = torch.randn(33, 16, 3)
>>> inputs = torch.randn(20, 16, 50)
>>> F.conv1d(inputs, filters)
""")
conv2d = _add_docstr(torch.conv2d, r"""
conv2d(input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1) -> Tensor
Applies a 2D convolution over an input image composed of several input
planes.
This operator supports :ref:`TensorFloat32<tf32_on_ampere>`.
See :class:`~torch.nn.Conv2d` for details and output shape.
Note:
In some circumstances when using the CUDA backend with CuDNN, this operator
may select a nondeterministic algorithm to increase performance. If this is
undesirable, you can try to make the operation deterministic (potentially at
a performance cost) by setting ``torch.backends.cudnn.deterministic =
True``.
Please see the notes on :doc:`/notes/randomness` for background.
Args:
input: input tensor of shape :math:`(\text{minibatch} , \text{in\_channels} , iH , iW)`
weight: filters of shape :math:`(\text{out\_channels} , \frac{\text{in\_channels}}{\text{groups}} , kH , kW)`
bias: optional bias tensor of shape :math:`(\text{out\_channels})`. Default: ``None``
stride: the stride of the convolving kernel. Can be a single number or a
tuple `(sH, sW)`. Default: 1
padding: implicit paddings on both sides of the input. Can be a
single number or a tuple `(padH, padW)`. Default: 0
dilation: the spacing between kernel elements. Can be a single number or
a tuple `(dH, dW)`. Default: 1
groups: split input into groups, :math:`\text{in\_channels}` should be divisible by the
number of groups. Default: 1
Examples::
>>> # With square kernels and equal stride
>>> filters = torch.randn(8,4,3,3)
>>> inputs = torch.randn(1,4,5,5)
>>> F.conv2d(inputs, filters, padding=1)
""") # noqa: E501
conv3d = _add_docstr(torch.conv3d, r"""
conv3d(input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1) -> Tensor
Applies a 3D convolution over an input image composed of several input
planes.
This operator supports :ref:`TensorFloat32<tf32_on_ampere>`.
See :class:`~torch.nn.Conv3d` for details and output shape.
Note:
In some circumstances when using the CUDA backend with CuDNN, this operator
may select a nondeterministic algorithm to increase performance. If this is
undesirable, you can try to make the operation deterministic (potentially at
a performance cost) by setting ``torch.backends.cudnn.deterministic =
True``.
Please see the notes on :doc:`/notes/randomness` for background.
Args:
input: input tensor of shape :math:`(\text{minibatch} , \text{in\_channels} , iT , iH , iW)`
weight: filters of shape :math:`(\text{out\_channels} , \frac{\text{in\_channels}}{\text{groups}} , kT , kH , kW)`
bias: optional bias tensor of shape :math:`(\text{out\_channels})`. Default: None
stride: the stride of the convolving kernel. Can be a single number or a
tuple `(sT, sH, sW)`. Default: 1
padding: implicit paddings on both sides of the input. Can be a
single number or a tuple `(padT, padH, padW)`. Default: 0
dilation: the spacing between kernel elements. Can be a single number or
a tuple `(dT, dH, dW)`. Default: 1
groups: split input into groups, :math:`\text{in\_channels}` should be divisible by
the number of groups. Default: 1
Examples::
>>> filters = torch.randn(33, 16, 3, 3, 3)
>>> inputs = torch.randn(20, 16, 50, 10, 20)
>>> F.conv3d(inputs, filters)
""") # noqa: E501
conv_transpose1d = _add_docstr(torch.conv_transpose1d, r"""
conv_transpose1d(input, weight, bias=None, stride=1, padding=0, output_padding=0, groups=1, dilation=1) -> Tensor
Applies a 1D transposed convolution operator over an input signal
composed of several input planes, sometimes also called "deconvolution".
This operator supports :ref:`TensorFloat32<tf32_on_ampere>`.
See :class:`~torch.nn.ConvTranspose1d` for details and output shape.
Note:
In some circumstances when using the CUDA backend with CuDNN, this operator
may select a nondeterministic algorithm to increase performance. If this is
undesirable, you can try to make the operation deterministic (potentially at
a performance cost) by setting ``torch.backends.cudnn.deterministic =
True``.
Please see the notes on :doc:`/notes/randomness` for background.
Args:
input: input tensor of shape :math:`(\text{minibatch} , \text{in\_channels} , iW)`
weight: filters of shape :math:`(\text{in\_channels} , \frac{\text{out\_channels}}{\text{groups}} , kW)`
bias: optional bias of shape :math:`(\text{out\_channels})`. Default: None
stride: the stride of the convolving kernel. Can be a single number or a
tuple ``(sW,)``. Default: 1
padding: ``dilation * (kernel_size - 1) - padding`` zero-padding will be added to both
sides of each dimension in the input. Can be a single number or a tuple
``(padW,)``. Default: 0
output_padding: additional size added to one side of each dimension in the
output shape. Can be a single number or a tuple ``(out_padW)``. Default: 0
groups: split input into groups, :math:`\text{in\_channels}` should be divisible by the
number of groups. Default: 1
dilation: the spacing between kernel elements. Can be a single number or
a tuple ``(dW,)``. Default: 1
Examples::
>>> inputs = torch.randn(20, 16, 50)
>>> weights = torch.randn(16, 33, 5)
>>> F.conv_transpose1d(inputs, weights)
""")
conv_transpose2d = _add_docstr(torch.conv_transpose2d, r"""
conv_transpose2d(input, weight, bias=None, stride=1, padding=0, output_padding=0, groups=1, dilation=1) -> Tensor
Applies a 2D transposed convolution operator over an input image
composed of several input planes, sometimes also called "deconvolution".
This operator supports :ref:`TensorFloat32<tf32_on_ampere>`.
See :class:`~torch.nn.ConvTranspose2d` for details and output shape.
Note:
In some circumstances when using the CUDA backend with CuDNN, this operator
may select a nondeterministic algorithm to increase performance. If this is
undesirable, you can try to make the operation deterministic (potentially at
a performance cost) by setting ``torch.backends.cudnn.deterministic =
True``.
Please see the notes on :doc:`/notes/randomness` for background.
Args:
input: input tensor of shape :math:`(\text{minibatch} , \text{in\_channels} , iH , iW)`
weight: filters of shape :math:`(\text{in\_channels} , \frac{\text{out\_channels}}{\text{groups}} , kH , kW)`
bias: optional bias of shape :math:`(\text{out\_channels})`. Default: None
stride: the stride of the convolving kernel. Can be a single number or a
tuple ``(sH, sW)``. Default: 1
padding: ``dilation * (kernel_size - 1) - padding`` zero-padding will be added to both
sides of each dimension in the input. Can be a single number or a tuple
``(padH, padW)``. Default: 0
output_padding: additional size added to one side of each dimension in the
output shape. Can be a single number or a tuple ``(out_padH, out_padW)``.
Default: 0
groups: split input into groups, :math:`\text{in\_channels}` should be divisible by the
number of groups. Default: 1
dilation: the spacing between kernel elements. Can be a single number or
a tuple ``(dH, dW)``. Default: 1
Examples::
>>> # With square kernels and equal stride
>>> inputs = torch.randn(1, 4, 5, 5)
>>> weights = torch.randn(4, 8, 3, 3)
>>> F.conv_transpose2d(inputs, weights, padding=1)
""") # noqa: E501
conv_transpose3d = _add_docstr(torch.conv_transpose3d, r"""
conv_transpose3d(input, weight, bias=None, stride=1, padding=0, output_padding=0, groups=1, dilation=1) -> Tensor
Applies a 3D transposed convolution operator over an input image
composed of several input planes, sometimes also called "deconvolution"
This operator supports :ref:`TensorFloat32<tf32_on_ampere>`.
See :class:`~torch.nn.ConvTranspose3d` for details and output shape.
Note:
In some circumstances when using the CUDA backend with CuDNN, this operator
may select a nondeterministic algorithm to increase performance. If this is
undesirable, you can try to make the operation deterministic (potentially at
a performance cost) by setting ``torch.backends.cudnn.deterministic =
True``.
Please see the notes on :doc:`/notes/randomness` for background.
Args:
input: input tensor of shape :math:`(\text{minibatch} , \text{in\_channels} , iT , iH , iW)`
weight: filters of shape :math:`(\text{in\_channels} , \frac{\text{out\_channels}}{\text{groups}} , kT , kH , kW)`
bias: optional bias of shape :math:`(\text{out\_channels})`. Default: None
stride: the stride of the convolving kernel. Can be a single number or a
tuple ``(sT, sH, sW)``. Default: 1
padding: ``dilation * (kernel_size - 1) - padding`` zero-padding will be added to both
sides of each dimension in the input. Can be a single number or a tuple
``(padT, padH, padW)``. Default: 0
output_padding: additional size added to one side of each dimension in the
output shape. Can be a single number or a tuple
``(out_padT, out_padH, out_padW)``. Default: 0
groups: split input into groups, :math:`\text{in\_channels}` should be divisible by the
number of groups. Default: 1
dilation: the spacing between kernel elements. Can be a single number or
a tuple `(dT, dH, dW)`. Default: 1
Examples::
>>> inputs = torch.randn(20, 16, 50, 10, 20)
>>> weights = torch.randn(16, 33, 3, 3, 3)
>>> F.conv_transpose3d(inputs, weights)
""") # noqa: E501
conv_tbc = _add_docstr(torch.conv_tbc, r"""
Applies a 1-dimensional sequence convolution over an input sequence.
Input and output dimensions are (Time, Batch, Channels) - hence TBC.
Args:
input: input tensor of shape :math:`(\text{sequence length} \times batch \times \text{in\_channels})`
weight: filter of shape (:math:`\text{kernel width} \times \text{in\_channels} \times \text{out\_channels}`)
bias: bias of shape (:math:`\text{out\_channels}`)
pad: number of timesteps to pad. Default: 0
""")
# Pooling
avg_pool1d = _add_docstr(torch.avg_pool1d, r"""
avg_pool1d(input, kernel_size, stride=None, padding=0, ceil_mode=False, count_include_pad=True) -> Tensor
Applies a 1D average pooling over an input signal composed of several
input planes.
See :class:`~torch.nn.AvgPool1d` for details and output shape.
Args:
input: input tensor of shape :math:`(\text{minibatch} , \text{in\_channels} , iW)`
kernel_size: the size of the window. Can be a single number or a
tuple `(kW,)`
stride: the stride of the window. Can be a single number or a tuple
`(sW,)`. Default: :attr:`kernel_size`
padding: implicit zero paddings on both sides of the input. Can be a
single number or a tuple `(padW,)`. Default: 0
ceil_mode: when True, will use `ceil` instead of `floor` to compute the
output shape. Default: ``False``
count_include_pad: when True, will include the zero-padding in the
averaging calculation. Default: ``True``
Examples::
>>> # pool of square window of size=3, stride=2
>>> input = torch.tensor([[[1, 2, 3, 4, 5, 6, 7]]], dtype=torch.float32)
>>> F.avg_pool1d(input, kernel_size=3, stride=2)
tensor([[[ 2., 4., 6.]]])
""")
avg_pool2d = _add_docstr(torch._C._nn.avg_pool2d, r"""
avg_pool2d(input, kernel_size, stride=None, padding=0, ceil_mode=False, count_include_pad=True, divisor_override=None) -> Tensor
Applies 2D average-pooling operation in :math:`kH \times kW` regions by step size
:math:`sH \times sW` steps. The number of output features is equal to the number of
input planes.
See :class:`~torch.nn.AvgPool2d` for details and output shape.
Args:
input: input tensor :math:`(\text{minibatch} , \text{in\_channels} , iH , iW)`
kernel_size: size of the pooling region. Can be a single number or a
tuple `(kH, kW)`
stride: stride of the pooling operation. Can be a single number or a
tuple `(sH, sW)`. Default: :attr:`kernel_size`
padding: implicit zero paddings on both sides of the input. Can be a
single number or a tuple `(padH, padW)`. Default: 0
ceil_mode: when True, will use `ceil` instead of `floor` in the formula
to compute the output shape. Default: ``False``
count_include_pad: when True, will include the zero-padding in the
averaging calculation. Default: ``True``
divisor_override: if specified, it will be used as divisor, otherwise
size of the pooling region will be used. Default: None
""")
avg_pool3d = _add_docstr(torch._C._nn.avg_pool3d, r"""
avg_pool3d(input, kernel_size, stride=None, padding=0, ceil_mode=False, count_include_pad=True, divisor_override=None) -> Tensor
Applies 3D average-pooling operation in :math:`kT \times kH \times kW` regions by step
size :math:`sT \times sH \times sW` steps. The number of output features is equal to
:math:`\lfloor\frac{\text{input planes}}{sT}\rfloor`.
See :class:`~torch.nn.AvgPool3d` for details and output shape.
Args:
input: input tensor :math:`(\text{minibatch} , \text{in\_channels} , iT \times iH , iW)`
kernel_size: size of the pooling region. Can be a single number or a
tuple `(kT, kH, kW)`
stride: stride of the pooling operation. Can be a single number or a
tuple `(sT, sH, sW)`. Default: :attr:`kernel_size`
padding: implicit zero paddings on both sides of the input. Can be a
single number or a tuple `(padT, padH, padW)`, Default: 0
ceil_mode: when True, will use `ceil` instead of `floor` in the formula
to compute the output shape
count_include_pad: when True, will include the zero-padding in the
averaging calculation
divisor_override: if specified, it will be used as divisor, otherwise
size of the pooling region will be used. Default: None
""")
def fractional_max_pool2d_with_indices(input, kernel_size, output_size=None,
output_ratio=None, return_indices=False,
_random_samples=None):
# type: (Tensor, BroadcastingList2[int], Optional[BroadcastingList2[int]], Optional[BroadcastingList2[float]], bool, Optional[Tensor]) -> Tuple[Tensor, Tensor] # noqa
r"""Applies 2D fractional max pooling over an input signal composed of several input planes.
Fractional MaxPooling is described in detail in the paper `Fractional MaxPooling`_ by Ben Graham
The max-pooling operation is applied in :math:`kH \times kW` regions by a stochastic
step size determined by the target output size.
The number of output features is equal to the number of input planes.
Args:
kernel_size: the size of the window to take a max over.
Can be a single number :math:`k` (for a square kernel of :math:`k \times k`)
or a tuple `(kH, kW)`
output_size: the target output size of the image of the form :math:`oH \times oW`.
Can be a tuple `(oH, oW)` or a single number :math:`oH` for a square image :math:`oH \times oH`
output_ratio: If one wants to have an output size as a ratio of the input size, this option can be given.
This has to be a number or tuple in the range (0, 1)
return_indices: if ``True``, will return the indices along with the outputs.
Useful to pass to :func:`~torch.nn.functional.max_unpool2d`.
Examples::
>>> input = torch.randn(20, 16, 50, 32)
>>> # pool of square window of size=3, and target output size 13x12
>>> F.fractional_max_pool2d(input, 3, output_size=(13, 12))
>>> # pool of square window and target output size being half of input image size
>>> F.fractional_max_pool2d(input, 3, output_ratio=(0.5, 0.5))
.. _Fractional MaxPooling:
http://arxiv.org/abs/1412.6071
"""
if not torch.jit.is_scripting():
if type(input) is not Tensor and has_torch_function((input,)):
return handle_torch_function(
fractional_max_pool2d_with_indices, (input,), input, kernel_size,
output_size=output_size, output_ratio=output_ratio,
return_indices=return_indices, _random_samples=_random_samples)
if output_size is None and output_ratio is None:
raise ValueError("fractional_max_pool2d requires specifying either "
"an output_size or an output_ratio")
if output_size is None:
assert output_ratio is not None
_output_ratio = _pair(output_ratio)
output_size = [int(input.size(2) * _output_ratio[0]),
int(input.size(3) * _output_ratio[1])]
if _random_samples is None:
_random_samples = torch.rand(input.size(0), input.size(1), 2, dtype=input.dtype, device=input.device)
return torch._C._nn.fractional_max_pool2d(input, kernel_size, output_size, _random_samples)
def _fractional_max_pool2d(input, kernel_size, output_size=None,
output_ratio=None, return_indices=False,
_random_samples=None):
# type: (Tensor, BroadcastingList2[int], Optional[BroadcastingList2[int]], Optional[BroadcastingList2[float]], bool, Optional[Tensor]) -> Tensor # noqa
if not torch.jit.is_scripting():
if type(input) is not Tensor and has_torch_function((input,)):
return handle_torch_function(
fractional_max_pool2d, (input,), input, kernel_size,
output_size=output_size, output_ratio=output_ratio,
return_indices=return_indices, _random_samples=_random_samples)
return fractional_max_pool2d_with_indices(input, kernel_size, output_size,
output_ratio, return_indices,
_random_samples)[0]
fractional_max_pool2d = boolean_dispatch(
arg_name='return_indices',
arg_index=4,
default=False,
if_true=fractional_max_pool2d_with_indices,
if_false=_fractional_max_pool2d,
module_name=__name__,
func_name='fractional_max_pool2d')
def fractional_max_pool3d_with_indices(input, kernel_size, output_size=None,
output_ratio=None, return_indices=False,
_random_samples=None):
# type: (Tensor, BroadcastingList3[int], Optional[BroadcastingList3[int]], Optional[BroadcastingList3[float]], bool, Optional[Tensor]) -> Tuple[Tensor, Tensor] # noqa
r"""Applies 3D fractional max pooling over an input signal composed of several input planes.
Fractional MaxPooling is described in detail in the paper `Fractional MaxPooling`_ by Ben Graham
The max-pooling operation is applied in :math:`kT \times kH \times kW` regions by a stochastic
step size determined by the target output size.
The number of output features is equal to the number of input planes.
Args:
kernel_size: the size of the window to take a max over.
Can be a single number :math:`k` (for a square kernel of :math:`k \times k \times k`)
or a tuple `(kT, kH, kW)`
output_size: the target output size of the form :math:`oT \times oH \times oW`.
Can be a tuple `(oT, oH, oW)` or a single number :math:`oH` for a cubic output
:math:`oH \times oH \times oH`
output_ratio: If one wants to have an output size as a ratio of the input size, this option can be given.
This has to be a number or tuple in the range (0, 1)
return_indices: if ``True``, will return the indices along with the outputs.
Useful to pass to :func:`~torch.nn.functional.max_unpool3d`.
Examples::
>>> input = torch.randn(20, 16, 50, 32, 16)
>>> # pool of cubic window of size=3, and target output size 13x12x11
>>> F.fractional_max_pool3d(input, 3, output_size=(13, 12, 11))
>>> # pool of cubic window and target output size being half of input size
>>> F.fractional_max_pool3d(input, 3, output_ratio=(0.5, 0.5, 0.5))
.. _Fractional MaxPooling:
http://arxiv.org/abs/1412.6071
"""
if not torch.jit.is_scripting():
if type(input) is not Tensor and has_torch_function((input,)):
return handle_torch_function(
fractional_max_pool3d_with_indices, (input,), input, kernel_size,
output_size=output_size, output_ratio=output_ratio,
return_indices=return_indices, _random_samples=_random_samples)
if output_size is None and output_ratio is None:
raise ValueError("fractional_max_pool3d requires specifying either "
"an output_size or an output_ratio")
if output_size is None:
assert output_ratio is not None
_output_ratio = _triple(output_ratio)
output_size = [int(input.size(2) * _output_ratio[0]),
int(input.size(3) * _output_ratio[1]),
int(input.size(4) * _output_ratio[2])]
if _random_samples is None:
_random_samples = torch.rand(input.size(0), input.size(1), 3, dtype=input.dtype, device=input.device)
return torch._C._nn.fractional_max_pool3d(input, kernel_size, output_size, _random_samples)
def _fractional_max_pool3d(input, kernel_size, output_size=None,
output_ratio=None, return_indices=False,
_random_samples=None):
# type: (Tensor, BroadcastingList3[int], Optional[BroadcastingList3[int]], Optional[BroadcastingList3[float]], bool, Optional[Tensor]) -> Tensor # noqa
if not torch.jit.is_scripting():
if type(input) is not Tensor and has_torch_function((input,)):
return handle_torch_function(
fractional_max_pool3d, (input,), input, kernel_size,
output_size=output_size, output_ratio=output_ratio,
return_indices=return_indices, _random_samples=_random_samples)
return fractional_max_pool3d_with_indices(input, kernel_size, output_size,
output_ratio, return_indices,
_random_samples)[0]
fractional_max_pool3d = boolean_dispatch(
arg_name='return_indices',
arg_index=4,
default=False,
if_true=fractional_max_pool3d_with_indices,
if_false=_fractional_max_pool3d,
module_name=__name__,
func_name='fractional_max_pool3d')
def max_pool1d_with_indices(input, kernel_size, stride=None, padding=0,
dilation=1, ceil_mode=False, return_indices=False):
# type: (Tensor, BroadcastingList1[int], Optional[BroadcastingList1[int]], BroadcastingList1[int], BroadcastingList1[int], bool, bool) -> Tuple[Tensor, Tensor] # noqa
r"""Applies a 1D max pooling over an input signal composed of several input
planes.
See :class:`~torch.nn.MaxPool1d` for details.
"""
if not torch.jit.is_scripting():
if type(input) is not Tensor and has_torch_function((input,)):
return handle_torch_function(
max_pool1d_with_indices, (input,), input, kernel_size,
stride=stride, padding=padding, dilation=dilation, ceil_mode=ceil_mode,
return_indices=return_indices)
if stride is None:
stride = torch.jit.annotate(List[int], [])
return torch.max_pool1d_with_indices(
input, kernel_size, stride, padding, dilation, ceil_mode)
def _max_pool1d(input, kernel_size, stride=None, padding=0, dilation=1,
ceil_mode=False, return_indices=False):
# type: (Tensor, BroadcastingList1[int], Optional[BroadcastingList1[int]], BroadcastingList1[int], BroadcastingList1[int], bool, bool) -> Tensor # noqa
if not torch.jit.is_scripting():
if type(input) is not Tensor and has_torch_function((input,)):
return handle_torch_function(
max_pool1d, (input,), input, kernel_size,
stride=stride, padding=padding, dilation=dilation, ceil_mode=ceil_mode,
return_indices=return_indices)
if stride is None:
stride = torch.jit.annotate(List[int], [])
return torch.max_pool1d(
input, kernel_size, stride, padding, dilation, ceil_mode)
max_pool1d = boolean_dispatch(
arg_name='return_indices',
arg_index=6,
default=False,
if_true=max_pool1d_with_indices,
if_false=_max_pool1d,
module_name=__name__,
func_name='max_pool1d')
def max_pool2d_with_indices(input, kernel_size, stride=None, padding=0, dilation=1,
ceil_mode=False, return_indices=False):
# type: (Tensor, BroadcastingList2[int], Optional[BroadcastingList2[int]], BroadcastingList2[int], BroadcastingList2[int], bool, bool) -> Tuple[Tensor, Tensor] # noqa
r"""Applies a 2D max pooling over an input signal composed of several input
planes.
