File: linear_relu.py

package info (click to toggle)
pytorch 1.7.1-7
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 80,340 kB
  • sloc: cpp: 670,830; python: 343,991; ansic: 67,845; asm: 5,503; sh: 2,924; java: 2,888; xml: 266; makefile: 244; ruby: 148; yacc: 144; objc: 51; lex: 44
file content (38 lines) | stat: -rw-r--r-- 1,156 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
import torch.nn.qat as nnqat
import torch.nn.intrinsic
import torch.nn.functional as F

class LinearReLU(nnqat.Linear):
    r"""
    A LinearReLU module fused from Linear and ReLU modules, attached with
    FakeQuantize modules for weight, used in
    quantization aware training.

    We adopt the same interface as :class:`torch.nn.Linear`.

    Similar to `torch.nn.intrinsic.LinearReLU`, with FakeQuantize modules initialized to
    default.

    Attributes:
        weight: fake quant module for weight

    Examples::

        >>> m = nn.qat.LinearReLU(20, 30)
        >>> input = torch.randn(128, 20)
        >>> output = m(input)
        >>> print(output.size())
        torch.Size([128, 30])
    """
    _FLOAT_MODULE = torch.nn.intrinsic.LinearReLU

    def __init__(self, in_features, out_features, bias=True,
                 qconfig=None):
        super(LinearReLU, self).__init__(in_features, out_features, bias, qconfig)

    def forward(self, input):
        return F.relu(F.linear(input, self.weight_fake_quant(self.weight), self.bias))

    @classmethod
    def from_float(cls, mod):
        return super(LinearReLU, cls).from_float(mod)