See :class:`~torch.nn.MaxPool2d` for details.
"""
if not torch.jit.is_scripting():
if type(input) is not Tensor and has_torch_function((input,)):
return handle_torch_function(
max_pool2d_with_indices, (input,), input, kernel_size,
stride=stride, padding=padding, dilation=dilation, ceil_mode=ceil_mode,
return_indices=return_indices)
if stride is None:
stride = torch.jit.annotate(List[int], [])
return torch._C._nn.max_pool2d_with_indices(input, kernel_size, stride, padding, dilation, ceil_mode)
def _max_pool2d(input, kernel_size, stride=None, padding=0, dilation=1,
ceil_mode=False, return_indices=False):
# type: (Tensor, BroadcastingList2[int], Optional[BroadcastingList2[int]], BroadcastingList2[int], BroadcastingList2[int], bool, bool) -> Tensor # noqa
if not torch.jit.is_scripting():
if type(input) is not Tensor and has_torch_function((input,)):
return handle_torch_function(
max_pool2d, (input,), input, kernel_size,
stride=stride, padding=padding, dilation=dilation, ceil_mode=ceil_mode,
return_indices=return_indices)
if stride is None:
stride = torch.jit.annotate(List[int], [])
return torch.max_pool2d(
input, kernel_size, stride, padding, dilation, ceil_mode)
max_pool2d = boolean_dispatch(
arg_name='return_indices',
arg_index=6,
default=False,
if_true=max_pool2d_with_indices,
if_false=_max_pool2d,
module_name=__name__,
func_name='max_pool2d')
def max_pool3d_with_indices(input, kernel_size, stride=None, padding=0,
dilation=1, ceil_mode=False, return_indices=False):
# type: (Tensor, BroadcastingList3[int], Optional[BroadcastingList3[int]], BroadcastingList3[int], BroadcastingList3[int], bool, bool) -> Tuple[Tensor, Tensor] # noqa
r"""Applies a 3D max pooling over an input signal composed of several input
planes.
See :class:`~torch.nn.MaxPool3d` for details.
"""
if not torch.jit.is_scripting():
if type(input) is not Tensor and has_torch_function((input,)):
return handle_torch_function(
max_pool3d_with_indices, (input,), input, kernel_size,
stride=stride, padding=padding, dilation=dilation, ceil_mode=ceil_mode,
return_indices=return_indices)
if stride is None:
stride = torch.jit.annotate(List[int], [])
return torch._C._nn.max_pool3d_with_indices(
input, kernel_size, stride, padding, dilation, ceil_mode)
def _max_pool3d(input, kernel_size, stride=None, padding=0, dilation=1,
ceil_mode=False, return_indices=False):
# type: (Tensor, BroadcastingList3[int], Optional[BroadcastingList3[int]], BroadcastingList3[int], BroadcastingList3[int], bool, bool) -> Tensor # noqa
if not torch.jit.is_scripting():
if type(input) is not Tensor and has_torch_function((input,)):
return handle_torch_function(
max_pool3d, (input,), input, kernel_size, stride=stride, padding=padding,
dilation=dilation, ceil_mode=ceil_mode, return_indices=return_indices)
if stride is None:
stride = torch.jit.annotate(List[int], [])
return torch.max_pool3d(
input, kernel_size, stride, padding, dilation, ceil_mode)
max_pool3d = boolean_dispatch(
arg_name='return_indices',
arg_index=6,
default=False,
if_true=max_pool3d_with_indices,
if_false=_max_pool3d,
module_name=__name__,
func_name='max_pool3d')
def _unpool_output_size(input, kernel_size, stride, padding, output_size):
# type: (Tensor, List[int], List[int], List[int], Optional[List[int]]) -> List[int]
input_size = input.size()
default_size = torch.jit.annotate(List[int], [])
for d in range(len(kernel_size)):
default_size.append((input_size[d + 2] - 1) * stride[d] +
kernel_size[d] - 2 * padding[d])
if output_size is None:
ret = default_size
else:
if len(output_size) == len(kernel_size) + 2:
output_size = output_size[2:]
if len(output_size) != len(kernel_size):
raise ValueError("output_size should be a sequence containing "
"{} or {} elements, but it has a length of '{}'"
.format(len(kernel_size), len(kernel_size) + 2,
len(output_size)))
for d in range(len(kernel_size)):
min_size = default_size[d] - stride[d]
max_size = default_size[d] + stride[d]
if not (min_size < output_size[d] < max_size):
raise ValueError(
'invalid output_size "{}" (dim {} must be between {} and {})'
.format(output_size, d, min_size, max_size))
ret = output_size
return ret
def max_unpool1d(input, indices, kernel_size, stride=None, padding=0,
output_size=None):
# type: (Tensor, Tensor, BroadcastingList1[int], Optional[BroadcastingList1[int]], BroadcastingList1[int], Optional[BroadcastingList1[int]]) -> Tensor # noqa
r"""Computes a partial inverse of :class:`MaxPool1d`.
See :class:`~torch.nn.MaxUnpool1d` for details.
"""
if not torch.jit.is_scripting():
if type(input) is not Tensor and has_torch_function((input,)):
return handle_torch_function(
max_unpool1d, (input,), input, indices, kernel_size,
stride=stride, padding=padding, output_size=output_size)
kernel_size = _single(kernel_size)
if stride is not None:
_stride = _single(stride)
else:
_stride = kernel_size
padding = _single(padding)
output_size = _unpool_output_size(input, kernel_size, _stride, padding,
output_size)
if isinstance(output_size, list):
output_size = output_size + [1]
else:
output_size = output_size + (1,)
return torch._C._nn.max_unpool2d(input.unsqueeze(3), indices.unsqueeze(3),
output_size).squeeze(3)
def max_unpool2d(input, indices, kernel_size, stride=None, padding=0,
output_size=None):
# type: (Tensor, Tensor, BroadcastingList2[int], Optional[BroadcastingList2[int]], BroadcastingList2[int], Optional[BroadcastingList2[int]]) -> Tensor # noqa
r"""Computes a partial inverse of :class:`MaxPool2d`.
See :class:`~torch.nn.MaxUnpool2d` for details.
"""
if not torch.jit.is_scripting():
if type(input) is not Tensor and has_torch_function((input,)):
return handle_torch_function(
max_unpool2d, (input,), input, indices, kernel_size,
stride=stride, padding=padding, output_size=output_size)
kernel_size = _pair(kernel_size)
if stride is not None:
_stride = _pair(stride)
else:
_stride = kernel_size
padding = _pair(padding)
output_size = _unpool_output_size(input, kernel_size, _stride, padding,
output_size)
return torch._C._nn.max_unpool2d(input, indices, output_size)
def max_unpool3d(input, indices, kernel_size, stride=None, padding=0,
output_size=None):
# type: (Tensor, Tensor, BroadcastingList3[int], Optional[BroadcastingList3[int]], BroadcastingList3[int], Optional[BroadcastingList3[int]]) -> Tensor # noqa
r"""Computes a partial inverse of :class:`MaxPool3d`.
See :class:`~torch.nn.MaxUnpool3d` for details.
"""
if not torch.jit.is_scripting():
if type(input) is not Tensor and has_torch_function((input,)):
return handle_torch_function(
max_unpool3d, (input,), input, indices, kernel_size,
stride=stride, padding=padding, output_size=output_size)
kernel_size = _triple(kernel_size)
if stride is not None:
_stride = _triple(stride)
else:
_stride = kernel_size
padding = _triple(padding)
output_size = _unpool_output_size(input, kernel_size, _stride, padding,
output_size)
return torch._C._nn.max_unpool3d(
input, indices, output_size, _stride, padding)
def lp_pool2d(input, norm_type, kernel_size, stride=None, ceil_mode=False):
# type: (Tensor, float, int, Optional[BroadcastingList2[int]], bool) -> Tensor
r"""Applies a 2D power-average pooling over an input signal composed of
several input planes. If the sum of all inputs to the power of `p` is
zero, the gradient is set to zero as well.
See :class:`~torch.nn.LPPool2d` for details.
"""
if not torch.jit.is_scripting():
if type(input) is not Tensor and has_torch_function((input,)):
return handle_torch_function(
lp_pool2d, (input,), input, norm_type, kernel_size, stride=stride,
ceil_mode=ceil_mode)
kw, kh = utils._pair(kernel_size)
if stride is not None:
out = avg_pool2d(input.pow(norm_type), kernel_size, stride, 0, ceil_mode)
else:
out = avg_pool2d(input.pow(norm_type), kernel_size, padding=0, ceil_mode=ceil_mode)
return (torch.sign(out) * relu(torch.abs(out))).mul(kw * kh).pow(1. / norm_type)
def lp_pool1d(input, norm_type, kernel_size, stride=None, ceil_mode=False):
# type: (Tensor, float, int, Optional[BroadcastingList1[int]], bool) -> Tensor
r"""Applies a 1D power-average pooling over an input signal composed of
several input planes. If the sum of all inputs to the power of `p` is
zero, the gradient is set to zero as well.
See :class:`~torch.nn.LPPool1d` for details.
"""
if not torch.jit.is_scripting():
if type(input) is not Tensor and has_torch_function((input,)):
return handle_torch_function(
lp_pool1d, (input,), input, norm_type, kernel_size, stride=stride,
ceil_mode=ceil_mode)
if stride is not None:
out = avg_pool1d(input.pow(norm_type), kernel_size, stride, 0, ceil_mode)
else:
out = avg_pool1d(input.pow(norm_type), kernel_size, padding=0, ceil_mode=ceil_mode)
return (torch.sign(out) * relu(torch.abs(out))).mul(kernel_size).pow(1. / norm_type)
def adaptive_max_pool1d_with_indices(input, output_size, return_indices=False):
# type: (Tensor, BroadcastingList1[int], bool) -> Tuple[Tensor, Tensor]
r"""Applies a 1D adaptive max pooling over an input signal composed of
several input planes.
See :class:`~torch.nn.AdaptiveMaxPool1d` for details and output shape.
Args:
output_size: the target output size (single integer)
return_indices: whether to return pooling indices. Default: ``False``
"""
if not torch.jit.is_scripting():
if type(input) is not Tensor and has_torch_function((input,)):
return handle_torch_function(
adaptive_max_pool1d_with_indices, (input,), input, output_size,
return_indices=return_indices)
return torch.adaptive_max_pool1d(input, output_size)
def _adaptive_max_pool1d(input, output_size, return_indices=False):
# type: (Tensor, BroadcastingList1[int], bool) -> Tensor
if not torch.jit.is_scripting():
if type(input) is not Tensor and has_torch_function((input,)):
return handle_torch_function(
adaptive_max_pool1d, (input,), input, output_size,
return_indices=return_indices)
return adaptive_max_pool1d_with_indices(input, output_size)[0]
adaptive_max_pool1d = boolean_dispatch(
arg_name='return_indices',
arg_index=2,
default=False,
if_true=adaptive_max_pool1d_with_indices,
if_false=_adaptive_max_pool1d,
module_name=__name__,
func_name='adaptive_max_pool1d')
def adaptive_max_pool2d_with_indices(input, output_size, return_indices=False):
# type: (Tensor, BroadcastingList2[int], bool) -> Tuple[Tensor, Tensor]
r"""Applies a 2D adaptive max pooling over an input signal composed of
several input planes.
See :class:`~torch.nn.AdaptiveMaxPool2d` for details and output shape.
Args:
output_size: the target output size (single integer or
double-integer tuple)
return_indices: whether to return pooling indices. Default: ``False``
"""
if not torch.jit.is_scripting():
if type(input) is not Tensor and has_torch_function((input,)):
return handle_torch_function(
adaptive_max_pool2d_with_indices, (input,), input, output_size,
return_indices=return_indices)
output_size = _list_with_default(output_size, input.size())
return torch._C._nn.adaptive_max_pool2d(input, output_size)
def _adaptive_max_pool2d(input, output_size, return_indices=False):
# type: (Tensor, BroadcastingList2[int], bool) -> Tensor
if not torch.jit.is_scripting():
if type(input) is not Tensor and has_torch_function((input,)):
return handle_torch_function(
adaptive_max_pool2d, (input,), input, output_size,
return_indices=return_indices)
return adaptive_max_pool2d_with_indices(input, output_size)[0]
adaptive_max_pool2d = boolean_dispatch(
arg_name='return_indices',
arg_index=2,
default=False,
if_true=adaptive_max_pool2d_with_indices,
if_false=_adaptive_max_pool2d,
module_name=__name__,
func_name='adaptive_max_pool2d')
def adaptive_max_pool3d_with_indices(input, output_size, return_indices=False):
# type: (Tensor, BroadcastingList3[int], bool) -> Tuple[Tensor, Tensor]
r"""Applies a 3D adaptive max pooling over an input signal composed of
several input planes.
See :class:`~torch.nn.AdaptiveMaxPool3d` for details and output shape.
Args:
output_size: the target output size (single integer or
triple-integer tuple)
return_indices: whether to return pooling indices. Default: ``False``
"""
if not torch.jit.is_scripting():
if type(input) is not Tensor and has_torch_function((input,)):
return handle_torch_function(
adaptive_max_pool3d_with_indices, (input,), input, output_size,
return_indices=return_indices)
output_size = _list_with_default(output_size, input.size())
return torch._C._nn.adaptive_max_pool3d(input, output_size)
def _adaptive_max_pool3d(input, output_size, return_indices=False):
# type: (Tensor, BroadcastingList3[int], bool) -> Tensor
if not torch.jit.is_scripting():
if type(input) is not Tensor and has_torch_function((input,)):
return handle_torch_function(
adaptive_max_pool3d, (input,), input, output_size,
return_indices=return_indices)
return adaptive_max_pool3d_with_indices(input, output_size)[0]
adaptive_max_pool3d = boolean_dispatch(
arg_name='return_indices',
arg_index=2,
default=False,
if_true=adaptive_max_pool3d_with_indices,
if_false=_adaptive_max_pool3d,
module_name=__name__,
func_name='adaptive_max_pool3d')
adaptive_avg_pool1d = _add_docstr(torch.adaptive_avg_pool1d, r"""
adaptive_avg_pool1d(input, output_size) -> Tensor
Applies a 1D adaptive average pooling over an input signal composed of
several input planes.
See :class:`~torch.nn.AdaptiveAvgPool1d` for details and output shape.
Args:
output_size: the target output size (single integer)
""")
def adaptive_avg_pool2d(input, output_size):
# type: (Tensor, BroadcastingList2[int]) -> Tensor
r"""
Applies a 2D adaptive average pooling over an input signal composed of
several input planes.
See :class:`~torch.nn.AdaptiveAvgPool2d` for details and output shape.
Args:
output_size: the target output size (single integer or
double-integer tuple)
"""
if not torch.jit.is_scripting():
if type(input) is not Tensor and has_torch_function((input,)):
return handle_torch_function(
adaptive_avg_pool2d, (input,), input, output_size)
_output_size = _list_with_default(output_size, input.size())
return torch._C._nn.adaptive_avg_pool2d(input, _output_size)
def adaptive_avg_pool3d(input, output_size):
# type: (Tensor, BroadcastingList3[int]) -> Tensor
r"""
Applies a 3D adaptive average pooling over an input signal composed of
several input planes.
See :class:`~torch.nn.AdaptiveAvgPool3d` for details and output shape.
Args:
output_size: the target output size (single integer or
triple-integer tuple)
"""
if not torch.jit.is_scripting():
if type(input) is not Tensor and has_torch_function((input,)):
return handle_torch_function(
adaptive_avg_pool3d, (input,), input, output_size)
_output_size = _list_with_default(output_size, input.size())
return torch._C._nn.adaptive_avg_pool3d(input, _output_size)
# Activation functions
def dropout(input, p=0.5, training=True, inplace=False):
# type: (Tensor, float, bool, bool) -> Tensor
r"""
During training, randomly zeroes some of the elements of the input
tensor with probability :attr:`p` using samples from a Bernoulli
distribution.
See :class:`~torch.nn.Dropout` for details.
Args:
p: probability of an element to be zeroed. Default: 0.5
training: apply dropout if is ``True``. Default: ``True``
inplace: If set to ``True``, will do this operation in-place. Default: ``False``
"""
if not torch.jit.is_scripting():
if type(input) is not Tensor and has_torch_function((input,)):
return handle_torch_function(
dropout, (input,), input, p=p, training=training, inplace=inplace)
if p < 0. or p > 1.:
raise ValueError("dropout probability has to be between 0 and 1, "
"but got {}".format(p))
return (_VF.dropout_(input, p, training)
if inplace
else _VF.dropout(input, p, training))
def alpha_dropout(input, p=0.5, training=False, inplace=False):
# type: (Tensor, float, bool, bool) -> Tensor
r"""Applies alpha dropout to the input.
See :class:`~torch.nn.AlphaDropout` for details.
"""
if not torch.jit.is_scripting():
if type(input) is not Tensor and has_torch_function((input,)):
return handle_torch_function(
alpha_dropout, (input,), input, p=p, training=training, inplace=inplace)
if p < 0. or p > 1.:
raise ValueError("dropout probability has to be between 0 and 1, "
"but got {}".format(p))
return (_VF.alpha_dropout_(input, p, training)
if inplace
else _VF.alpha_dropout(input, p, training))
def dropout2d(input, p=0.5, training=True, inplace=False):
# type: (Tensor, float, bool, bool) -> Tensor
r"""
Randomly zero out entire channels (a channel is a 2D feature map,
e.g., the :math:`j`-th channel of the :math:`i`-th sample in the
batched input is a 2D tensor :math:`\text{input}[i, j]`) of the input tensor).
Each channel will be zeroed out independently on every forward call with
probability :attr:`p` using samples from a Bernoulli distribution.
See :class:`~torch.nn.Dropout2d` for details.
Args:
p: probability of a channel to be zeroed. Default: 0.5
training: apply dropout if is ``True``. Default: ``True``
inplace: If set to ``True``, will do this operation in-place. Default: ``False``
"""
if not torch.jit.is_scripting():
if type(input) is not Tensor and has_torch_function((input,)):
return handle_torch_function(
dropout2d, (input,), input, p=p, training=training, inplace=inplace)
if p < 0. or p > 1.:
raise ValueError("dropout probability has to be between 0 and 1, "
"but got {}".format(p))
return (_VF.feature_dropout_(input, p, training)
if inplace
else _VF.feature_dropout(input, p, training))
def dropout3d(input, p=0.5, training=True, inplace=False):
# type: (Tensor, float, bool, bool) -> Tensor
r"""
Randomly zero out entire channels (a channel is a 3D feature map,
e.g., the :math:`j`-th channel of the :math:`i`-th sample in the
batched input is a 3D tensor :math:`\text{input}[i, j]`) of the input tensor).
Each channel will be zeroed out independently on every forward call with
probability :attr:`p` using samples from a Bernoulli distribution.
See :class:`~torch.nn.Dropout3d` for details.
Args:
p: probability of a channel to be zeroed. Default: 0.5
training: apply dropout if is ``True``. Default: ``True``
inplace: If set to ``True``, will do this operation in-place. Default: ``False``
"""
# This is 100% the same code as dropout2d. We duplicate this code so that
# stack traces are not confusing.
if not torch.jit.is_scripting():
if type(input) is not Tensor and has_torch_function((input,)):
return handle_torch_function(
dropout3d, (input,), input, p=p, training=training, inplace=inplace)
if p < 0. or p > 1.:
raise ValueError("dropout probability has to be between 0 and 1, "
"but got {}".format(p))
return (_VF.feature_dropout_(input, p, training)
if inplace
else _VF.feature_dropout(input, p, training))
def feature_alpha_dropout(input, p=0.5, training=False, inplace=False):
# type: (Tensor, float, bool, bool) -> Tensor
r"""
Randomly masks out entire channels (a channel is a feature map,
e.g. the :math:`j`-th channel of the :math:`i`-th sample in the batch input
is a tensor :math:`\text{input}[i, j]`) of the input tensor). Instead of
setting activations to zero, as in regular Dropout, the activations are set
to the negative saturation value of the SELU activation function.
Each element will be masked independently on every forward call with
probability :attr:`p` using samples from a Bernoulli distribution.
The elements to be masked are randomized on every forward call, and scaled
and shifted to maintain zero mean and unit variance.
See :class:`~torch.nn.FeatureAlphaDropout` for details.
Args:
p: dropout probability of a channel to be zeroed. Default: 0.5
training: apply dropout if is ``True``. Default: ``True``
inplace: If set to ``True``, will do this operation in-place. Default: ``False``
"""
if not torch.jit.is_scripting():
if type(input) is not Tensor and has_torch_function((input,)):
return handle_torch_function(
feature_alpha_dropout, (input,), input, p=p, training=training,
inplace=inplace)
if p < 0. or p > 1.:
raise ValueError("dropout probability has to be between 0 and 1, "
"but got {}".format(p))
return (_VF.feature_alpha_dropout_(input, p, training)
if inplace
else _VF.feature_alpha_dropout(input, p, training))
def _threshold(input, threshold, value, inplace=False):
# type: (Tensor, float, float, bool) -> Tensor
r"""Thresholds each element of the input Tensor.
See :class:`~torch.nn.Threshold` for more details.
"""
if not torch.jit.is_scripting():
if type(input) is not Tensor and has_torch_function((input,)):
return handle_torch_function(
_threshold, (input,), input, threshold, value, inplace=inplace)
if inplace:
result = _VF.threshold_(input, threshold, value)
else:
result = _VF.threshold(input, threshold, value)
return result
# We define this function as _threshold because it takes an argument
# named threshold, which clobbers the recursive reference to the
# function needed for __torch_function__ support
threshold = _threshold
threshold_ = _add_docstr(_VF.threshold_, r"""
threshold_(input, threshold, value) -> Tensor
In-place version of :func:`~threshold`.
""")
def relu(input: Tensor, inplace: bool = False) -> Tensor:
r"""relu(input, inplace=False) -> Tensor
Applies the rectified linear unit function element-wise. See
:class:`~torch.nn.ReLU` for more details.
"""
if not torch.jit.is_scripting():
if type(input) is not Tensor and has_torch_function((input,)):
return handle_torch_function(relu, (input,), input, inplace=inplace)
if inplace:
result = torch.relu_(input)
else:
result = torch.relu(input)
return result
relu_ = _add_docstr(torch.relu_, r"""
relu_(input) -> Tensor
In-place version of :func:`~relu`.
""")
def glu(input: Tensor, dim: int = -1) -> Tensor:
r"""
glu(input, dim=-1) -> Tensor
The gated linear unit. Computes:
.. math ::
\text{GLU}(a, b) = a \otimes \sigma(b)
where `input` is split in half along `dim` to form `a` and `b`, :math:`\sigma`
is the sigmoid function and :math:`\otimes` is the element-wise product between matrices.
See `Language Modeling with Gated Convolutional Networks <https://arxiv.org/abs/1612.08083>`_.
Args:
input (Tensor): input tensor
dim (int): dimension on which to split the input. Default: -1
"""
if not torch.jit.is_scripting():
if type(input) is not Tensor and has_torch_function((input,)):
return handle_torch_function(glu, (input,), input, dim=dim)
if input.dim() == 0:
raise RuntimeError("glu does not support scalars because halving size must be even")
return torch._C._nn.glu(input, dim)
def hardtanh(input: Tensor, min_val: float = -1., max_val: float = 1., inplace: bool = False) -> Tensor:
r"""
hardtanh(input, min_val=-1., max_val=1., inplace=False) -> Tensor
Applies the HardTanh function element-wise. See :class:`~torch.nn.Hardtanh` for more
details.
"""
if not torch.jit.is_scripting():
if type(input) is not Tensor and has_torch_function((input,)):
return handle_torch_function(
hardtanh, (input,), input, min_val=min_val, max_val=max_val,
inplace=inplace)
if inplace:
result = torch._C._nn.hardtanh_(input, min_val, max_val)
else:
result = torch._C._nn.hardtanh(input, min_val, max_val)
return result
hardtanh_ = _add_docstr(torch._C._nn.hardtanh_, r"""
hardtanh_(input, min_val=-1., max_val=1.) -> Tensor
In-place version of :func:`~hardtanh`.
""")
def relu6(input, inplace=False):
# type: (Tensor, bool) -> Tensor
r"""relu6(input, inplace=False) -> Tensor
Applies the element-wise function :math:`\text{ReLU6}(x) = \min(\max(0,x), 6)`.
See :class:`~torch.nn.ReLU6` for more details.
"""
if not torch.jit.is_scripting():
if type(input) is not Tensor and has_torch_function((input,)):
return handle_torch_function(relu6, (input,), input, inplace=inplace)
return hardtanh(input, 0., 6., inplace)
def elu(input, alpha=1., inplace=False):
# type: (Tensor, float, bool) -> Tensor
r"""Applies element-wise,
:math:`\text{ELU}(x) = \max(0,x) + \min(0, \alpha * (\exp(x) - 1))`.
See :class:`~torch.nn.ELU` for more details.
"""
if not torch.jit.is_scripting():
if type(input) is not Tensor and has_torch_function((input,)):
return handle_torch_function(elu, (input,), input, alpha=alpha,
inplace=inplace)
if inplace:
result = torch._C._nn.elu_(input, alpha)
else:
result = torch._C._nn.elu(input, alpha)
return result
elu_ = _add_docstr(torch._C._nn.elu_, r"""
elu_(input, alpha=1.) -> Tensor
In-place version of :func:`~elu`.
""")
def selu(input, inplace=False):
# type: (Tensor, bool) -> Tensor
r"""selu(input, inplace=False) -> Tensor
Applies element-wise,
:math:`\text{SELU}(x) = scale * (\max(0,x) + \min(0, \alpha * (\exp(x) - 1)))`,
with :math:`\alpha=1.6732632423543772848170429916717` and
:math:`scale=1.0507009873554804934193349852946`.
See :class:`~torch.nn.SELU` for more details.
"""
if not torch.jit.is_scripting():
if type(input) is not Tensor and has_torch_function((input,)):
return handle_torch_function(selu, (input,), input, inplace=inplace)
if inplace:
result = torch.selu_(input)
else:
result = torch.selu(input)
return result
selu_ = _add_docstr(torch.selu_, r"""
selu_(input) -> Tensor
In-place version of :func:`~selu`.
""")
def celu(input, alpha=1., inplace=False):
# type: (Tensor, float, bool) -> Tensor
r"""celu(input, alpha=1., inplace=False) -> Tensor
Applies element-wise,
:math:`\text{CELU}(x) = \max(0,x) + \min(0, \alpha * (\exp(x/\alpha) - 1))`.
See :class:`~torch.nn.CELU` for more details.
"""
if not torch.jit.is_scripting():
if type(input) is not Tensor and has_torch_function((input,)):
return handle_torch_function(celu, (input,), input, alpha=alpha,
inplace=inplace)
if inplace:
result = torch.celu_(input, alpha)
else:
result = torch.celu(input, alpha)
return result
celu_ = _add_docstr(torch.celu_, r"""
celu_(input, alpha=1.) -> Tensor
In-place version of :func:`~celu`.
""")
def leaky_relu(input: Tensor, negative_slope: float = 0.01, inplace: bool = False) -> Tensor:
r"""
leaky_relu(input, negative_slope=0.01, inplace=False) -> Tensor
Applies element-wise,
:math:`\text{LeakyReLU}(x) = \max(0, x) + \text{negative\_slope} * \min(0, x)`
See :class:`~torch.nn.LeakyReLU` for more details.
"""
if not torch.jit.is_scripting():
if type(input) is not Tensor and has_torch_function((input,)):
return handle_torch_function(
leaky_relu, (input,), input, negative_slope=negative_slope,
inplace=inplace)
if inplace:
result = torch._C._nn.leaky_relu_(input, negative_slope)
else:
result = torch._C._nn.leaky_relu(input, negative_slope)
return result
leaky_relu_ = _add_docstr(torch._C._nn.leaky_relu_, r"""
leaky_relu_(input, negative_slope=0.01) -> Tensor
In-place version of :func:`~leaky_relu`.
""")
def prelu(input, weight):
# type: (Tensor, Tensor) -> Tensor
r"""prelu(input, weight) -> Tensor
Applies element-wise the function
:math:`\text{PReLU}(x) = \max(0,x) + \text{weight} * \min(0,x)` where weight is a
learnable parameter.
See :class:`~torch.nn.PReLU` for more details.
"""
if not torch.jit.is_scripting():
if type(input) is not Tensor and has_torch_function((input,)):
return handle_torch_function(prelu, (input,), input, weight)
return torch.prelu(input, weight)
def rrelu(input, lower=1. / 8, upper=1. / 3, training=False, inplace=False):
# type: (Tensor, float, float, bool, bool) -> Tensor
r"""rrelu(input, lower=1./8, upper=1./3, training=False, inplace=False) -> Tensor
Randomized leaky ReLU.
See :class:`~torch.nn.RReLU` for more details.
"""
if not torch.jit.is_scripting():
if type(input) is not Tensor and has_torch_function((input,)):
return handle_torch_function(
rrelu, (input,), input, lower=lower, upper=upper,
training=training, inplace=inplace)
if inplace:
result = torch.rrelu_(input, lower, upper, training)
else:
result = torch.rrelu(input, lower, upper, training)
return result
rrelu_ = _add_docstr(torch.rrelu_, r"""
rrelu_(input, lower=1./8, upper=1./3, training=False) -> Tensor
In-place version of :func:`~rrelu`.
""")
logsigmoid = _add_docstr(torch._C._nn.log_sigmoid, r"""
logsigmoid(input) -> Tensor
Applies element-wise :math:`\text{LogSigmoid}(x_i) = \log \left(\frac{1}{1 + \exp(-x_i)}\right)`
See :class:`~torch.nn.LogSigmoid` for more details.
""")
def gelu(input):
r"""gelu(input) -> Tensor
Applies element-wise the function
:math:`\text{GELU}(x) = x * \Phi(x)`
where :math:`\Phi(x)` is the Cumulative Distribution Function for Gaussian Distribution.
See `Gaussian Error Linear Units (GELUs) <https://arxiv.org/abs/1606.08415>`_.
"""
if not torch.jit.is_scripting():
if type(input) is not Tensor and has_torch_function((input,)):
return handle_torch_function(gelu, (input,), input)
return torch._C._nn.gelu(input)
def hardshrink(input, lambd=0.5):
# type: (Tensor, float) -> Tensor
r"""
hardshrink(input, lambd=0.5) -> Tensor
Applies the hard shrinkage function element-wise
See :class:`~torch.nn.Hardshrink` for more details.
"""
if not torch.jit.is_scripting():
if type(input) is not Tensor and has_torch_function((input,)):
return handle_torch_function(hardshrink, (input,), input, lambd=lambd)
return torch.hardshrink(input, lambd)
def tanhshrink(input):
r"""tanhshrink(input) -> Tensor
Applies element-wise, :math:`\text{Tanhshrink}(x) = x - \text{Tanh}(x)`
See :class:`~torch.nn.Tanhshrink` for more details.
"""
if not torch.jit.is_scripting():
if type(input) is not Tensor and has_torch_function((input,)):
return handle_torch_function(tanhshrink, (input,), input)
return input - input.tanh()
def softsign(input):
r"""softsign(input) -> Tensor
Applies element-wise, the function :math:`\text{SoftSign}(x) = \frac{x}{1 + |x|}`
See :class:`~torch.nn.Softsign` for more details.
"""
if not torch.jit.is_scripting():
if type(input) is not Tensor and has_torch_function((input,)):
return handle_torch_function(softsign, (input,), input)
return input / (input.abs() + 1)
softplus = _add_docstr(torch._C._nn.softplus, r"""
softplus(input, beta=1, threshold=20) -> Tensor
Applies element-wise, the function :math:`\text{Softplus}(x) = \frac{1}{\beta} * \log(1 + \exp(\beta * x))`.
For numerical stability the implementation reverts to the linear function
when :math:`input \times \beta > threshold`.
See :class:`~torch.nn.Softplus` for more details.
""")
def _get_softmax_dim(name, ndim, stacklevel):
# type: (str, int, int) -> int
warnings.warn("Implicit dimension choice for {} has been deprecated. "
"Change the call to include dim=X as an argument.".format(name), stacklevel=stacklevel)
if ndim == 0 or ndim == 1 or ndim == 3:
ret = 0
else:
ret = 1
return ret
def softmin(input, dim=None, _stacklevel=3, dtype=None):
# type: (Tensor, Optional[int], int, Optional[int]) -> Tensor
r"""Applies a softmin function.
Note that :math:`\text{Softmin}(x) = \text{Softmax}(-x)`. See softmax definition for mathematical formula.
See :class:`~torch.nn.Softmin` for more details.
Arguments:
input (Tensor): input
dim (int): A dimension along which softmin will be computed (so every slice
along dim will sum to 1).
dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor.
If specified, the input tensor is casted to :attr:`dtype` before the operation
is performed. This is useful for preventing data type overflows. Default: None.
"""
if not torch.jit.is_scripting():
if type(input) is not Tensor and has_torch_function((input,)):
return handle_torch_function(
softmin, (input,), input, dim=dim, _stacklevel=_stacklevel, dtype=dtype)
if dim is None:
dim = _get_softmax_dim('softmin', input.dim(), _stacklevel)
if dtype is None:
ret = (-input).softmax(dim)
else:
ret = (-input).softmax(dim, dtype=dtype)
return ret
def softmax(input, dim=None, _stacklevel=3, dtype=None):
# type: (Tensor, Optional[int], int, Optional[int]) -> Tensor
r"""Applies a softmax function.
Softmax is defined as:
:math:`\text{Softmax}(x_{i}) = \frac{\exp(x_i)}{\sum_j \exp(x_j)}`
It is applied to all slices along dim, and will re-scale them so that the elements
lie in the range `[0, 1]` and sum to 1.
See :class:`~torch.nn.Softmax` for more details.
Arguments:
input (Tensor): input
dim (int): A dimension along which softmax will be computed.
dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor.
If specified, the input tensor is casted to :attr:`dtype` before the operation
is performed. This is useful for preventing data type overflows. Default: None.
.. note::
This function doesn't work directly with NLLLoss,
which expects the Log to be computed between the Softmax and itself.
Use log_softmax instead (it's faster and has better numerical properties).
"""
if not torch.jit.is_scripting():
if type(input) is not Tensor and has_torch_function((input,)):
return handle_torch_function(
softmax, (input,), input, dim=dim, _stacklevel=_stacklevel, dtype=dtype)
if dim is None:
dim = _get_softmax_dim('softmax', input.dim(), _stacklevel)
if dtype is None:
ret = input.softmax(dim)
else:
ret = input.softmax(dim, dtype=dtype)
return ret
def gumbel_softmax(logits, tau=1, hard=False, eps=1e-10, dim=-1):
# type: (Tensor, float, bool, float, int) -> Tensor
r"""
Samples from the Gumbel-Softmax distribution (`Link 1`_ `Link 2`_) and optionally discretizes.
Args:
logits: `[..., num_features]` unnormalized log probabilities
tau: non-negative scalar temperature
hard: if ``True``, the returned samples will be discretized as one-hot vectors,
but will be differentiated as if it is the soft sample in autograd
dim (int): A dimension along which softmax will be computed. Default: -1.
Returns:
Sampled tensor of same shape as `logits` from the Gumbel-Softmax distribution.
If ``hard=True``, the returned samples will be one-hot, otherwise they will
be probability distributions that sum to 1 across `dim`.
.. note::
This function is here for legacy reasons, may be removed from nn.Functional in the future.
.. note::
The main trick for `hard` is to do `y_hard - y_soft.detach() + y_soft`
It achieves two things:
- makes the output value exactly one-hot
(since we add then subtract y_soft value)
- makes the gradient equal to y_soft gradient
(since we strip all other gradients)
Examples::
>>> logits = torch.randn(20, 32)
>>> # Sample soft categorical using reparametrization trick:
>>> F.gumbel_softmax(logits, tau=1, hard=False)
>>> # Sample hard categorical using "Straight-through" trick:
>>> F.gumbel_softmax(logits, tau=1, hard=True)
.. _Link 1:
https://arxiv.org/abs/1611.00712
.. _Link 2:
https://arxiv.org/abs/1611.01144
"""
if not torch.jit.is_scripting():
if type(logits) is not Tensor and has_torch_function((logits,)):
return handle_torch_function(
gumbel_softmax, (logits,), logits, tau=tau, hard=hard, eps=eps, dim=dim)
if eps != 1e-10:
warnings.warn("`eps` parameter is deprecated and has no effect.")
gumbels = -torch.empty_like(logits, memory_format=torch.legacy_contiguous_format).exponential_().log() # ~Gumbel(0,1)
gumbels = (logits + gumbels) / tau # ~Gumbel(logits,tau)
y_soft = gumbels.softmax(dim)
if hard:
# Straight through.
index = y_soft.max(dim, keepdim=True)[1]
y_hard = torch.zeros_like(logits, memory_format=torch.legacy_contiguous_format).scatter_(dim, index, 1.0)
ret = y_hard - y_soft.detach() + y_soft
else:
# Reparametrization trick.
ret = y_soft
return ret
def log_softmax(input, dim=None, _stacklevel=3, dtype=None):
# type: (Tensor, Optional[int], int, Optional[int]) -> Tensor
r"""Applies a softmax followed by a logarithm.
While mathematically equivalent to log(softmax(x)), doing these two
operations separately is slower, and numerically unstable. This function
uses an alternative formulation to compute the output and gradient correctly.
See :class:`~torch.nn.LogSoftmax` for more details.
Arguments:
input (Tensor): input
dim (int): A dimension along which log_softmax will be computed.
dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor.
If specified, the input tensor is casted to :attr:`dtype` before the operation
is performed. This is useful for preventing data type overflows. Default: None.
"""
if not torch.jit.is_scripting():
if type(input) is not Tensor and has_torch_function((input,)):
return handle_torch_function(
log_softmax, (input,), input, dim=dim, _stacklevel=_stacklevel, dtype=dtype)
if dim is None:
dim = _get_softmax_dim('log_softmax', input.dim(), _stacklevel)
if dtype is None:
ret = input.log_softmax(dim)
else:
ret = input.log_softmax(dim, dtype=dtype)
return ret
softshrink = _add_docstr(torch._C._nn.softshrink, r"""
softshrink(input, lambd=0.5) -> Tensor
Applies the soft shrinkage function elementwise
See :class:`~torch.nn.Softshrink` for more details.
""")
def tanh(input):
r"""tanh(input) -> Tensor
Applies element-wise,
:math:`\text{Tanh}(x) = \tanh(x) = \frac{\exp(x) - \exp(-x)}{\exp(x) + \exp(-x)}`
See :class:`~torch.nn.Tanh` for more details.
"""
warnings.warn("nn.functional.tanh is deprecated. Use torch.tanh instead.")
return input.tanh()
def sigmoid(input):
r"""sigmoid(input) -> Tensor
Applies the element-wise function :math:`\text{Sigmoid}(x) = \frac{1}{1 + \exp(-x)}`
See :class:`~torch.nn.Sigmoid` for more details.
"""
warnings.warn("nn.functional.sigmoid is deprecated. Use torch.sigmoid instead.")
return input.sigmoid()
def hardsigmoid(input, inplace=False):
# type: (Tensor, bool) -> Tensor
r"""hardsigmoid(input) -> Tensor
Applies the element-wise function
.. math::
\text{Hardsigmoid}(x) = \begin{cases}
0 & \text{if~} x \le -3, \\
1 & \text{if~} x \ge +3, \\
x / 6 + 1 / 2 & \text{otherwise}
\end{cases}
Args:
inplace: If set to ``True``, will do this operation in-place. Default: ``False``
See :class:`~torch.nn.Hardsigmoid` for more details.
"""
if not torch.jit.is_scripting():
if type(input) is not Tensor and has_torch_function((input,)):
return handle_torch_function(hardsigmoid, (input,), input, inplace=inplace)
if inplace:
return torch._C._nn.hardsigmoid_(input)
return torch._C._nn.hardsigmoid(input)
def linear(input, weight, bias=None):
# type: (Tensor, Tensor, Optional[Tensor]) -> Tensor
r"""
Applies a linear transformation to the incoming data: :math:`y = xA^T + b`.
This operator supports :ref:`TensorFloat32<tf32_on_ampere>`.
Shape:
- Input: :math:`(N, *, in\_features)` N is the batch size, `*` means any number of
additional dimensions
- Weight: :math:`(out\_features, in\_features)`
- Bias: :math:`(out\_features)`
- Output: :math:`(N, *, out\_features)`
"""
tens_ops = (input, weight)
if not torch.jit.is_scripting():
if any([type(t) is not Tensor for t in tens_ops]) and has_torch_function(tens_ops):
return handle_torch_function(linear, tens_ops, input, weight, bias=bias)
if input.dim() == 2 and bias is not None:
# fused op is marginally faster
ret = torch.addmm(bias, input, weight.t())
else:
output = input.matmul(weight.t())
if bias is not None:
output += bias
ret = output
return ret
def bilinear(input1, input2, weight, bias=None):
# type: (Tensor, Tensor, Tensor, Optional[Tensor]) -> Tensor
r"""
Applies a bilinear transformation to the incoming data:
:math:`y = x_1^T A x_2 + b`
Shape:
- input1: :math:`(N, *, H_{in1})` where :math:`H_{in1}=\text{in1\_features}`
and :math:`*` means any number of additional dimensions.
All but the last dimension of the inputs should be the same.
- input2: :math:`(N, *, H_{in2})` where :math:`H_{in2}=\text{in2\_features}`
- weight: :math:`(\text{out\_features}, \text{in1\_features},
\text{in2\_features})`
- bias: :math:`(\text{out\_features})`
- output: :math:`(N, *, H_{out})` where :math:`H_{out}=\text{out\_features}`
and all but the last dimension are the same shape as the input.
"""
return torch.bilinear(input1, input2, weight, bias)
def silu(input, inplace=False):
# type: (Tensor, bool) -> Tensor
r"""Applies the silu function, element-wise.
.. math::
\text{silu}(x) = x * \sigma(x), \text{where } \sigma(x) \text{ is the logistic sigmoid.}
.. note::
See `Gaussian Error Linear Units (GELUs) <https://arxiv.org/abs/1606.08415>`_
where the SiLU (Sigmoid Linear Unit) was originally coined, and see
`Sigmoid-Weighted Linear Units for Neural Network Function Approximation
in Reinforcement Learning <https://arxiv.org/abs/1702.03118>`_ and `Swish:
a Self-Gated Activation Function <https://arxiv.org/abs/1710.05941v1>`_
where the SiLU was experimented with later.
See :class:`~torch.nn.SiLU` for more details.
"""
if not torch.jit.is_scripting():
if type(input) is not Tensor and has_torch_function((input,)):
return handle_torch_function(silu, (input,), input, inplace=inplace)
if inplace:
return torch._C._nn.silu_(input)
return torch._C._nn.silu(input)
def hardswish(input: Tensor, inplace: bool = False) -> Tensor:
r"""Applies the hardswish function, element-wise, as described in the paper:
`Searching for MobileNetV3`_.
.. math::
\text{Hardswish}(x) = \begin{cases}
0 & \text{if~} x \le -3, \\
x & \text{if~} x \ge +3, \\
x \cdot (x + 3) /6 & \text{otherwise}
\end{cases}
See :class:`~torch.nn.Hardswish` for more details.
.. _`Searching for MobileNetV3`:
https://arxiv.org/abs/1905.02244
"""
if not torch.jit.is_scripting():
if type(input) is not Tensor and has_torch_function((input,)):
return handle_torch_function(hardswish, (input,), input, inplace=inplace)
if inplace:
return torch._C._nn.hardswish_(input)
return torch._C._nn.hardswish(input)
def _no_grad_embedding_renorm_(weight, input, max_norm, norm_type):
# type: (Tensor, Tensor, float, float) -> Tensor
with torch.no_grad():
torch.embedding_renorm_(weight, input, max_norm, norm_type)
def embedding(input, weight, padding_idx=None, max_norm=None, norm_type=2.,
scale_grad_by_freq=False, sparse=False):
# type: (Tensor, Tensor, Optional[int], Optional[float], float, bool, bool) -> Tensor
r"""A simple lookup table that looks up embeddings in a fixed dictionary and size.
This module is often used to retrieve word embeddings using indices.
The input to the module is a list of indices, and the embedding matrix,
and the output is the corresponding word embeddings.
See :class:`torch.nn.Embedding` for more details.
Args:
input (LongTensor): Tensor containing indices into the embedding matrix
weight (Tensor): The embedding matrix with number of rows equal to the maximum possible index + 1,
and number of columns equal to the embedding size
padding_idx (int, optional): If given, pads the output with the embedding vector at :attr:`padding_idx`
(initialized to zeros) whenever it encounters the index.
max_norm (float, optional): If given, each embedding vector with norm larger than :attr:`max_norm`
is renormalized to have norm :attr:`max_norm`.
Note: this will modify :attr:`weight` in-place.
norm_type (float, optional): The p of the p-norm to compute for the :attr:`max_norm` option. Default ``2``.
scale_grad_by_freq (boolean, optional): If given, this will scale gradients by the inverse of frequency of
the words in the mini-batch. Default ``False``.
sparse (bool, optional): If ``True``, gradient w.r.t. :attr:`weight` will be a sparse tensor. See Notes under
:class:`torch.nn.Embedding` for more details regarding sparse gradients.
Shape:
- Input: LongTensor of arbitrary shape containing the indices to extract
- Weight: Embedding matrix of floating point type with shape `(V, embedding_dim)`,
where V = maximum index + 1 and embedding_dim = the embedding size
- Output: `(*, embedding_dim)`, where `*` is the input shape
Examples::
>>> # a batch of 2 samples of 4 indices each
>>> input = torch.tensor([[1,2,4,5],[4,3,2,9]])
>>> # an embedding matrix containing 10 tensors of size 3
>>> embedding_matrix = torch.rand(10, 3)
>>> F.embedding(input, embedding_matrix)
tensor([[[ 0.8490, 0.9625, 0.6753],
[ 0.9666, 0.7761, 0.6108],
[ 0.6246, 0.9751, 0.3618],
[ 0.4161, 0.2419, 0.7383]],
[[ 0.6246, 0.9751, 0.3618],
[ 0.0237, 0.7794, 0.0528],
[ 0.9666, 0.7761, 0.6108],
[ 0.3385, 0.8612, 0.1867]]])
>>> # example with padding_idx
>>> weights = torch.rand(10, 3)
>>> weights[0, :].zero_()
>>> embedding_matrix = weights
>>> input = torch.tensor([[0,2,0,5]])
>>> F.embedding(input, embedding_matrix, padding_idx=0)
tensor([[[ 0.0000, 0.0000, 0.0000],
[ 0.5609, 0.5384, 0.8720],
[ 0.0000, 0.0000, 0.0000],
[ 0.6262, 0.2438, 0.7471]]])
"""
if padding_idx is not None:
if padding_idx > 0:
assert padding_idx < weight.size(0), 'Padding_idx must be within num_embeddings'
elif padding_idx < 0:
assert padding_idx >= -weight.size(0), 'Padding_idx must be within num_embeddings'
padding_idx = weight.size(0) + padding_idx
else:
padding_idx = -1
if max_norm is not None:
# `embedding_renorm_` will call .contiguous() on input anyways, so we
# call it here and take advantage of the improved locality in the
# `embedding` call below too.
input = input.contiguous()
# XXX: equivalent to
# with torch.no_grad():
# torch.nembedding_renorm_
# remove once script supports set_grad_enabled
_no_grad_embedding_renorm_(weight, input, max_norm, norm_type)
return torch.embedding(weight, input, padding_idx, scale_grad_by_freq, sparse)
def embedding_bag(input, weight, offsets=None, max_norm=None, norm_type=2,
scale_grad_by_freq=False, mode='mean', sparse=False,
per_sample_weights=None, include_last_offset=False):
# type: (Tensor, Tensor, Optional[Tensor], Optional[float], float, bool, str, bool, Optional[Tensor], bool) -> Tensor
r"""Computes sums, means or maxes of `bags` of embeddings, without instantiating the
intermediate embeddings.
See :class:`torch.nn.EmbeddingBag` for more details.
Note:
When using the CUDA backend, this operation may induce nondeterministic
behaviour in its backward pass that is not easily switched off.
Please see the notes on :doc:`/notes/randomness` for background.
Args:
input (LongTensor): Tensor containing bags of indices into the embedding matrix
weight (Tensor): The embedding matrix with number of rows equal to the maximum possible index + 1,
and number of columns equal to the embedding size
offsets (LongTensor, optional): Only used when :attr:`input` is 1D. :attr:`offsets` determines
the starting index position of each bag (sequence) in :attr:`input`.
max_norm (float, optional): If given, each embedding vector with norm larger than :attr:`max_norm`
is renormalized to have norm :attr:`max_norm`.
Note: this will modify :attr:`weight` in-place.
norm_type (float, optional): The ``p`` in the ``p``-norm to compute for the :attr:`max_norm` option.
Default ``2``.
scale_grad_by_freq (boolean, optional): if given, this will scale gradients by the inverse of frequency of
the words in the mini-batch. Default ``False``.
Note: this option is not supported when ``mode="max"``.
mode (string, optional): ``"sum"``, ``"mean"`` or ``"max"``. Specifies the way to reduce the bag.
Default: ``"mean"``
sparse (bool, optional): if ``True``, gradient w.r.t. :attr:`weight` will be a sparse tensor. See Notes under
:class:`torch.nn.Embedding` for more details regarding sparse gradients.
Note: this option is not supported when ``mode="max"``.
per_sample_weights (Tensor, optional): a tensor of float / double weights, or None
to indicate all weights should be taken to be 1. If specified, :attr:`per_sample_weights`
must have exactly the same shape as input and is treated as having the same
:attr:`offsets`, if those are not None.
include_last_offset (bool, optional): if ``True``, the size of offsets is equal to the number of bags + 1.
The last element is the size of the input, or the ending index position of the last bag (sequence).
Shape:
- :attr:`input` (LongTensor) and :attr:`offsets` (LongTensor, optional)
- If :attr:`input` is 2D of shape `(B, N)`,
it will be treated as ``B`` bags (sequences) each of fixed length ``N``, and
this will return ``B`` values aggregated in a way depending on the :attr:`mode`.
:attr:`offsets` is ignored and required to be ``None`` in this case.
- If :attr:`input` is 1D of shape `(N)`,
it will be treated as a concatenation of multiple bags (sequences).
:attr:`offsets` is required to be a 1D tensor containing the
starting index positions of each bag in :attr:`input`. Therefore,
for :attr:`offsets` of shape `(B)`, :attr:`input` will be viewed as
having ``B`` bags. Empty bags (i.e., having 0-length) will have
returned vectors filled by zeros.
- :attr:`weight` (Tensor): the learnable weights of the module of
shape `(num_embeddings, embedding_dim)`
- :attr:`per_sample_weights` (Tensor, optional). Has the same shape as
:attr:`input`.
- :attr:`output`: aggregated embedding values of shape `(B, embedding_dim)`
Examples::
>>> # an Embedding module containing 10 tensors of size 3
>>> embedding_matrix = torch.rand(10, 3)
>>> # a batch of 2 samples of 4 indices each
>>> input = torch.tensor([1,2,4,5,4,3,2,9])
>>> offsets = torch.tensor([0,4])
>>> F.embedding_bag(embedding_matrix, input, offsets)
tensor([[ 0.3397, 0.3552, 0.5545],
[ 0.5893, 0.4386, 0.5882]])
"""
if not torch.jit.is_scripting():
tens_ops = (input, weight)
if any([type(t) is not Tensor for t in tens_ops]) and has_torch_function(tens_ops):
return handle_torch_function(
embedding_bag, tens_ops, input, weight, offsets=offsets, max_norm=max_norm,
norm_type=norm_type, scale_grad_by_freq=scale_grad_by_freq, mode=mode,
sparse=sparse, per_sample_weights=per_sample_weights,
include_last_offset=include_last_offset)
# Check for backward compatibility.
# Used to be embedding_bag(weight, input, ...)
# Now is embedding_bag(input, weight, ...)
if weight.dtype == torch.long and input.is_floating_point():
warnings.warn("Argument order of nn.functional.embedding_bag was changed. "
"Usage `embedding_bag(weight, input, ...)` is deprecated, "
"and should now be `embedding_bag(input, weight, ...)`.")
weight, input = input, weight
if per_sample_weights is not None and input.size() != per_sample_weights.size():
raise ValueError("embedding_bag: If per_sample_weights ({}) is not None, "
"then it must have the same shape as the input ({})"
.format(per_sample_weights.shape, input.shape))
if input.dim() == 2:
if offsets is not None:
type_str = "<unknown>"
# TODO: Remove this once script supports type() calls
if not torch.jit.is_scripting():
type_str = str(type(offsets))
raise ValueError("if input is 2D, then offsets has to be None"
", as input is treated is a mini-batch of"
" fixed length sequences. However, found "
"offsets of type {}".format(type_str))
offsets = torch.arange(0, input.numel(), input.size(1),
dtype=torch.long, device=input.device)
input = input.reshape(-1)
if per_sample_weights is not None:
per_sample_weights = per_sample_weights.reshape(-1)
elif input.dim() == 1:
if offsets is None:
raise ValueError("offsets has to be a 1D Tensor but got None")
if offsets.dim() != 1:
raise ValueError("offsets has to be a 1D Tensor")
else:
raise ValueError("input has to be 1D or 2D Tensor,"
" but got Tensor of dimension {}".format(input.dim()))
if mode == 'sum':
mode_enum = 0
elif mode == 'mean':
mode_enum = 1
elif mode == 'max':
mode_enum = 2
if scale_grad_by_freq:
raise ValueError("max mode does not support scaling the gradient by the frequency")
if sparse:
raise ValueError("max mode does not support sparse weights")
else:
raise ValueError("mode has to be one of sum, mean or max")
if max_norm is not None:
# XXX: equivalent to
# with torch.no_grad():
# torch.nembedding_renorm_
# remove once script supports set_grad_enabled
_no_grad_embedding_renorm_(weight, input, max_norm, norm_type)
if per_sample_weights is not None and mode != 'sum':
raise NotImplementedError("embedding_bag: per_sample_weights was not None. "
"per_sample_weights is only supported for mode='sum' "
"(got mode='{}'). Please open a feature request on GitHub."
.format(mode))
ret, _, _, _ = torch.embedding_bag(
weight,
input,
offsets,
scale_grad_by_freq,
mode_enum,
sparse,
per_sample_weights,
include_last_offset)
return ret
def _verify_batch_size(size):
# type: (List[int]) -> None
# XXX: JIT script does not support the reduce from functools, and mul op is a
# builtin, which cannot be used as a value to a func yet, so rewrite this size
# check to a simple equivalent for loop
#
# TODO: make use of reduce like below when JIT is ready with the missing features:
# from operator import mul
# from functools import reduce
#
# if reduce(mul, size[2:], size[0]) == 1
size_prods = size[0]
for i in range(len(size) - 2):
size_prods *= size[i + 2]
if size_prods == 1:
raise ValueError('Expected more than 1 value per channel when training, got input size {}'.format(size))
def batch_norm(input, running_mean, running_var, weight=None, bias=None,
training=False, momentum=0.1, eps=1e-5):
# type: (Tensor, Optional[Tensor], Optional[Tensor], Optional[Tensor], Optional[Tensor], bool, float, float) -> Tensor # noqa
r"""Applies Batch Normalization for each channel across a batch of data.
See :class:`~torch.nn.BatchNorm1d`, :class:`~torch.nn.BatchNorm2d`,
:class:`~torch.nn.BatchNorm3d` for details.
"""
if not torch.jit.is_scripting():
if type(input) is not Tensor and has_torch_function((input,)):
return handle_torch_function(
batch_norm, (input,), input, running_mean, running_var, weight=weight,
bias=bias, training=training, momentum=momentum, eps=eps)
if training:
_verify_batch_size(input.size())
return torch.batch_norm(
input, weight, bias, running_mean, running_var,
training, momentum, eps, torch.backends.cudnn.enabled
)
def instance_norm(input, running_mean=None, running_var=None, weight=None,
bias=None, use_input_stats=True, momentum=0.1, eps=1e-5):
# type: (Tensor, Optional[Tensor], Optional[Tensor], Optional[Tensor], Optional[Tensor], bool, float, float) -> Tensor # noqa
r"""Applies Instance Normalization for each channel in each data sample in a
batch.
See :class:`~torch.nn.InstanceNorm1d`, :class:`~torch.nn.InstanceNorm2d`,
:class:`~torch.nn.InstanceNorm3d` for details.
"""
if not torch.jit.is_scripting():
if type(input) is not Tensor and has_torch_function((input,)):
return handle_torch_function(
instance_norm, (input,), input, running_mean=running_mean,
running_var=running_var, weight=weight, bias=bias,
use_input_stats=use_input_stats, momentum=momentum, eps=eps)
_verify_batch_size(input.size())
return torch.instance_norm(
input, weight, bias, running_mean, running_var,
use_input_stats, momentum, eps, torch.backends.cudnn.enabled
)
def layer_norm(input, normalized_shape, weight=None, bias=None, eps=1e-5):
# type: (Tensor, List[int], Optional[Tensor], Optional[Tensor], float) -> Tensor
r"""Applies Layer Normalization for last certain number of dimensions.
See :class:`~torch.nn.LayerNorm` for details.
"""
if not torch.jit.is_scripting():
if type(input) is not Tensor and has_torch_function((input,)):
return handle_torch_function(
layer_norm, (input,), input, normalized_shape, weight=weight, bias=bias, eps=eps)
return torch.layer_norm(input, normalized_shape, weight, bias, eps,
torch.backends.cudnn.enabled)
def group_norm(input, num_groups, weight=None, bias=None, eps=1e-5):
# type: (Tensor, int, Optional[Tensor], Optional[Tensor], float) -> Tensor
r"""Applies Group Normalization for last certain number of dimensions.
See :class:`~torch.nn.GroupNorm` for details.
"""
if not torch.jit.is_scripting():
if type(input) is not Tensor and has_torch_function((input,)):
return handle_torch_function(
group_norm, (input,), input, num_groups, weight=weight, bias=bias, eps=eps)
_verify_batch_size([
input.size(0) * input.size(1) // num_groups, num_groups]
+ list(input.size()[2:]))
return torch.group_norm(input, num_groups, weight, bias, eps,
torch.backends.cudnn.enabled)
def local_response_norm(input, size, alpha=1e-4, beta=0.75, k=1.):
# type: (Tensor, int, float, float, float) -> Tensor
r"""Applies local response normalization over an input signal composed of
several input planes, where channels occupy the second dimension.
Applies normalization across channels.
See :class:`~torch.nn.LocalResponseNorm` for details.
"""
if not torch.jit.is_scripting():
if type(input) is not Tensor and has_torch_function((input,)):
return handle_torch_function(
local_response_norm, (input,), input, size, alpha=alpha, beta=beta, k=k)
dim = input.dim()
if dim < 3:
raise ValueError('Expected 3D or higher dimensionality \
input (got {} dimensions)'.format(dim))
div = input.mul(input).unsqueeze(1)
if dim == 3:
div = pad(div, (0, 0, size // 2, (size - 1) // 2))
div = avg_pool2d(div, (size, 1), stride=1).squeeze(1)
else:
sizes = input.size()
div = div.view(sizes[0], 1, sizes[1], sizes[2], -1)
div = pad(div, (0, 0, 0, 0, size // 2, (size - 1) // 2))
div = avg_pool3d(div, (size, 1, 1), stride=1).squeeze(1)
div = div.view(sizes)
div = div.mul(alpha).add(k).pow(beta)
return input / div
# loss
def ctc_loss(log_probs, targets, input_lengths, target_lengths, blank=0,
reduction='mean', zero_infinity=False):
# type: (Tensor, Tensor, Tensor, Tensor, int, str, bool) -> Tensor
r"""The Connectionist Temporal Classification loss.
See :class:`~torch.nn.CTCLoss` for details.
Note:
In some circumstances when using the CUDA backend with CuDNN, this operator
may select a nondeterministic algorithm to increase performance. If this is
undesirable, you can try to make the operation deterministic (potentially at
a performance cost) by setting ``torch.backends.cudnn.deterministic =
True``.
Please see the notes on :doc:`/notes/randomness` for background.
Note:
When using the CUDA backend, this operation may induce nondeterministic
behaviour in its backward pass that is not easily switched off.
Please see the notes on :doc:`/notes/randomness` for background.
Args:
log_probs: :math:`(T, N, C)` where `C = number of characters in alphabet including blank`,
`T = input length`, and `N = batch size`.
The logarithmized probabilities of the outputs
(e.g. obtained with :func:`torch.nn.functional.log_softmax`).
targets: :math:`(N, S)` or `(sum(target_lengths))`.
Targets cannot be blank. In the second form, the targets are assumed to be concatenated.
input_lengths: :math:`(N)`.
Lengths of the inputs (must each be :math:`\leq T`)
target_lengths: :math:`(N)`.
Lengths of the targets
blank (int, optional):
Blank label. Default :math:`0`.
reduction (string, optional): Specifies the reduction to apply to the output:
``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied,
``'mean'``: the output losses will be divided by the target lengths and
then the mean over the batch is taken, ``'sum'``: the output will be
summed. Default: ``'mean'``
zero_infinity (bool, optional):
Whether to zero infinite losses and the associated gradients.
Default: ``False``
Infinite losses mainly occur when the inputs are too short
to be aligned to the targets.
Example::
>>> log_probs = torch.randn(50, 16, 20).log_softmax(2).detach().requires_grad_()
>>> targets = torch.randint(1, 20, (16, 30), dtype=torch.long)
>>> input_lengths = torch.full((16,), 50, dtype=torch.long)
>>> target_lengths = torch.randint(10,30,(16,), dtype=torch.long)
>>> loss = F.ctc_loss(log_probs, targets, input_lengths, target_lengths)
>>> loss.backward()
"""
return torch.ctc_loss(log_probs, targets, input_lengths, target_lengths, blank, _Reduction.get_enum(reduction),
zero_infinity)
def nll_loss(input, target, weight=None, size_average=None, ignore_index=-100,
reduce=None, reduction='mean'):
# type: (Tensor, Tensor, Optional[Tensor], Optional[bool], int, Optional[bool], str) -> Tensor
r"""The negative log likelihood loss.
See :class:`~torch.nn.NLLLoss` for details.
Args:
input: :math:`(N, C)` where `C = number of classes` or :math:`(N, C, H, W)`
in case of 2D Loss, or :math:`(N, C, d_1, d_2, ..., d_K)` where :math:`K \geq 1`
in the case of K-dimensional loss.
target: :math:`(N)` where each value is :math:`0 \leq \text{targets}[i] \leq C-1`,
or :math:`(N, d_1, d_2, ..., d_K)` where :math:`K \geq 1` for
K-dimensional loss.
weight (Tensor, optional): a manual rescaling weight given to each
class. If given, has to be a Tensor of size `C`
size_average (bool, optional): Deprecated (see :attr:`reduction`). By default,
the losses are averaged over each loss element in the batch. Note that for
some losses, there multiple elements per sample. If the field :attr:`size_average`
is set to ``False``, the losses are instead summed for each minibatch. Ignored
when reduce is ``False``. Default: ``True``
ignore_index (int, optional): Specifies a target value that is ignored
and does not contribute to the input gradient. When :attr:`size_average` is
``True``, the loss is averaged over non-ignored targets. Default: -100
reduce (bool, optional): Deprecated (see :attr:`reduction`). By default, the
losses are averaged or summed over observations for each minibatch depending
on :attr:`size_average`. When :attr:`reduce` is ``False``, returns a loss per
batch element instead and ignores :attr:`size_average`. Default: ``True``
reduction (string, optional): Specifies the reduction to apply to the output:
``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied,
``'mean'``: the sum of the output will be divided by the number of
elements in the output, ``'sum'``: the output will be summed. Note: :attr:`size_average`
and :attr:`reduce` are in the process of being deprecated, and in the meantime,
specifying either of those two args will override :attr:`reduction`. Default: ``'mean'``
Example::
>>> # input is of size N x C = 3 x 5
>>> input = torch.randn(3, 5, requires_grad=True)
>>> # each element in target has to have 0 <= value < C
>>> target = torch.tensor([1, 0, 4])
>>> output = F.nll_loss(F.log_softmax(input), target)
>>> output.backward()
"""
if not torch.jit.is_scripting():
tens_ops = (input, target)
if any([type(t) is not Tensor for t in tens_ops]) and has_torch_function(tens_ops):
return handle_torch_function(
nll_loss, tens_ops, input, target, weight=weight, size_average=size_average,
ignore_index=ignore_index, reduce=reduce, reduction=reduction)
if size_average is not None or reduce is not None:
reduction = _Reduction.legacy_get_string(size_average, reduce)
dim = input.dim()
if dim < 2:
raise ValueError('Expected 2 or more dimensions (got {})'.format(dim))
if input.size(0) != target.size(0):
raise ValueError('Expected input batch_size ({}) to match target batch_size ({}).'
.format(input.size(0), target.size(0)))
if dim == 2:
ret = torch._C._nn.nll_loss(input, target, weight, _Reduction.get_enum(reduction), ignore_index)
elif dim == 4:
ret = torch._C._nn.nll_loss2d(input, target, weight, _Reduction.get_enum(reduction), ignore_index)
else:
# dim == 3 or dim > 4
n = input.size(0)
c = input.size(1)
out_size = (n,) + input.size()[2:]
if target.size()[1:] != input.size()[2:]:
raise ValueError('Expected target size {}, got {}'.format(
out_size, target.size()))
input = input.contiguous()
target = target.contiguous()
# support empty batches, see #15870
if input.numel() > 0:
input = input.view(n, c, 1, -1)
else:
input = input.view(n, c, 0, 0)
if target.numel() > 0:
target = target.view(n, 1, -1)
else:
target = target.view(n, 0, 0)
reduction_enum = _Reduction.get_enum(reduction)
if reduction != 'none':
ret = torch._C._nn.nll_loss2d(
input, target, weight, reduction_enum, ignore_index)
else:
out = torch._C._nn.nll_loss2d(
input, target, weight, reduction_enum, ignore_index)
ret = out.view(out_size)
return ret
def poisson_nll_loss(input, target, log_input=True, full=False, size_average=None, eps=1e-8,
reduce=None, reduction='mean'):
# type: (Tensor, Tensor, bool, bool, Optional[bool], float, Optional[bool], str) -> Tensor
r"""Poisson negative log likelihood loss.
See :class:`~torch.nn.PoissonNLLLoss` for details.
Args:
input: expectation of underlying Poisson distribution.
target: random sample :math:`target \sim \text{Poisson}(input)`.
log_input: if ``True`` the loss is computed as
:math:`\exp(\text{input}) - \text{target} * \text{input}`, if ``False`` then loss is
:math:`\text{input} - \text{target} * \log(\text{input}+\text{eps})`. Default: ``True``
full: whether to compute full loss, i. e. to add the Stirling
approximation term. Default: ``False``
:math:`\text{target} * \log(\text{target}) - \text{target} + 0.5 * \log(2 * \pi * \text{target})`.
size_average (bool, optional): Deprecated (see :attr:`reduction`). By default,
the losses are averaged over each loss element in the batch. Note that for
some losses, there multiple elements per sample. If the field :attr:`size_average`
is set to ``False``, the losses are instead summed for each minibatch. Ignored
when reduce is ``False``. Default: ``True``
eps (float, optional): Small value to avoid evaluation of :math:`\log(0)` when
:attr:`log_input`=``False``. Default: 1e-8
reduce (bool, optional): Deprecated (see :attr:`reduction`). By default, the
losses are averaged or summed over observations for each minibatch depending
on :attr:`size_average`. When :attr:`reduce` is ``False``, returns a loss per
batch element instead and ignores :attr:`size_average`. Default: ``True``
reduction (string, optional): Specifies the reduction to apply to the output:
``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied,
``'mean'``: the sum of the output will be divided by the number of
elements in the output, ``'sum'``: the output will be summed. Note: :attr:`size_average`
and :attr:`reduce` are in the process of being deprecated, and in the meantime,
specifying either of those two args will override :attr:`reduction`. Default: ``'mean'``
"""
if not torch.jit.is_scripting():
tens_ops = (input, target)
if any([type(t) is not Tensor for t in tens_ops]) and has_torch_function(tens_ops):
return handle_torch_function(
poisson_nll_loss, tens_ops, input, target, log_input=log_input, full=full,
size_average=size_average, eps=eps, reduce=reduce, reduction=reduction)
if size_average is not None or reduce is not None:
reduction = _Reduction.legacy_get_string(size_average, reduce)
if reduction != 'none' and reduction != 'mean' and reduction != 'sum':
ret = input
raise ValueError(reduction + " is not valid")
ret = torch.poisson_nll_loss(input, target, log_input, full, eps, _Reduction.get_enum(reduction))
return ret
def kl_div(input, target, size_average=None, reduce=None, reduction='mean', log_target=False):
# type: (Tensor, Tensor, Optional[bool], Optional[bool], str, bool) -> Tensor
r"""The `Kullback-Leibler divergence Loss
<https://en.wikipedia.org/wiki/Kullback-Leibler_divergence>`__
See :class:`~torch.nn.KLDivLoss` for details.
Args:
input: Tensor of arbitrary shape
target: Tensor of the same shape as input
size_average (bool, optional): Deprecated (see :attr:`reduction`). By default,
the losses are averaged over each loss element in the batch. Note that for
some losses, there multiple elements per sample. If the field :attr:`size_average`
is set to ``False``, the losses are instead summed for each minibatch. Ignored
when reduce is ``False``. Default: ``True``
reduce (bool, optional): Deprecated (see :attr:`reduction`). By default, the
losses are averaged or summed over observations for each minibatch depending
on :attr:`size_average`. When :attr:`reduce` is ``False``, returns a loss per
batch element instead and ignores :attr:`size_average`. Default: ``True``
reduction (string, optional): Specifies the reduction to apply to the output:
``'none'`` | ``'batchmean'`` | ``'sum'`` | ``'mean'``.
``'none'``: no reduction will be applied
``'batchmean'``: the sum of the output will be divided by the batchsize
``'sum'``: the output will be summed
``'mean'``: the output will be divided by the number of elements in the output
Default: ``'mean'``
log_target (bool): A flag indicating whether ``target`` is passed in the log space.
It is recommended to pass certain distributions (like ``softmax``)
in the log space to avoid numerical issues caused by explicit ``log``.
Default: ``False``
.. note::
:attr:`size_average` and :attr:`reduce` are in the process of being deprecated,
and in the meantime, specifying either of those two args will override :attr:`reduction`.
.. note::
:attr:``reduction`` = ``'mean'`` doesn't return the true kl divergence value, please use
:attr:``reduction`` = ``'batchmean'`` which aligns with KL math definition.
In the next major release, ``'mean'`` will be changed to be the same as 'batchmean'.
"""
if not torch.jit.is_scripting():
tens_ops = (input, target)
if any([type(t) is not Tensor for t in tens_ops]) and has_torch_function(tens_ops):
return handle_torch_function(
kl_div, tens_ops, input, target, size_average=size_average,
reduce=reduce, reduction=reduction, log_target=log_target)
if size_average is not None or reduce is not None:
reduction_enum = _Reduction.legacy_get_enum(size_average, reduce)
else:
if reduction == 'mean':
warnings.warn("reduction: 'mean' divides the total loss by both the batch size and the support size."
"'batchmean' divides only by the batch size, and aligns with the KL div math definition."
"'mean' will be changed to behave the same as 'batchmean' in the next major release.")
# special case for batchmean
if reduction == 'batchmean':
reduction_enum = _Reduction.get_enum('sum')
else:
reduction_enum = _Reduction.get_enum(reduction)
reduced = torch.kl_div(input, target, reduction_enum, log_target=log_target)
if reduction == 'batchmean' and input.dim() != 0:
reduced = reduced / input.size()[0]
return reduced
def cross_entropy(input, target, weight=None, size_average=None, ignore_index=-100,
reduce=None, reduction='mean'):
# type: (Tensor, Tensor, Optional[Tensor], Optional[bool], int, Optional[bool], str) -> Tensor
r"""This criterion combines `log_softmax` and `nll_loss` in a single
function.
See :class:`~torch.nn.CrossEntropyLoss` for details.
Args:
input (Tensor) : :math:`(N, C)` where `C = number of classes` or :math:`(N, C, H, W)`
in case of 2D Loss, or :math:`(N, C, d_1, d_2, ..., d_K)` where :math:`K \geq 1`
in the case of K-dimensional loss.
target (Tensor) : :math:`(N)` where each value is :math:`0 \leq \text{targets}[i] \leq C-1`,
or :math:`(N, d_1, d_2, ..., d_K)` where :math:`K \geq 1` for
K-dimensional loss.
weight (Tensor, optional): a manual rescaling weight given to each
class. If given, has to be a Tensor of size `C`
size_average (bool, optional): Deprecated (see :attr:`reduction`). By default,
the losses are averaged over each loss element in the batch. Note that for
some losses, there multiple elements per sample. If the field :attr:`size_average`
is set to ``False``, the losses are instead summed for each minibatch. Ignored
when reduce is ``False``. Default: ``True``
ignore_index (int, optional): Specifies a target value that is ignored
and does not contribute to the input gradient. When :attr:`size_average` is
``True``, the loss is averaged over non-ignored targets. Default: -100
reduce (bool, optional): Deprecated (see :attr:`reduction`). By default, the
losses are averaged or summed over observations for each minibatch depending
on :attr:`size_average`. When :attr:`reduce` is ``False``, returns a loss per
batch element instead and ignores :attr:`size_average`. Default: ``True``
reduction (string, optional): Specifies the reduction to apply to the output:
``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied,
``'mean'``: the sum of the output will be divided by the number of
elements in the output, ``'sum'``: the output will be summed. Note: :attr:`size_average`
and :attr:`reduce` are in the process of being deprecated, and in the meantime,
specifying either of those two args will override :attr:`reduction`. Default: ``'mean'``
Examples::
>>> input = torch.randn(3, 5, requires_grad=True)
>>> target = torch.randint(5, (3,), dtype=torch.int64)
>>> loss = F.cross_entropy(input, target)
>>> loss.backward()
"""
if not torch.jit.is_scripting():
tens_ops = (input, target)
if any([type(t) is not Tensor for t in tens_ops]) and has_torch_function(tens_ops):
return handle_torch_function(
cross_entropy, tens_ops, input, target, weight=weight,
size_average=size_average, ignore_index=ignore_index, reduce=reduce,
reduction=reduction)
if size_average is not None or reduce is not None:
reduction = _Reduction.legacy_get_string(size_average, reduce)
return nll_loss(log_softmax(input, 1), target, weight, None, ignore_index, None, reduction)
def binary_cross_entropy(input, target, weight=None, size_average=None,
reduce=None, reduction='mean'):
# type: (Tensor, Tensor, Optional[Tensor], Optional[bool], Optional[bool], str) -> Tensor
r"""Function that measures the Binary Cross Entropy
between the target and the output.
See :class:`~torch.nn.BCELoss` for details.
Args:
input: Tensor of arbitrary shape
target: Tensor of the same shape as input
weight (Tensor, optional): a manual rescaling weight
if provided it's repeated to match input tensor shape
size_average (bool, optional): Deprecated (see :attr:`reduction`). By default,
the losses are averaged over each loss element in the batch. Note that for
some losses, there multiple elements per sample. If the field :attr:`size_average`
is set to ``False``, the losses are instead summed for each minibatch. Ignored
when reduce is ``False``. Default: ``True``
reduce (bool, optional): Deprecated (see :attr:`reduction`). By default, the
losses are averaged or summed over observations for each minibatch depending
on :attr:`size_average`. When :attr:`reduce` is ``False``, returns a loss per
batch element instead and ignores :attr:`size_average`. Default: ``True``
reduction (string, optional): Specifies the reduction to apply to the output:
``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied,
``'mean'``: the sum of the output will be divided by the number of
elements in the output, ``'sum'``: the output will be summed. Note: :attr:`size_average`
and :attr:`reduce` are in the process of being deprecated, and in the meantime,
specifying either of those two args will override :attr:`reduction`. Default: ``'mean'``
Examples::
>>> input = torch.randn((3, 2), requires_grad=True)
>>> target = torch.rand((3, 2), requires_grad=False)
>>> loss = F.binary_cross_entropy(F.sigmoid(input), target)
>>> loss.backward()
"""
if not torch.jit.is_scripting():
tens_ops = (input, target)
if any([type(t) is not Tensor for t in tens_ops]) and has_torch_function(tens_ops):
return handle_torch_function(
binary_cross_entropy, tens_ops, input, target, weight=weight,
size_average=size_average, reduce=reduce, reduction=reduction)
if size_average is not None or reduce is not None:
reduction_enum = _Reduction.legacy_get_enum(size_average, reduce)
else:
reduction_enum = _Reduction.get_enum(reduction)
if target.size() != input.size():
raise ValueError("Using a target size ({}) that is different to the input size ({}) is deprecated. "
"Please ensure they have the same size.".format(target.size(), input.size()))
if weight is not None:
new_size = _infer_size(target.size(), weight.size())
weight = weight.expand(new_size)
return torch._C._nn.binary_cross_entropy(
input, target, weight, reduction_enum)
def binary_cross_entropy_with_logits(input, target, weight=None, size_average=None,
reduce=None, reduction='mean', pos_weight=None):
# type: (Tensor, Tensor, Optional[Tensor], Optional[bool], Optional[bool], str, Optional[Tensor]) -> Tensor
r"""Function that measures Binary Cross Entropy between target and output
logits.
See :class:`~torch.nn.BCEWithLogitsLoss` for details.
Args:
input: Tensor of arbitrary shape
target: Tensor of the same shape as input
weight (Tensor, optional): a manual rescaling weight
if provided it's repeated to match input tensor shape
size_average (bool, optional): Deprecated (see :attr:`reduction`). By default,
the losses are averaged over each loss element in the batch. Note that for
some losses, there multiple elements per sample. If the field :attr:`size_average`
is set to ``False``, the losses are instead summed for each minibatch. Ignored
when reduce is ``False``. Default: ``True``
reduce (bool, optional): Deprecated (see :attr:`reduction`). By default, the
losses are averaged or summed over observations for each minibatch depending
on :attr:`size_average`. When :attr:`reduce` is ``False``, returns a loss per
batch element instead and ignores :attr:`size_average`. Default: ``True``
reduction (string, optional): Specifies the reduction to apply to the output:
``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied,
``'mean'``: the sum of the output will be divided by the number of
elements in the output, ``'sum'``: the output will be summed. Note: :attr:`size_average`
and :attr:`reduce` are in the process of being deprecated, and in the meantime,
specifying either of those two args will override :attr:`reduction`. Default: ``'mean'``
pos_weight (Tensor, optional): a weight of positive examples.
Must be a vector with length equal to the number of classes.
Examples::
>>> input = torch.randn(3, requires_grad=True)
>>> target = torch.empty(3).random_(2)
>>> loss = F.binary_cross_entropy_with_logits(input, target)
>>> loss.backward()
"""
if not torch.jit.is_scripting():
tens_ops = (input, target)
if any([type(t) is not Tensor for t in tens_ops]) and has_torch_function(tens_ops):
return handle_torch_function(
binary_cross_entropy_with_logits, tens_ops, input, target, weight=weight,
size_average=size_average, reduce=reduce, reduction=reduction,
pos_weight=pos_weight)
if size_average is not None or reduce is not None:
reduction_enum = _Reduction.legacy_get_enum(size_average, reduce)
else:
reduction_enum = _Reduction.get_enum(reduction)
if not (target.size() == input.size()):
raise ValueError("Target size ({}) must be the same as input size ({})".format(target.size(), input.size()))
return torch.binary_cross_entropy_with_logits(input, target, weight, pos_weight, reduction_enum)
def smooth_l1_loss(input, target, size_average=None, reduce=None, reduction='mean', beta=1.0):
# type: (Tensor, Tensor, Optional[bool], Optional[bool], str, float) -> Tensor
r"""Function that uses a squared term if the absolute
element-wise error falls below beta and an L1 term otherwise.
See :class:`~torch.nn.SmoothL1Loss` for details.
"""
if not torch.jit.is_scripting():
tens_ops = (input, target)
if any([type(t) is not Tensor for t in tens_ops]) and has_torch_function(tens_ops):
return handle_torch_function(
smooth_l1_loss, tens_ops, input, target, size_average=size_average,
reduce=reduce, reduction=reduction, beta=beta)
if not (target.size() == input.size()):
warnings.warn("Using a target size ({}) that is different to the input size ({}). "
"This will likely lead to incorrect results due to broadcasting. "
"Please ensure they have the same size.".format(target.size(), input.size()),
stacklevel=2)
if size_average is not None or reduce is not None:
reduction = _Reduction.legacy_get_string(size_average, reduce)
expanded_input, expanded_target = torch.broadcast_tensors(input, target)
return torch._C._nn.smooth_l1_loss(expanded_input, expanded_target, _Reduction.get_enum(reduction), beta)
def l1_loss(input, target, size_average=None, reduce=None, reduction='mean'):
# type: (Tensor, Tensor, Optional[bool], Optional[bool], str) -> Tensor
r"""l1_loss(input, target, size_average=None, reduce=None, reduction='mean') -> Tensor
Function that takes the mean element-wise absolute value difference.
See :class:`~torch.nn.L1Loss` for details.
"""
if not torch.jit.is_scripting():
tens_ops = (input, target)
if any([type(t) is not Tensor for t in tens_ops]) and has_torch_function(tens_ops):
return handle_torch_function(
l1_loss, tens_ops, input, target, size_average=size_average, reduce=reduce,
reduction=reduction)
if not (target.size() == input.size()):
warnings.warn("Using a target size ({}) that is different to the input size ({}). "
"This will likely lead to incorrect results due to broadcasting. "
"Please ensure they have the same size.".format(target.size(), input.size()),
stacklevel=2)
if size_average is not None or reduce is not None:
reduction = _Reduction.legacy_get_string(size_average, reduce)
expanded_input, expanded_target = torch.broadcast_tensors(input, target)
return torch._C._nn.l1_loss(expanded_input, expanded_target, _Reduction.get_enum(reduction))
def mse_loss(input, target, size_average=None, reduce=None, reduction='mean'):
# type: (Tensor, Tensor, Optional[bool], Optional[bool], str) -> Tensor
r"""mse_loss(input, target, size_average=None, reduce=None, reduction='mean') -> Tensor
Measures the element-wise mean squared error.
See :class:`~torch.nn.MSELoss` for details.
"""
if not torch.jit.is_scripting():
tens_ops = (input, target)
if any([type(t) is not Tensor for t in tens_ops]) and has_torch_function(tens_ops):
return handle_torch_function(
mse_loss, tens_ops, input, target, size_average=size_average, reduce=reduce,
reduction=reduction)
if not (target.size() == input.size()):
warnings.warn("Using a target size ({}) that is different to the input size ({}). "
"This will likely lead to incorrect results due to broadcasting. "
"Please ensure they have the same size.".format(target.size(), input.size()),
stacklevel=2)
if size_average is not None or reduce is not None:
reduction = _Reduction.legacy_get_string(size_average, reduce)
expanded_input, expanded_target = torch.broadcast_tensors(input, target)
return torch._C._nn.mse_loss(expanded_input, expanded_target, _Reduction.get_enum(reduction))
def margin_ranking_loss(input1, input2, target, margin=0, size_average=None,
reduce=None, reduction='mean'):
# type: (Tensor, Tensor, Tensor, float, Optional[bool], Optional[bool], str) -> Tensor
r"""margin_ranking_loss(input1, input2, target, margin=0, size_average=None, reduce=None, reduction='mean') -> Tensor
See :class:`~torch.nn.MarginRankingLoss` for details.
""" # noqa
if not torch.jit.is_scripting():
tens_ops = (input1, input2, target)
if any([type(t) is not Tensor for t in tens_ops]) and has_torch_function(tens_ops):
return handle_torch_function(
margin_ranking_loss, tens_ops, input1, input2, target, margin=margin,
size_average=size_average, reduce=reduce, reduction=reduction)
if size_average is not None or reduce is not None:
reduction_enum = _Reduction.legacy_get_enum(size_average, reduce)
else:
reduction_enum = _Reduction.get_enum(reduction)
if input1.dim() == 0 or input2.dim() == 0 or target.dim() == 0:
raise RuntimeError(("margin_ranking_loss does not support scalars, got sizes: "
"input1: {}, input2: {}, target: {} ".format(input1.size(), input2.size(), target.size())))
return torch.margin_ranking_loss(input1, input2, target, margin, reduction_enum)
def hinge_embedding_loss(input, target, margin=1.0, size_average=None,
reduce=None, reduction='mean'):
# type: (Tensor, Tensor, float, Optional[bool], Optional[bool], str) -> Tensor
r"""hinge_embedding_loss(input, target, margin=1.0, size_average=None, reduce=None, reduction='mean') -> Tensor
See :class:`~torch.nn.HingeEmbeddingLoss` for details.
""" # noqa
if not torch.jit.is_scripting():
tens_ops = (input, target)
if any([type(t) is not Tensor for t in tens_ops]) and has_torch_function(tens_ops):
return handle_torch_function(
hinge_embedding_loss, tens_ops, input, target, margin=margin,
size_average=size_average, reduce=reduce, reduction=reduction)
if size_average is not None or reduce is not None:
reduction_enum = _Reduction.legacy_get_enum(size_average, reduce)
else:
reduction_enum = _Reduction.get_enum(reduction)
return torch.hinge_embedding_loss(input, target, margin, reduction_enum)
def multilabel_margin_loss(input, target, size_average=None, reduce=None, reduction='mean'):
# type: (Tensor, Tensor, Optional[bool], Optional[bool], str) -> Tensor
r"""multilabel_margin_loss(input, target, size_average=None, reduce=None, reduction='mean') -> Tensor
See :class:`~torch.nn.MultiLabelMarginLoss` for details.
"""
if not torch.jit.is_scripting():
tens_ops = (input, target)
if any([type(t) is not Tensor for t in tens_ops]) and has_torch_function(tens_ops):
return handle_torch_function(
multilabel_margin_loss, tens_ops, input, target, size_average=size_average,
reduce=reduce, reduction=reduction)
if size_average is not None or reduce is not None:
reduction_enum = _Reduction.legacy_get_enum(size_average, reduce)
else:
reduction_enum = _Reduction.get_enum(reduction)
return torch._C._nn.multilabel_margin_loss(input, target, reduction_enum)
def soft_margin_loss(input, target, size_average=None, reduce=None, reduction='mean'):
# type: (Tensor, Tensor, Optional[bool], Optional[bool], str) -> Tensor
r"""soft_margin_loss(input, target, size_average=None, reduce=None, reduction='mean') -> Tensor
See :class:`~torch.nn.SoftMarginLoss` for details.
"""
if not torch.jit.is_scripting():
tens_ops = (input, target)
if any([type(t) is not Tensor for t in tens_ops]) and has_torch_function(tens_ops):
return handle_torch_function(
soft_margin_loss, tens_ops, input, target, size_average=size_average,
reduce=reduce, reduction=reduction)
if size_average is not None or reduce is not None:
reduction_enum = _Reduction.legacy_get_enum(size_average, reduce)
else:
reduction_enum = _Reduction.get_enum(reduction)
return torch._C._nn.soft_margin_loss(input, target, reduction_enum)
def multilabel_soft_margin_loss(input, target, weight=None, size_average=None,
reduce=None, reduction='mean'):
# type: (Tensor, Tensor, Optional[Tensor], Optional[bool], Optional[bool], str) -> Tensor
r"""multilabel_soft_margin_loss(input, target, weight=None, size_average=None) -> Tensor
See :class:`~torch.nn.MultiLabelSoftMarginLoss` for details.
"""
if not torch.jit.is_scripting():
tens_ops = (input, target)
if any([type(t) is not Tensor for t in tens_ops]) and has_torch_function(tens_ops):
return handle_torch_function(
multilabel_soft_margin_loss, tens_ops, input, target, weight=weight,
size_average=size_average, reduce=reduce, reduction=reduction)
if size_average is not None or reduce is not None:
reduction = _Reduction.legacy_get_string(size_average, reduce)
loss = -(target * logsigmoid(input) + (1 - target) * logsigmoid(-input))
if weight is not None:
loss = loss * weight
loss = loss.sum(dim=1) / input.size(1) # only return N loss values
if reduction == 'none':
ret = loss
elif reduction == 'mean':
ret = loss.mean()
elif reduction == 'sum':
ret = loss.sum()
else:
ret = input
raise ValueError(reduction + " is not valid")
return ret
def cosine_embedding_loss(input1, input2, target, margin=0, size_average=None,
reduce=None, reduction='mean'):
# type: (Tensor, Tensor, Tensor, float, Optional[bool], Optional[bool], str) -> Tensor
r"""cosine_embedding_loss(input1, input2, target, margin=0, size_average=None, reduce=None, reduction='mean') -> Tensor
See :class:`~torch.nn.CosineEmbeddingLoss` for details.
""" # noqa
if not torch.jit.is_scripting():
tens_ops = (input1, input2, target)
if any([type(t) is not Tensor for t in tens_ops]) and has_torch_function(tens_ops):
return handle_torch_function(
cosine_embedding_loss, tens_ops, input1, input2, target, margin=margin,
size_average=size_average, reduce=reduce, reduction=reduction)
if size_average is not None or reduce is not None:
reduction_enum = _Reduction.legacy_get_enum(size_average, reduce)
else:
reduction_enum = _Reduction.get_enum(reduction)
return torch.cosine_embedding_loss(input1, input2, target, margin, reduction_enum)
def multi_margin_loss(input, target, p=1, margin=1., weight=None, size_average=None,
reduce=None, reduction='mean'):
# type: (Tensor, Tensor, int, float, Optional[Tensor], Optional[bool], Optional[bool], str) -> Tensor
r"""multi_margin_loss(input, target, p=1, margin=1, weight=None, size_average=None,
reduce=None, reduction='mean') -> Tensor
See :class:`~torch.nn.MultiMarginLoss` for details.
"""
if not torch.jit.is_scripting():
tens_ops = (input, target)
if any([type(t) is not Tensor for t in tens_ops]) and has_torch_function(tens_ops):
return handle_torch_function(
multi_margin_loss, tens_ops, input, target, p=p, margin=margin,
weight=weight, size_average=size_average, reduce=reduce,
reduction=reduction)
if size_average is not None or reduce is not None:
reduction_enum = _Reduction.legacy_get_enum(size_average, reduce)
else:
reduction_enum = _Reduction.get_enum(reduction)
if p != 1 and p != 2:
raise ValueError('only p == 1 and p == 2 supported')
if weight is not None:
if weight.dim() != 1:
raise ValueError('weight must be one-dimensional')
return torch._C._nn.multi_margin_loss(input, target, p, margin, weight, reduction_enum)
pixel_shuffle = _add_docstr(torch.pixel_shuffle, r"""
Rearranges elements in a tensor of shape :math:`(*, C \times r^2, H, W)` to a
tensor of shape :math:`(*, C, H \times r, W \times r)`.
See :class:`~torch.nn.PixelShuffle` for details.
Args:
input (Tensor): the input tensor
upscale_factor (int): factor to increase spatial resolution by
Examples::
>>> input = torch.randn(1, 9, 4, 4)
>>> output = torch.nn.functional.pixel_shuffle(input, 3)
>>> print(output.size())
torch.Size([1, 1, 12, 12])
""")
channel_shuffle = _add_docstr(torch.channel_shuffle, r"""
Divide the channels in a tensor of shape :math:`(*, C , H, W)`
into g groups and rearrange them as :math:`(*, C \frac g, g, H, W)`,
while keeping the original tensor shape.
See :class:`~torch.nn.ChannelShuffle` for details.
Args:
input (Tensor): the input tensor
groups (int): number of groups to divide channels in and rearrange.
Examples::
>>> input = torch.randn(1, 4, 2, 2)
>>> print(input)
[[[[1, 2],
[3, 4]],
[[5, 6],
[7, 8]],
[[9, 10],
[11, 12]],
[[13, 14],
[15, 16]],
]]
>>> output = torch.nn.functional.channel_shuffle(input, 2)
>>> print(output)
[[[[1, 2],
[3, 4]],
[[9, 10],
[11, 12]],
[[5, 6],
[7, 8]],
[[13, 14],
[15, 16]],
]]
""")
@_overload # noqa: F811
def upsample(input, size=None, scale_factor=None, mode='nearest', align_corners=None): # noqa: F811
# type: (Tensor, Optional[int], Optional[float], str, Optional[bool]) -> Tensor
pass
@_overload # noqa: F811
def upsample(input, size=None, scale_factor=None, mode='nearest', align_corners=None): # noqa: F811
# type: (Tensor, Optional[List[int]], Optional[float], str, Optional[bool]) -> Tensor
pass
def upsample(input, size=None, scale_factor=None, mode='nearest', align_corners=None): # noqa: F811
r"""Upsamples the input to either the given :attr:`size` or the given
:attr:`scale_factor`
.. warning::
This function is deprecated in favor of :func:`torch.nn.functional.interpolate`.
This is equivalent with ``nn.functional.interpolate(...)``.
Note:
When using the CUDA backend, this operation may induce nondeterministic
behaviour in its backward pass that is not easily switched off.
Please see the notes on :doc:`/notes/randomness` for background.
The algorithm used for upsampling is determined by :attr:`mode`.
Currently temporal, spatial and volumetric upsampling are supported, i.e.
expected inputs are 3-D, 4-D or 5-D in shape.
The input dimensions are interpreted in the form:
`mini-batch x channels x [optional depth] x [optional height] x width`.
The modes available for upsampling are: `nearest`, `linear` (3D-only),
`bilinear`, `bicubic` (4D-only), `trilinear` (5D-only)
Args:
input (Tensor): the input tensor
size (int or Tuple[int] or Tuple[int, int] or Tuple[int, int, int]):
output spatial size.
scale_factor (float or Tuple[float]): multiplier for spatial size. Has to match input size if it is a tuple.
mode (string): algorithm used for upsampling:
``'nearest'`` | ``'linear'`` | ``'bilinear'`` | ``'bicubic'`` |
``'trilinear'``. Default: ``'nearest'``
align_corners (bool, optional): Geometrically, we consider the pixels of the
input and output as squares rather than points.
If set to ``True``, the input and output tensors are aligned by the
center points of their corner pixels, preserving the values at the corner pixels.
If set to ``False``, the input and output tensors are aligned by the corner
points of their corner pixels, and the interpolation uses edge value padding
for out-of-boundary values, making this operation *independent* of input size
when :attr:`scale_factor` is kept the same. This only has an effect when :attr:`mode`
is ``'linear'``, ``'bilinear'``, ``'bicubic'`` or ``'trilinear'``.
Default: ``False``
.. note::
With ``mode='bicubic'``, it's possible to cause overshoot, in other words it can produce
negative values or values greater than 255 for images.
Explicitly call ``result.clamp(min=0, max=255)`` if you want to reduce the overshoot
when displaying the image.
.. warning::
With ``align_corners = True``, the linearly interpolating modes
(`linear`, `bilinear`, and `trilinear`) don't proportionally align the
output and input pixels, and thus the output values can depend on the
input size. This was the default behavior for these modes up to version
0.3.1. Since then, the default behavior is ``align_corners = False``.
See :class:`~torch.nn.Upsample` for concrete examples on how this
affects the outputs.
"""
warnings.warn("nn.functional.upsample is deprecated. Use nn.functional.interpolate instead.")
return interpolate(input, size, scale_factor, mode, align_corners)
@_overload # noqa: F811
def interpolate(input, size=None, scale_factor=None, mode='nearest', align_corners=None, recompute_scale_factor=None): # noqa: F811
# type: (Tensor, Optional[int], Optional[List[float]], str, Optional[bool], Optional[bool]) -> Tensor
pass
@_overload # noqa: F811
def interpolate(input, size=None, scale_factor=None, mode='nearest', align_corners=None, recompute_scale_factor=None): # noqa: F811
# type: (Tensor, Optional[List[int]], Optional[List[float]], str, Optional[bool], Optional[bool]) -> Tensor
pass
@_overload # noqa: F811
def interpolate(input, size=None, scale_factor=None, mode='nearest', align_corners=None, recompute_scale_factor=None): # noqa: F811
# type: (Tensor, Optional[int], Optional[float], str, Optional[bool], Optional[bool]) -> Tensor
pass
@_overload # noqa: F811
def interpolate(input, size=None, scale_factor=None, mode='nearest', align_corners=None, recompute_scale_factor=None): # noqa: F811
# type: (Tensor, Optional[List[int]], Optional[float], str, Optional[bool], Optional[bool]) -> Tensor
pass
def interpolate(input, size=None, scale_factor=None, mode='nearest', align_corners=None, recompute_scale_factor=None): # noqa: F811
# type: (Tensor, Optional[int], Optional[List[float]], str, Optional[bool], Optional[bool]) -> Tensor
r"""Down/up samples the input to either the given :attr:`size` or the given
:attr:`scale_factor`
The algorithm used for interpolation is determined by :attr:`mode`.
Currently temporal, spatial and volumetric sampling are supported, i.e.
expected inputs are 3-D, 4-D or 5-D in shape.
The input dimensions are interpreted in the form:
`mini-batch x channels x [optional depth] x [optional height] x width`.
The modes available for resizing are: `nearest`, `linear` (3D-only),
`bilinear`, `bicubic` (4D-only), `trilinear` (5D-only), `area`
Args:
input (Tensor): the input tensor
size (int or Tuple[int] or Tuple[int, int] or Tuple[int, int, int]):
output spatial size.
scale_factor (float or Tuple[float]): multiplier for spatial size. Has to match input size if it is a tuple.
mode (str): algorithm used for upsampling:
``'nearest'`` | ``'linear'`` | ``'bilinear'`` | ``'bicubic'`` |
``'trilinear'`` | ``'area'``. Default: ``'nearest'``
align_corners (bool, optional): Geometrically, we consider the pixels of the
input and output as squares rather than points.
If set to ``True``, the input and output tensors are aligned by the
center points of their corner pixels, preserving the values at the corner pixels.
If set to ``False``, the input and output tensors are aligned by the corner
points of their corner pixels, and the interpolation uses edge value padding
for out-of-boundary values, making this operation *independent* of input size
when :attr:`scale_factor` is kept the same. This only has an effect when :attr:`mode`
is ``'linear'``, ``'bilinear'``, ``'bicubic'`` or ``'trilinear'``.
Default: ``False``
recompute_scale_factor (bool, optional): recompute the scale_factor for use in the
interpolation calculation. When `scale_factor` is passed as a parameter, it is used
to compute the `output_size`. If `recompute_scale_factor` is ```False`` or not specified,
the passed-in `scale_factor` will be used in the interpolation computation.
Otherwise, a new `scale_factor` will be computed based on the output and input sizes for
use in the interpolation computation (i.e. the computation will be identical to if the computed
`output_size` were passed-in explicitly). Note that when `scale_factor` is floating-point,
the recomputed scale_factor may differ from the one passed in due to rounding and precision
issues.
.. note::
With ``mode='bicubic'``, it's possible to cause overshoot, in other words it can produce
negative values or values greater than 255 for images.
Explicitly call ``result.clamp(min=0, max=255)`` if you want to reduce the overshoot
when displaying the image.
.. warning::
With ``align_corners = True``, the linearly interpolating modes
(`linear`, `bilinear`, and `trilinear`) don't proportionally align the
output and input pixels, and thus the output values can depend on the
input size. This was the default behavior for these modes up to version
0.3.1. Since then, the default behavior is ``align_corners = False``.
See :class:`~torch.nn.Upsample` for concrete examples on how this
affects the outputs.
.. warning::
When scale_factor is specified, if recompute_scale_factor=True,
scale_factor is used to compute the output_size which will then
be used to infer new scales for the interpolation.
The default behavior for recompute_scale_factor changed to False
in 1.6.0, and scale_factor is used in the interpolation
calculation.
Note:
When using the CUDA backend, this operation may induce nondeterministic
behaviour in its backward pass that is not easily switched off.
Please see the notes on :doc:`/notes/randomness` for background.
"""
if not torch.jit.is_scripting():
if type(input) is not Tensor and has_torch_function((input,)):
return handle_torch_function(
interpolate, (input,), input, size=size, scale_factor=scale_factor,
mode=mode, align_corners=align_corners,
recompute_scale_factor=recompute_scale_factor)
if mode in ('nearest', 'area'):
if align_corners is not None:
raise ValueError("align_corners option can only be set with the "
"interpolating modes: linear | bilinear | bicubic | trilinear")
else:
if align_corners is None:
warnings.warn("Default upsampling behavior when mode={} is changed "
"to align_corners=False since 0.4.0. Please specify "
"align_corners=True if the old behavior is desired. "
"See the documentation of nn.Upsample for details.".format(mode))
align_corners = False
dim = input.dim() - 2 # Number of spatial dimensions.
# Process size and scale_factor. Validate that exactly one is set.
# Validate its length if it is a list, or expand it if it is a scalar.
# After this block, exactly one of output_size and scale_factors will
# be non-None, and it will be a list (or tuple).
if size is not None and scale_factor is not None:
raise ValueError('only one of size or scale_factor should be defined')
elif size is not None:
assert scale_factor is None
scale_factors = None
if isinstance(size, (list, tuple)):
if len(size) != dim:
raise ValueError('size shape must match input shape. '
'Input is {}D, size is {}'.format(dim, len(size)))
output_size = size
else:
output_size = [size for _ in range(dim)]
elif scale_factor is not None:
assert size is None
output_size = None
if isinstance(scale_factor, (list, tuple)):
if len(scale_factor) != dim:
raise ValueError('scale_factor shape must match input shape. '
'Input is {}D, scale_factor is {}'.format(dim, len(scale_factor)))
scale_factors = scale_factor
else:
scale_factors = [scale_factor for _ in range(dim)]
else:
raise ValueError('either size or scale_factor should be defined')
if recompute_scale_factor is None:
# only warn when the scales have floating values since
# the result for ints is the same with/without recompute_scale_factor
if scale_factors is not None:
for scale in scale_factors:
if math.floor(scale) != scale:
warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
"in 1.6.0 to align with other frameworks/libraries, and now uses scale_factor directly, "
"instead of relying on the computed output size. "
"If you wish to restore the old behavior, please set recompute_scale_factor=True. "
"See the documentation of nn.Upsample for details. ")
break
elif recompute_scale_factor and size is not None:
raise ValueError("recompute_scale_factor is not meaningful with an explicit size.")
# "area" mode always requires an explicit size rather than scale factor.
# Re-use the recompute_scale_factor code path.
if mode == "area" and output_size is None:
recompute_scale_factor = True
if recompute_scale_factor is not None and recompute_scale_factor:
# We compute output_size here, then un-set scale_factors.
# The C++ code will recompute it based on the (integer) output size.
if not torch.jit.is_scripting() and torch._C._get_tracing_state():
# make scale_factor a tensor in tracing so constant doesn't get baked in
output_size = [(torch.floor((input.size(i + 2).float() * torch.tensor(scale_factors[i],
dtype=torch.float32)).float())) for i in range(dim)]
else:
assert scale_factors is not None
output_size = [int(math.floor(float(input.size(i + 2)) * scale_factors[i])) for i in range(dim)]
scale_factors = None
if input.dim() == 3 and mode == 'nearest':
return torch._C._nn.upsample_nearest1d(input, output_size, scale_factors)
if input.dim() == 4 and mode == 'nearest':
return torch._C._nn.upsample_nearest2d(input, output_size, scale_factors)
if input.dim() == 5 and mode == 'nearest':
return torch._C._nn.upsample_nearest3d(input, output_size, scale_factors)
if input.dim() == 3 and mode == 'area':
assert output_size is not None
return adaptive_avg_pool1d(input, output_size)
if input.dim() == 4 and mode == 'area':
assert output_size is not None
return adaptive_avg_pool2d(input, output_size)
if input.dim() == 5 and mode == 'area':
assert output_size is not None
return adaptive_avg_pool3d(input, output_size)
if input.dim() == 3 and mode == 'linear':
assert align_corners is not None
return torch._C._nn.upsample_linear1d(input, output_size, align_corners, scale_factors)
if input.dim() == 4 and mode == 'bilinear':
assert align_corners is not None
return torch._C._nn.upsample_bilinear2d(input, output_size, align_corners, scale_factors)
if input.dim() == 5 and mode == 'trilinear':
assert align_corners is not None
return torch._C._nn.upsample_trilinear3d(input, output_size, align_corners, scale_factors)
if input.dim() == 4 and mode == 'bicubic':
assert align_corners is not None
return torch._C._nn.upsample_bicubic2d(input, output_size, align_corners, scale_factors)
if input.dim() == 3 and mode == 'bilinear':
raise NotImplementedError("Got 3D input, but bilinear mode needs 4D input")
if input.dim() == 3 and mode == 'trilinear':
raise NotImplementedError("Got 3D input, but trilinear mode needs 5D input")
if input.dim() == 4 and mode == 'linear':
raise NotImplementedError("Got 4D input, but linear mode needs 3D input")
if input.dim() == 4 and mode == 'trilinear':
raise NotImplementedError("Got 4D input, but trilinear mode needs 5D input")
if input.dim() == 5 and mode == 'linear':
raise NotImplementedError("Got 5D input, but linear mode needs 3D input")
if input.dim() == 5 and mode == 'bilinear':
raise NotImplementedError("Got 5D input, but bilinear mode needs 4D input")
raise NotImplementedError("Input Error: Only 3D, 4D and 5D input Tensors supported"
" (got {}D) for the modes: nearest | linear | bilinear | bicubic | trilinear"
" (got {})".format(input.dim(), mode))
@_overload # noqa: F811
def upsample_nearest(input, size=None, scale_factor=None): # noqa: F811
# type: (Tensor, Optional[int], Optional[float]) -> Tensor
pass
@_overload # noqa: F811
def upsample_nearest(input, size=None, scale_factor=None): # noqa: F811
# type: (Tensor, Optional[List[int]], Optional[float]) -> Tensor
pass
def upsample_nearest(input, size=None, scale_factor=None): # noqa: F811
r"""Upsamples the input, using nearest neighbours' pixel values.
.. warning::
This function is deprecated in favor of :func:`torch.nn.functional.interpolate`.
This is equivalent with ``nn.functional.interpolate(..., mode='nearest')``.
Currently spatial and volumetric upsampling are supported (i.e. expected
inputs are 4 or 5 dimensional).
Args:
input (Tensor): input
size (int or Tuple[int, int] or Tuple[int, int, int]): output spatia
size.
scale_factor (int): multiplier for spatial size. Has to be an integer.
Note:
When using the CUDA backend, this operation may induce nondeterministic
behaviour in its backward pass that is not easily switched off.
Please see the notes on :doc:`/notes/randomness` for background.
"""
# DeprecationWarning is ignored by default
warnings.warn("nn.functional.upsample_nearest is deprecated. Use nn.functional.interpolate instead.")
return interpolate(input, size, scale_factor, mode='nearest')
@_overload # noqa: F811
def upsample_bilinear(input, size=None, scale_factor=None): # noqa: F811
# type: (Tensor, Optional[int], Optional[float]) -> Tensor
pass
@_overload # noqa: F811
def upsample_bilinear(input, size=None, scale_factor=None): # noqa: F811
# type: (Tensor, Optional[List[int]], Optional[float]) -> Tensor
pass
@_overload # noqa: F811
def upsample_bilinear(input, size=None, scale_factor=None): # noqa: F811
# type: (Tensor, Optional[int], Optional[List[float]]) -> Tensor
pass
@_overload # noqa: F811
def upsample_bilinear(input, size=None, scale_factor=None): # noqa: F811
# type: (Tensor, Optional[List[int]], Optional[List[float]]) -> Tensor
pass
def upsample_bilinear(input, size=None, scale_factor=None): # noqa: F811
r"""Upsamples the input, using bilinear upsampling.
.. warning::
This function is deprecated in favor of :func:`torch.nn.functional.interpolate`.
This is equivalent with
``nn.functional.interpolate(..., mode='bilinear', align_corners=True)``.
Expected inputs are spatial (4 dimensional). Use `upsample_trilinear` fo
volumetric (5 dimensional) inputs.
Args:
input (Tensor): input
size (int or Tuple[int, int]): output spatial size.
scale_factor (int or Tuple[int, int]): multiplier for spatial size
Note:
When using the CUDA backend, this operation may induce nondeterministic
behaviour in its backward pass that is not easily switched off.
Please see the notes on :doc:`/notes/randomness` for background.
"""
# DeprecationWarning is ignored by default
warnings.warn("nn.functional.upsample_bilinear is deprecated. Use nn.functional.interpolate instead.")
return interpolate(input, size, scale_factor, mode='bilinear', align_corners=True)
GRID_SAMPLE_INTERPOLATION_MODES = {
'bilinear': 0,
'nearest': 1,
}
GRID_SAMPLE_PADDING_MODES = {
'zeros': 0,
'border': 1,
'reflection': 2,
}
def grid_sample(input, grid, mode='bilinear', padding_mode='zeros', align_corners=None):
# type: (Tensor, Tensor, str, str, Optional[bool]) -> Tensor
r"""Given an :attr:`input` and a flow-field :attr:`grid`, computes the
``output`` using :attr:`input` values and pixel locations from :attr:`grid`.
Currently, only spatial (4-D) and volumetric (5-D) :attr:`input` are
supported.
In the spatial (4-D) case, for :attr:`input` with shape
:math:`(N, C, H_\text{in}, W_\text{in})` and :attr:`grid` with shape
:math:`(N, H_\text{out}, W_\text{out}, 2)`, the output will have shape
:math:`(N, C, H_\text{out}, W_\text{out})`.
For each output location ``output[n, :, h, w]``, the size-2 vector
``grid[n, h, w]`` specifies :attr:`input` pixel locations ``x`` and ``y``,
which are used to interpolate the output value ``output[n, :, h, w]``.
In the case of 5D inputs, ``grid[n, d, h, w]`` specifies the
``x``, ``y``, ``z`` pixel locations for interpolating
``output[n, :, d, h, w]``. :attr:`mode` argument specifies ``nearest`` or
``bilinear`` interpolation method to sample the input pixels.
:attr:`grid` specifies the sampling pixel locations normalized by the
:attr:`input` spatial dimensions. Therefore, it should have most values in
the range of ``[-1, 1]``. For example, values ``x = -1, y = -1`` is the
left-top pixel of :attr:`input`, and values ``x = 1, y = 1`` is the
right-bottom pixel of :attr:`input`.
If :attr:`grid` has values outside the range of ``[-1, 1]``, the corresponding
outputs are handled as defined by :attr:`padding_mode`. Options are
* ``padding_mode="zeros"``: use ``0`` for out-of-bound grid locations,
* ``padding_mode="border"``: use border values for out-of-bound grid locations,
* ``padding_mode="reflection"``: use values at locations reflected by
the border for out-of-bound grid locations. For location far away
from the border, it will keep being reflected until becoming in bound,
e.g., (normalized) pixel location ``x = -3.5`` reflects by border ``-1``
and becomes ``x' = 1.5``, then reflects by border ``1`` and becomes
``x'' = -0.5``.
Note:
This function is often used in conjunction with :func:`affine_grid`
to build `Spatial Transformer Networks`_ .
Note:
When using the CUDA backend, this operation may induce nondeterministic
behaviour in its backward pass that is not easily switched off.
Please see the notes on :doc:`/notes/randomness` for background.
Note:
NaN values in :attr:`grid` would be interpreted as ``-1``.
Args:
input (Tensor): input of shape :math:`(N, C, H_\text{in}, W_\text{in})` (4-D case)
or :math:`(N, C, D_\text{in}, H_\text{in}, W_\text{in})` (5-D case)
grid (Tensor): flow-field of shape :math:`(N, H_\text{out}, W_\text{out}, 2)` (4-D case)
or :math:`(N, D_\text{out}, H_\text{out}, W_\text{out}, 3)` (5-D case)
mode (str): interpolation mode to calculate output values
``'bilinear'`` | ``'nearest'``. Default: ``'bilinear'``
Note: When ``mode='bilinear'`` and the input is 5-D, the interpolation mode
used internally will actually be trilinear. However, when the input is 4-D,
the interpolation mode will legitimately be bilinear.
padding_mode (str): padding mode for outside grid values
``'zeros'`` | ``'border'`` | ``'reflection'``. Default: ``'zeros'``
align_corners (bool, optional): Geometrically, we consider the pixels of the
input as squares rather than points.
If set to ``True``, the extrema (``-1`` and ``1``) are considered as referring
to the center points of the input's corner pixels. If set to ``False``, they
are instead considered as referring to the corner points of the input's corner
pixels, making the sampling more resolution agnostic.
This option parallels the ``align_corners`` option in
:func:`interpolate`, and so whichever option is used here
should also be used there to resize the input image before grid sampling.
Default: ``False``
Returns:
output (Tensor): output Tensor
.. _`Spatial Transformer Networks`:
https://arxiv.org/abs/1506.02025
.. warning::
When ``align_corners = True``, the grid positions depend on the pixel
size relative to the input image size, and so the locations sampled by
:func:`grid_sample` will differ for the same input given at different
resolutions (that is, after being upsampled or downsampled).
The default behavior up to version 1.2.0 was ``align_corners = True``.
Since then, the default behavior has been changed to ``align_corners = False``,
in order to bring it in line with the default for :func:`interpolate`.
"""
if not torch.jit.is_scripting():
tens_ops = (input, grid)
if any([type(t) is not Tensor for t in tens_ops]) and has_torch_function(tens_ops):
return handle_torch_function(
grid_sample, tens_ops, input, grid, mode=mode, padding_mode=padding_mode,
align_corners=align_corners)
if mode != 'bilinear' and mode != 'nearest':
raise ValueError("nn.functional.grid_sample(): expected mode to be "
"'bilinear' or 'nearest', but got: '{}'".format(mode))
if padding_mode != 'zeros' and padding_mode != 'border' and padding_mode != 'reflection':
raise ValueError("nn.functional.grid_sample(): expected padding_mode "
"to be 'zeros', 'border', or 'reflection', "
"but got: '{}'".format(padding_mode))
if mode == 'bilinear':
mode_enum = 0
else: # mode == 'nearest'
mode_enum = 1
if padding_mode == 'zeros':
padding_mode_enum = 0
elif padding_mode == 'border':
padding_mode_enum = 1
else: # padding_mode == 'reflection'
padding_mode_enum = 2
if align_corners is None:
warnings.warn("Default grid_sample and affine_grid behavior has changed "
"to align_corners=False since 1.3.0. Please specify "
"align_corners=True if the old behavior is desired. "
"See the documentation of grid_sample for details.")
align_corners = False
return torch.grid_sampler(input, grid, mode_enum, padding_mode_enum, align_corners)
def affine_grid(theta, size, align_corners=None):
# type: (Tensor, List[int], Optional[bool]) -> Tensor
r"""Generates a 2D or 3D flow field (sampling grid), given a batch of
affine matrices :attr:`theta`.
.. note::
This function is often used in conjunction with :func:`grid_sample`
to build `Spatial Transformer Networks`_ .
Args:
theta (Tensor): input batch of affine matrices with shape
(:math:`N \times 2 \times 3`) for 2D or
(:math:`N \times 3 \times 4`) for 3D
size (torch.Size): the target output image size.
(:math:`N \times C \times H \times W` for 2D or
:math:`N \times C \times D \times H \times W` for 3D)
Example: torch.Size((32, 3, 24, 24))
align_corners (bool, optional): if ``True``, consider ``-1`` and ``1``
to refer to the centers of the corner pixels rather than the image corners.
Refer to :func:`grid_sample` for a more complete description.
A grid generated by :func:`affine_grid` should be passed to :func:`grid_sample`
with the same setting for this option.
Default: ``False``
Returns:
output (Tensor): output Tensor of size (:math:`N \times H \times W \times 2`)
.. _`Spatial Transformer Networks`:
https://arxiv.org/abs/1506.02025
.. warning::
When ``align_corners = True``, the grid positions depend on the pixel
size relative to the input image size, and so the locations sampled by
:func:`grid_sample` will differ for the same input given at different
resolutions (that is, after being upsampled or downsampled).
The default behavior up to version 1.2.0 was ``align_corners = True``.
Since then, the default behavior has been changed to ``align_corners = False``,
in order to bring it in line with the default for :func:`interpolate`.
.. warning::
When ``align_corners = True``, 2D affine transforms on 1D data and
3D affine transforms on 2D data (that is, when one of the spatial
dimensions has unit size) are ill-defined, and not an intended use case.
This is not a problem when ``align_corners = False``.
Up to version 1.2.0, all grid points along a unit dimension were
considered arbitrarily to be at ``-1``.
From version 1.3.0, under ``align_corners = True`` all grid points
along a unit dimension are considered to be at ```0``
(the center of the input image).
"""
if not torch.jit.is_scripting():
if type(theta) is not Tensor and has_torch_function((theta,)):
return handle_torch_function(
affine_grid, (theta,), theta, size, align_corners=align_corners)
if align_corners is None:
warnings.warn("Default grid_sample and affine_grid behavior has changed "
"to align_corners=False since 1.3.0. Please specify "
"align_corners=True if the old behavior is desired. "
"See the documentation of grid_sample for details.")
align_corners = False
# enforce floating point dtype on theta
if not theta.is_floating_point():
raise ValueError("Expected theta to have floating point type, but got {}"
.format(theta.dtype))
# check that shapes and sizes match
if len(size) == 4:
if theta.dim() != 3 or theta.shape[-2] != 2 or theta.shape[-1] != 3:
raise ValueError("Expected a batch of 2D affine matrices of shape Nx2x3 "
"for size {}. Got {}.".format(size, theta.shape))
spatial_size = size[-2:] # spatial dimension sizes
elif len(size) == 5:
if theta.dim() != 3 or theta.shape[-2] != 3 or theta.shape[-1] != 4:
raise ValueError("Expected a batch of 3D affine matrices of shape Nx3x4 "
"for size {}. Got {}.".format(size, theta.shape))
spatial_size = size[-3:] # spatial dimension sizes
else:
raise NotImplementedError("affine_grid only supports 4D and 5D sizes, "
"for 2D and 3D affine transforms, respectively. "
"Got size {}.".format(size))
# check for empty span
if align_corners and min(spatial_size) == 1:
warnings.warn("Since version 1.3.0, affine_grid behavior has changed "
"for unit-size grids when align_corners=True. "
"This is not an intended use case of affine_grid. "
"See the documentation of affine_grid for details.")
elif min(size) <= 0:
raise ValueError("Expected non-zero, positive output size. Got {}"
.format(size))
return torch.affine_grid_generator(theta, size, align_corners)
def _pad(input, pad, mode='constant', value=0):
# type: (Tensor, List[int], str, float) -> Tensor
r"""Pads tensor.
Padding size:
The padding size by which to pad some dimensions of :attr:`input`
are described starting from the last dimension and moving forward.
:math:`\left\lfloor\frac{\text{len(pad)}}{2}\right\rfloor` dimensions
of ``input`` will be padded.
For example, to pad only the last dimension of the input tensor, then
:attr:`pad` has the form
:math:`(\text{padding\_left}, \text{padding\_right})`;
to pad the last 2 dimensions of the input tensor, then use
:math:`(\text{padding\_left}, \text{padding\_right},`
:math:`\text{padding\_top}, \text{padding\_bottom})`;
to pad the last 3 dimensions, use
:math:`(\text{padding\_left}, \text{padding\_right},`
:math:`\text{padding\_top}, \text{padding\_bottom}`
:math:`\text{padding\_front}, \text{padding\_back})`.
Padding mode:
See :class:`torch.nn.ConstantPad2d`, :class:`torch.nn.ReflectionPad2d`, and
:class:`torch.nn.ReplicationPad2d` for concrete examples on how each of the
padding modes works. Constant padding is implemented for arbitrary dimensions.
Replicate padding is implemented for padding the last 3 dimensions of 5D input
tensor, or the last 2 dimensions of 4D input tensor, or the last dimension of
3D input tensor. Reflect padding is only implemented for padding the last 2
dimensions of 4D input tensor, or the last dimension of 3D input tensor.
Note:
When using the CUDA backend, this operation may induce nondeterministic
behaviour in its backward pass that is not easily switched off.
Please see the notes on :doc:`/notes/randomness` for background.
Args:
input (Tensor): N-dimensional tensor
pad (tuple): m-elements tuple, where
:math:`\frac{m}{2} \leq` input dimensions and :math:`m` is even.
mode: ``'constant'``, ``'reflect'``, ``'replicate'`` or ``'circular'``.
Default: ``'constant'``
value: fill value for ``'constant'`` padding. Default: ``0``
Examples::
>>> t4d = torch.empty(3, 3, 4, 2)
>>> p1d = (1, 1) # pad last dim by 1 on each side
>>> out = F.pad(t4d, p1d, "constant", 0) # effectively zero padding
>>> print(out.size())
torch.Size([3, 3, 4, 4])
>>> p2d = (1, 1, 2, 2) # pad last dim by (1, 1) and 2nd to last by (2, 2)
>>> out = F.pad(t4d, p2d, "constant", 0)
>>> print(out.size())
torch.Size([3, 3, 8, 4])
>>> t4d = torch.empty(3, 3, 4, 2)
>>> p3d = (0, 1, 2, 1, 3, 3) # pad by (0, 1), (2, 1), and (3, 3)
>>> out = F.pad(t4d, p3d, "constant", 0)
>>> print(out.size())
torch.Size([3, 9, 7, 3])
"""
if not torch.jit.is_scripting():
if type(input) is not Tensor and has_torch_function((input,)):
return handle_torch_function(
_pad, (input,), input, pad, mode=mode, value=value)
assert len(pad) % 2 == 0, 'Padding length must be divisible by 2'
assert len(pad) // 2 <= input.dim(), 'Padding length too large'
if mode == 'constant':
return _VF.constant_pad_nd(input, pad, value)
else:
assert value == 0, 'Padding mode "{}"" doesn\'t take in value argument'.format(mode)
if input.dim() == 3:
assert len(pad) == 2, '3D tensors expect 2 values for padding'
if mode == 'reflect':
return torch._C._nn.reflection_pad1d(input, pad)
elif mode == 'replicate':
return torch._C._nn.replication_pad1d(input, pad)
elif mode == 'circular':
return _pad_circular(input, pad)
else:
raise NotImplementedError
elif input.dim() == 4:
assert len(pad) == 4, '4D tensors expect 4 values for padding'
if mode == 'reflect':
return torch._C._nn.reflection_pad2d(input, pad)
elif mode == 'replicate':
return torch._C._nn.replication_pad2d(input, pad)
elif mode == 'circular':
return _pad_circular(input, pad)
else:
raise NotImplementedError
elif input.dim() == 5:
assert len(pad) == 6, '5D tensors expect 6 values for padding'
if mode == 'reflect':
raise NotImplementedError
elif mode == 'replicate':
return torch._C._nn.replication_pad3d(input, pad)
elif mode == 'circular':
return _pad_circular(input, pad)
else:
raise NotImplementedError
else:
raise NotImplementedError("Only 3D, 4D, 5D padding with non-constant padding are supported for now")
# We define this function as _pad because it takes an argument
# named pad, which clobbers the recursive reference to the pad
# function needed for __torch_function__ support
pad = _pad
# distance
def pairwise_distance(x1, x2, p=2., eps=1e-6, keepdim=False):
# type: (Tensor, Tensor, float, float, bool) -> Tensor
r"""
See :class:`torch.nn.PairwiseDistance` for details
"""
return torch.pairwise_distance(x1, x2, p, eps, keepdim)
pdist = _add_docstr(torch.pdist, r"""
pdist(input, p=2) -> Tensor
Computes the p-norm distance between every pair of row vectors in the input.
This is identical to the upper triangular portion, excluding the diagonal, of
`torch.norm(input[:, None] - input, dim=2, p=p)`. This function will be faster
if the rows are contiguous.
If input has shape :math:`N \times M` then the output will have shape
:math:`\frac{1}{2} N (N - 1)`.
This function is equivalent to `scipy.spatial.distance.pdist(input,
'minkowski', p=p)` if :math:`p \in (0, \infty)`. When :math:`p = 0` it is
equivalent to `scipy.spatial.distance.pdist(input, 'hamming') * M`.
When :math:`p = \infty`, the closest scipy function is
`scipy.spatial.distance.pdist(xn, lambda x, y: np.abs(x - y).max())`.
Args:
input: input tensor of shape :math:`N \times M`.
p: p value for the p-norm distance to calculate between each vector pair
:math:`\in [0, \infty]`.
""")
cosine_similarity = _add_docstr(torch.cosine_similarity, r"""
cosine_similarity(x1, x2, dim=1, eps=1e-8) -> Tensor
Returns cosine similarity between x1 and x2, computed along dim.
.. math ::
\text{similarity} = \dfrac{x_1 \cdot x_2}{\max(\Vert x_1 \Vert _2 \cdot \Vert x_2 \Vert _2, \epsilon)}
Args:
x1 (Tensor): First input.
x2 (Tensor): Second input (of size matching x1).
dim (int, optional): Dimension of vectors. Default: 1
eps (float, optional): Small value to avoid division by zero.
Default: 1e-8
Shape:
- Input: :math:`(\ast_1, D, \ast_2)` where D is at position `dim`.
- Output: :math:`(\ast_1, \ast_2)` where 1 is at position `dim`.
Example::
>>> input1 = torch.randn(100, 128)
>>> input2 = torch.randn(100, 128)
>>> output = F.cosine_similarity(input1, input2)
>>> print(output)
""")
one_hot = _add_docstr(torch._C._nn.one_hot, r"""
one_hot(tensor, num_classes=-1) -> LongTensor
Takes LongTensor with index values of shape ``(*)`` and returns a tensor
of shape ``(*, num_classes)`` that have zeros everywhere except where the
index of last dimension matches the corresponding value of the input tensor,
in which case it will be 1.
See also `One-hot on Wikipedia`_ .
.. _One-hot on Wikipedia:
https://en.wikipedia.org/wiki/One-hot
Arguments:
tensor (LongTensor): class values of any shape.
num_classes (int): Total number of classes. If set to -1, the number
of classes will be inferred as one greater than the largest class
value in the input tensor.
Returns:
LongTensor that has one more dimension with 1 values at the
index of last dimension indicated by the input, and 0 everywhere
else.
Examples:
>>> F.one_hot(torch.arange(0, 5) % 3)
tensor([[1, 0, 0],
[0, 1, 0],
[0, 0, 1],
[1, 0, 0],
[0, 1, 0]])
>>> F.one_hot(torch.arange(0, 5) % 3, num_classes=5)
tensor([[1, 0, 0, 0, 0],
[0, 1, 0, 0, 0],
[0, 0, 1, 0, 0],
[1, 0, 0, 0, 0],
[0, 1, 0, 0, 0]])
>>> F.one_hot(torch.arange(0, 6).view(3,2) % 3)
tensor([[[1, 0, 0],
[0, 1, 0]],
[[0, 0, 1],
[1, 0, 0]],
[[0, 1, 0],
[0, 0, 1]]])
""")
def triplet_margin_loss(anchor, positive, negative, margin=1.0, p=2, eps=1e-6, swap=False, size_average=None,
reduce=None, reduction="mean"):
# type: (Tensor, Tensor, Tensor, float, float, float, bool, Optional[bool], Optional[bool], str) -> Tensor
r"""
See :class:`~torch.nn.TripletMarginLoss` for details
"""
if not torch.jit.is_scripting():
tens_ops = (anchor, positive, negative)
if any([type(t) is not Tensor for t in tens_ops]) and has_torch_function(tens_ops):
return handle_torch_function(
triplet_margin_loss, tens_ops, anchor, positive, negative, margin=margin,
p=p, eps=eps, swap=swap, size_average=size_average, reduce=reduce,
reduction=reduction)
if size_average is not None or reduce is not None:
reduction_enum = _Reduction.legacy_get_enum(size_average, reduce)
else:
reduction_enum = _Reduction.get_enum(reduction)
return torch.triplet_margin_loss(anchor, positive, negative, margin, p, eps,
swap, reduction_enum)
def triplet_margin_with_distance_loss(anchor, positive, negative, *, distance_function=None,
margin=1.0, swap=False, reduction="mean"):
# type: (Tensor, Tensor, Tensor, Optional[Callable[[Tensor, Tensor], Tensor]], float, bool, str) -> Tensor
r"""
See :class:`~torch.nn.TripletMarginWithDistanceLoss` for details.
"""
if torch.jit.is_scripting():
raise NotImplementedError("F.triplet_margin_with_distance_loss does not support JIT scripting: "
"functions requiring Callables cannot be scripted.")
tens_ops = (anchor, positive, negative)
if any([type(t) is not Tensor for t in tens_ops]) and has_torch_function(tens_ops):
return handle_torch_function(
triplet_margin_with_distance_loss, tens_ops, anchor, positive, negative,
distance_function=distance_function, margin=margin, swap=swap, reduction=reduction)
distance_function = distance_function if distance_function is not None else pairwise_distance
positive_dist = distance_function(anchor, positive)
negative_dist = distance_function(anchor, negative)
if swap:
swap_dist = distance_function(positive, negative)
negative_dist = torch.min(negative_dist, swap_dist)
output = torch.clamp(positive_dist - negative_dist + margin, min=0.0)
reduction_enum = _Reduction.get_enum(reduction)
if reduction_enum == 1:
return output.mean()
elif reduction_enum == 2:
return output.sum()
else:
return output
def normalize(input, p=2, dim=1, eps=1e-12, out=None):
# type: (Tensor, float, int, float, Optional[Tensor]) -> Tensor
r"""Performs :math:`L_p` normalization of inputs over specified dimension.
For a tensor :attr:`input` of sizes :math:`(n_0, ..., n_{dim}, ..., n_k)`, each
:math:`n_{dim}` -element vector :math:`v` along dimension :attr:`dim` is transformed as
.. math::
v = \frac{v}{\max(\lVert v \rVert_p, \epsilon)}.
With the default arguments it uses the Euclidean norm over vectors along dimension :math:`1` for normalization.
Args:
input: input tensor of any shape
p (float): the exponent value in the norm formulation. Default: 2
dim (int): the dimension to reduce. Default: 1
eps (float): small value to avoid division by zero. Default: 1e-12
out (Tensor, optional): the output tensor. If :attr:`out` is used, this
operation won't be differentiable.
"""
if not torch.jit.is_scripting():
if type(input) is not Tensor and has_torch_function((input,)):
return handle_torch_function(
normalize, (input,), input, p=p, dim=dim, eps=eps, out=out)
if out is None:
denom = input.norm(p, dim, keepdim=True).clamp_min(eps).expand_as(input)
return input / denom
else:
denom = input.norm(p, dim, keepdim=True).clamp_min_(eps).expand_as(input)
return torch.div(input, denom, out=out)
def assert_int_or_pair(arg, arg_name, message):
# type: (List[int], str, str) -> None
assert isinstance(arg, int) or len(arg) == 2, message.format(arg_name)
def unfold(input, kernel_size, dilation=1, padding=0, stride=1):
# type: (Tensor, BroadcastingList2[int], BroadcastingList2[int], BroadcastingList2[int], BroadcastingList2[int]) -> Tensor # noqa
r"""Extracts sliding local blocks from an batched input tensor.
.. warning::
Currently, only 4-D input tensors (batched image-like tensors) are
supported.
.. warning::
More than one element of the unfolded tensor may refer to a single
memory location. As a result, in-place operations (especially ones that
are vectorized) may result in incorrect behavior. If you need to write
to the tensor, please clone it first.
See :class:`torch.nn.Unfold` for details
"""
if not torch.jit.is_scripting():
if type(input) is not Tensor and has_torch_function((input,)):
return handle_torch_function(
unfold, (input,), input, kernel_size, dilation=dilation,
padding=padding, stride=stride)
if input.dim() == 4:
msg = '{} must be int or 2-tuple for 4D input'
assert_int_or_pair(kernel_size, 'kernel_size', msg)
assert_int_or_pair(dilation, 'dilation', msg)
assert_int_or_pair(padding, 'padding', msg)
assert_int_or_pair(stride, 'stride', msg)
return torch._C._nn.im2col(input, _pair(kernel_size),
_pair(dilation), _pair(padding), _pair(stride))
else:
raise NotImplementedError("Input Error: Only 4D input Tensors are supported (got {}D)".format(input.dim()))
def fold(input, output_size, kernel_size, dilation=1, padding=0, stride=1):
# type: (Tensor, BroadcastingList2[int], BroadcastingList2[int], BroadcastingList2[int], BroadcastingList2[int], BroadcastingList2[int]) -> Tensor # noqa
r"""Combines an array of sliding local blocks into a large containing
tensor.
.. warning::
Currently, only 3-D output tensors (unfolded batched image-like tensors) are
supported.
See :class:`torch.nn.Fold` for details
"""
if not torch.jit.is_scripting():
if type(input) is not Tensor and has_torch_function((input,)):
return handle_torch_function(
fold, (input,), input, output_size, kernel_size, dilation=dilation,
padding=padding, stride=stride)
if input.dim() == 3:
msg = '{} must be int or 2-tuple for 3D input'
assert_int_or_pair(output_size, 'output_size', msg)
assert_int_or_pair(kernel_size, 'kernel_size', msg)
assert_int_or_pair(dilation, 'dilation', msg)
assert_int_or_pair(padding, 'padding', msg)
assert_int_or_pair(stride, 'stride', msg)
return torch._C._nn.col2im(input, _pair(output_size), _pair(kernel_size),
_pair(dilation), _pair(padding), _pair(stride))
else:
raise NotImplementedError("Input Error: Only 3D input Tensors are supported (got {}D)".format(input.dim()))
def _pad_circular(input, padding):
# type: (Tensor, List[int]) -> Tensor
"""Circularly pads tensor.
Tensor values at the beginning are used to pad the end, and values at the
end are used to pad the beginning. For example, consider a single dimension
with values [0, 1, 2, 3]. With circular padding of (1, 1) it would be
padded to [3, 0, 1, 2, 3, 0], and with padding (1, 2) it would be padded to
[3, 0, 1, 2, 3, 0, 1]. If negative padding is applied then the ends of the
tensor get removed. With circular padding of (-1, -1) the previous example
would become [1, 2]. Circular padding of (-1, 1) would produce
[1, 2, 3, 1].
The first and second dimensions of the tensor are not padded.
Args:
input: Tensor with shape :math:`(N, C, D[, H, W])`.
padding: Tuple containing the number of elements to pad each side of
the tensor. The length of padding must be twice the number of
paddable dimensions. For example, the length of padding should be 4
for a tensor of shape :math:`(N, C, H, W)`, and the length should
be 6 for a tensor of shape :math:`(N, C, D, H, W)`.
Examples::
>>> x = torch.tensor([[[[0, 1, 2], [3, 4, 5]]]]) # Create tensor
>>> # Example 1
>>> padding = (1, 1, 1, 1)
>>> y = F.pad(x, padding, mode='circular')
>>> print(y)
tensor([[[[5, 3, 4, 5, 3],
[2, 0, 1, 2, 0],
[5, 3, 4, 5, 3],
[2, 0, 1, 2, 0]]]])
>>> print(y.shape)
torch.Size([1, 1, 4, 5])
>>> # Example 2
>>> padding = (1, 1, 2, 2)
>>> z = F.pad(x, padding, mode='circular')
>>> print(z)
tensor([[[[2, 0, 1, 2, 0],
[5, 3, 4, 5, 3],
[2, 0, 1, 2, 0],
[5, 3, 4, 5, 3],
[2, 0, 1, 2, 0],
[5, 3, 4, 5, 3]]]])
>>> print(z.shape)
torch.Size([1, 1, 6, 5])
"""
in_shape = input.shape
paddable_shape = in_shape[2:]
ndim = len(paddable_shape)
for idx, size in enumerate(paddable_shape):
# Only supports wrapping around once
assert padding[-(idx * 2 + 1)] <= size, \
"Padding value causes wrapping around more than once."
assert padding[-(idx * 2 + 2)] <= size, \
"Padding value causes wrapping around more than once."
# Negative padding should not result in negative sizes
assert padding[-(idx * 2 + 1)] + padding[-(idx * 2 + 2)] + size >= 0, \
"Negative padding value is resulting in an empty dimension."
# Get shape of padded tensor
out_shape = in_shape[:2]
for idx, size in enumerate(paddable_shape):
out_shape += (size + padding[-(idx * 2 + 1)] + padding[-(idx * 2 + 2)],)
out = torch.empty(out_shape, dtype=input.dtype, layout=input.layout,
device=input.device)
# Put original array in padded array
if ndim == 1:
out_d0 = max(padding[-2], 0)
out_d1 = out_shape[2] - max(padding[-1], 0)
in_d0 = max(-padding[-2], 0)
in_d1 = in_shape[2] - max(-padding[-1], 0)
out[..., out_d0:out_d1] = input[..., in_d0:in_d1]
elif ndim == 2:
out_d0 = max(padding[-2], 0)
out_d1 = out_shape[2] - max(padding[-1], 0)
out_h0 = max(padding[-4], 0)
out_h1 = out_shape[3] - max(padding[-3], 0)
in_d0 = max(-padding[-2], 0)
in_d1 = in_shape[2] - max(-padding[-1], 0)
in_h0 = max(-padding[-4], 0)
in_h1 = in_shape[3] - max(-padding[-3], 0)
out[..., out_d0:out_d1, out_h0:out_h1] = \
input[..., in_d0:in_d1, in_h0:in_h1]
elif ndim == 3:
out_d0 = max(padding[-2], 0)
out_d1 = out_shape[2] - max(padding[-1], 0)
out_h0 = max(padding[-4], 0)
out_h1 = out_shape[3] - max(padding[-3], 0)
out_w0 = max(padding[-6], 0)
out_w1 = out_shape[4] - max(padding[-5], 0)
in_d0 = max(-padding[-2], 0)
in_d1 = in_shape[2] - max(-padding[-1], 0)
in_h0 = max(-padding[-4], 0)
in_h1 = in_shape[3] - max(-padding[-3], 0)
in_w0 = max(-padding[-6], 0)
in_w1 = in_shape[4] - max(-padding[-5], 0)
out[..., out_d0:out_d1, out_h0:out_h1, out_w0:out_w1] = \
input[..., in_d0:in_d1, in_h0:in_h1, in_w0:in_w1]
# The following steps first pad the beginning of the tensor (left side),
# and then pad the end of the tensor (right side).
# Note: Corners will be written more than once when ndim > 1.
# Only in cases where padding values are > 0 are when additional copying
# is required.
# Pad first dimension (depth)
if padding[-2] > 0:
i0 = out_shape[2] - padding[-2] - max(padding[-1], 0)
i1 = out_shape[2] - max(padding[-1], 0)
o0 = 0
o1 = padding[-2]
out[:, :, o0:o1] = out[:, :, i0:i1]
if padding[-1] > 0:
i0 = max(padding[-2], 0)
i1 = max(padding[-2], 0) + padding[-1]
o0 = out_shape[2] - padding[-1]
o1 = out_shape[2]
out[:, :, o0:o1] = out[:, :, i0:i1]
# Pad second dimension (height)
if len(padding) > 2:
if padding[-4] > 0:
i0 = out_shape[3] - padding[-4] - max(padding[-3], 0)
i1 = out_shape[3] - max(padding[-3], 0)
o0 = 0
o1 = padding[-4]
out[:, :, :, o0:o1] = \
out[:, :, :, i0:i1]
if padding[-3] > 0:
i0 = max(padding[-4], 0)
i1 = max(padding[-4], 0) + padding[-3]
o0 = out_shape[3] - padding[-3]
o1 = out_shape[3]
out[:, :, :, o0:o1] = \
out[:, :, :, i0:i1]
# Pad third dimension (width)
if len(padding) > 4:
if padding[-6] > 0:
i0 = out_shape[4] - padding[-6] - max(padding[-5], 0)
i1 = out_shape[4] - max(padding[-5], 0)
o0 = 0
o1 = padding[-6]
out[:, :, :, :, o0:o1] = \
out[:, :, :, :, i0:i1]
if padding[-5] > 0:
i0 = max(padding[-6], 0)
i1 = max(padding[-6], 0) + padding[-5]
o0 = out_shape[4] - padding[-5]
o1 = out_shape[4]
out[:, :, :, :, o0:o1] = \
out[:, :, :, :, i0:i1]
return out
def multi_head_attention_forward(query: Tensor,
key: Tensor,
value: Tensor,
embed_dim_to_check: int,
num_heads: int,
in_proj_weight: Tensor,
in_proj_bias: Tensor,
bias_k: Optional[Tensor],
bias_v: Optional[Tensor],
add_zero_attn: bool,
dropout_p: float,
out_proj_weight: Tensor,
out_proj_bias: Tensor,
training: bool = True,
key_padding_mask: Optional[Tensor] = None,
need_weights: bool = True,
attn_mask: Optional[Tensor] = None,
use_separate_proj_weight: bool = False,
q_proj_weight: Optional[Tensor] = None,
k_proj_weight: Optional[Tensor] = None,
v_proj_weight: Optional[Tensor] = None,
static_k: Optional[Tensor] = None,
static_v: Optional[Tensor] = None
) -> Tuple[Tensor, Optional[Tensor]]:
r"""
Args:
query, key, value: map a query and a set of key-value pairs to an output.
See "Attention Is All You Need" for more details.
embed_dim_to_check: total dimension of the model.
num_heads: parallel attention heads.
in_proj_weight, in_proj_bias: input projection weight and bias.
bias_k, bias_v: bias of the key and value sequences to be added at dim=0.
add_zero_attn: add a new batch of zeros to the key and
value sequences at dim=1.
dropout_p: probability of an element to be zeroed.
out_proj_weight, out_proj_bias: the output projection weight and bias.
training: apply dropout if is ``True``.
key_padding_mask: if provided, specified padding elements in the key will
be ignored by the attention. This is an binary mask. When the value is True,
the corresponding value on the attention layer will be filled with -inf.
need_weights: output attn_output_weights.
attn_mask: 2D or 3D mask that prevents attention to certain positions. A 2D mask will be broadcasted for all
the batches while a 3D mask allows to specify a different mask for the entries of each batch.
use_separate_proj_weight: the function accept the proj. weights for query, key,
and value in different forms. If false, in_proj_weight will be used, which is
a combination of q_proj_weight, k_proj_weight, v_proj_weight.
q_proj_weight, k_proj_weight, v_proj_weight, in_proj_bias: input projection weight and bias.
static_k, static_v: static key and value used for attention operators.
Shape:
Inputs:
- query: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is
the embedding dimension.
- key: :math:`(S, N, E)`, where S is the source sequence length, N is the batch size, E is
the embedding dimension.
- value: :math:`(S, N, E)` where S is the source sequence length, N is the batch size, E is
the embedding dimension.
- key_padding_mask: :math:`(N, S)` where N is the batch size, S is the source sequence length.
If a ByteTensor is provided, the non-zero positions will be ignored while the zero positions
will be unchanged. If a BoolTensor is provided, the positions with the
value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged.
- attn_mask: 2D mask :math:`(L, S)` where L is the target sequence length, S is the source sequence length.
3D mask :math:`(N*num_heads, L, S)` where N is the batch size, L is the target sequence length,
S is the source sequence length. attn_mask ensures that position i is allowed to attend the unmasked
positions. If a ByteTensor is provided, the non-zero positions are not allowed to attend
while the zero positions will be unchanged. If a BoolTensor is provided, positions with ``True``
are not allowed to attend while ``False`` values will be unchanged. If a FloatTensor
is provided, it will be added to the attention weight.
- static_k: :math:`(N*num_heads, S, E/num_heads)`, where S is the source sequence length,
N is the batch size, E is the embedding dimension. E/num_heads is the head dimension.
- static_v: :math:`(N*num_heads, S, E/num_heads)`, where S is the source sequence length,
N is the batch size, E is the embedding dimension. E/num_heads is the head dimension.
Outputs:
- attn_output: :math:`(L, N, E)` where L is the target sequence length, N is the batch size,
E is the embedding dimension.
- attn_output_weights: :math:`(N, L, S)` where N is the batch size,
L is the target sequence length, S is the source sequence length.
"""
if not torch.jit.is_scripting():
tens_ops = (query, key, value, in_proj_weight, in_proj_bias, bias_k, bias_v,
out_proj_weight, out_proj_bias)
if any([type(t) is not Tensor for t in tens_ops]) and has_torch_function(tens_ops):
return handle_torch_function(
multi_head_attention_forward, tens_ops, query, key, value,
embed_dim_to_check, num_heads, in_proj_weight, in_proj_bias,
bias_k, bias_v, add_zero_attn, dropout_p, out_proj_weight,
out_proj_bias, training=training, key_padding_mask=key_padding_mask,
need_weights=need_weights, attn_mask=attn_mask,
use_separate_proj_weight=use_separate_proj_weight,
q_proj_weight=q_proj_weight, k_proj_weight=k_proj_weight,
v_proj_weight=v_proj_weight, static_k=static_k, static_v=static_v)
tgt_len, bsz, embed_dim = query.size()
assert embed_dim == embed_dim_to_check
# allow MHA to have different sizes for the feature dimension
assert key.size(0) == value.size(0) and key.size(1) == value.size(1)
head_dim = embed_dim // num_heads
assert head_dim * num_heads == embed_dim, "embed_dim must be divisible by num_heads"
scaling = float(head_dim) ** -0.5
if not use_separate_proj_weight:
if torch.equal(query, key) and torch.equal(key, value):
# self-attention
q, k, v = linear(query, in_proj_weight, in_proj_bias).chunk(3, dim=-1)
elif torch.equal(key, value):
# encoder-decoder attention
# This is inline in_proj function with in_proj_weight and in_proj_bias
_b = in_proj_bias
_start = 0
_end = embed_dim
_w = in_proj_weight[_start:_end, :]
if _b is not None:
_b = _b[_start:_end]
q = linear(query, _w, _b)
if key is None:
assert value is None
k = None
v = None
else:
# This is inline in_proj function with in_proj_weight and in_proj_bias
_b = in_proj_bias
_start = embed_dim
_end = None
_w = in_proj_weight[_start:, :]
if _b is not None:
_b = _b[_start:]
k, v = linear(key, _w, _b).chunk(2, dim=-1)
else:
# This is inline in_proj function with in_proj_weight and in_proj_bias
_b = in_proj_bias
_start = 0
_end = embed_dim
_w = in_proj_weight[_start:_end, :]
if _b is not None:
_b = _b[_start:_end]
q = linear(query, _w, _b)
# This is inline in_proj function with in_proj_weight and in_proj_bias
_b = in_proj_bias
_start = embed_dim
_end = embed_dim * 2
_w = in_proj_weight[_start:_end, :]
if _b is not None:
_b = _b[_start:_end]
k = linear(key, _w, _b)
# This is inline in_proj function with in_proj_weight and in_proj_bias
_b = in_proj_bias
_start = embed_dim * 2
_end = None
_w = in_proj_weight[_start:, :]
if _b is not None:
_b = _b[_start:]
v = linear(value, _w, _b)
else:
q_proj_weight_non_opt = torch.jit._unwrap_optional(q_proj_weight)
len1, len2 = q_proj_weight_non_opt.size()
assert len1 == embed_dim and len2 == query.size(-1)
k_proj_weight_non_opt = torch.jit._unwrap_optional(k_proj_weight)
len1, len2 = k_proj_weight_non_opt.size()
assert len1 == embed_dim and len2 == key.size(-1)
v_proj_weight_non_opt = torch.jit._unwrap_optional(v_proj_weight)
len1, len2 = v_proj_weight_non_opt.size()
assert len1 == embed_dim and len2 == value.size(-1)
if in_proj_bias is not None:
q = linear(query, q_proj_weight_non_opt, in_proj_bias[0:embed_dim])
k = linear(key, k_proj_weight_non_opt, in_proj_bias[embed_dim:(embed_dim * 2)])
v = linear(value, v_proj_weight_non_opt, in_proj_bias[(embed_dim * 2):])
else:
q = linear(query, q_proj_weight_non_opt, in_proj_bias)
k = linear(key, k_proj_weight_non_opt, in_proj_bias)
v = linear(value, v_proj_weight_non_opt, in_proj_bias)
q = q * scaling
if attn_mask is not None:
assert attn_mask.dtype == torch.float32 or attn_mask.dtype == torch.float64 or \
attn_mask.dtype == torch.float16 or attn_mask.dtype == torch.uint8 or attn_mask.dtype == torch.bool, \
'Only float, byte, and bool types are supported for attn_mask, not {}'.format(attn_mask.dtype)
if attn_mask.dtype == torch.uint8:
warnings.warn("Byte tensor for attn_mask in nn.MultiheadAttention is deprecated. Use bool tensor instead.")
attn_mask = attn_mask.to(torch.bool)
if attn_mask.dim() == 2:
attn_mask = attn_mask.unsqueeze(0)
if list(attn_mask.size()) != [1, query.size(0), key.size(0)]:
raise RuntimeError('The size of the 2D attn_mask is not correct.')
elif attn_mask.dim() == 3:
if list(attn_mask.size()) != [bsz * num_heads, query.size(0), key.size(0)]:
raise RuntimeError('The size of the 3D attn_mask is not correct.')
else:
raise RuntimeError("attn_mask's dimension {} is not supported".format(attn_mask.dim()))
# attn_mask's dim is 3 now.
# convert ByteTensor key_padding_mask to bool
if key_padding_mask is not None and key_padding_mask.dtype == torch.uint8:
warnings.warn("Byte tensor for key_padding_mask in nn.MultiheadAttention is deprecated. Use bool tensor instead.")
key_padding_mask = key_padding_mask.to(torch.bool)
if bias_k is not None and bias_v is not None:
if static_k is None and static_v is None:
k = torch.cat([k, bias_k.repeat(1, bsz, 1)])
v = torch.cat([v, bias_v.repeat(1, bsz, 1)])
if attn_mask is not None:
attn_mask = pad(attn_mask, (0, 1))
if key_padding_mask is not None:
key_padding_mask = pad(key_padding_mask, (0, 1))
else:
assert static_k is None, "bias cannot be added to static key."
assert static_v is None, "bias cannot be added to static value."
else:
assert bias_k is None
assert bias_v is None
q = q.contiguous().view(tgt_len, bsz * num_heads, head_dim).transpose(0, 1)
if k is not None:
k = k.contiguous().view(-1, bsz * num_heads, head_dim).transpose(0, 1)
if v is not None:
v = v.contiguous().view(-1, bsz * num_heads, head_dim).transpose(0, 1)
if static_k is not None:
assert static_k.size(0) == bsz * num_heads
assert static_k.size(2) == head_dim
k = static_k
if static_v is not None:
assert static_v.size(0) == bsz * num_heads
assert static_v.size(2) == head_dim
v = static_v
src_len = k.size(1)
if key_padding_mask is not None:
assert key_padding_mask.size(0) == bsz
assert key_padding_mask.size(1) == src_len
if add_zero_attn:
src_len += 1
k = torch.cat([k, torch.zeros((k.size(0), 1) + k.size()[2:], dtype=k.dtype, device=k.device)], dim=1)
v = torch.cat([v, torch.zeros((v.size(0), 1) + v.size()[2:], dtype=v.dtype, device=v.device)], dim=1)
if attn_mask is not None:
attn_mask = pad(attn_mask, (0, 1))
if key_padding_mask is not None:
key_padding_mask = pad(key_padding_mask, (0, 1))
attn_output_weights = torch.bmm(q, k.transpose(1, 2))
assert list(attn_output_weights.size()) == [bsz * num_heads, tgt_len, src_len]
if attn_mask is not None:
if attn_mask.dtype == torch.bool:
attn_output_weights.masked_fill_(attn_mask, float('-inf'))
else:
attn_output_weights += attn_mask
if key_padding_mask is not None:
attn_output_weights = attn_output_weights.view(bsz, num_heads, tgt_len, src_len)
attn_output_weights = attn_output_weights.masked_fill(
key_padding_mask.unsqueeze(1).unsqueeze(2),
float('-inf'),
)
attn_output_weights = attn_output_weights.view(bsz * num_heads, tgt_len, src_len)
attn_output_weights = softmax(
attn_output_weights, dim=-1)
attn_output_weights = dropout(attn_output_weights, p=dropout_p, training=training)
attn_output = torch.bmm(attn_output_weights, v)
assert list(attn_output.size()) == [bsz * num_heads, tgt_len, head_dim]
attn_output = attn_output.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim)
attn_output = linear(attn_output, out_proj_weight, out_proj_bias)
if need_weights:
# average attention weights over heads
attn_output_weights = attn_output_weights.view(bsz, num_heads, tgt_len, src_len)
return attn_output, attn_output_weights.sum(dim=1) / num_heads
else:
return attn_output, None
|