File: bn_relu.py

package info (click to toggle)
pytorch 1.7.1-7
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 80,340 kB
  • sloc: cpp: 670,830; python: 343,991; ansic: 67,845; asm: 5,503; sh: 2,924; java: 2,888; xml: 266; makefile: 244; ruby: 148; yacc: 144; objc: 51; lex: 44
file content (71 lines) | stat: -rw-r--r-- 2,320 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71

import torch
import torch.nn.intrinsic
import torch.nn.intrinsic.qat
import torch.nn.quantized as nnq


class BNReLU2d(nnq.BatchNorm2d):
    r"""
    A BNReLU2d module is a fused module of BatchNorm2d and ReLU

    We adopt the same interface as :class:`torch.nn.quantized.BatchNorm2d`.

    Attributes:
        Same as torch.nn.quantized.BatchNorm2d

    """
    _FLOAT_MODULE = torch.nn.intrinsic.BNReLU2d

    def __init__(self, num_features, eps=1e-5, momentum=0.1):
        super(BNReLU2d, self).__init__(num_features, eps=eps, momentum=momentum)

    def forward(self, input):
        # Temporarily using len(shape) instead of ndim due to JIT issue
        # https://github.com/pytorch/pytorch/issues/23890
        if len(input.shape) != 4:
            raise ValueError("Input shape must be `(N, C, H, W)`!")
        return torch.ops.quantized.batch_norm2d_relu(
            input, self.weight, self.bias, self.running_mean,
            self.running_var, self.eps, self.scale, self.zero_point)

    def _get_name(self):
        return 'QuantizedBNReLU2d'

    @classmethod
    def from_float(cls, mod):
        # TODO: Add qat support for BNReLU2d
        return super(BNReLU2d, cls).from_float(mod)


class BNReLU3d(nnq.BatchNorm3d):
    r"""
    A BNReLU3d module is a fused module of BatchNorm3d and ReLU

    We adopt the same interface as :class:`torch.nn.quantized.BatchNorm3d`.

    .. note::
    Attributes: Same as torch.nn.quantized.BatchNorm3d

    """
    _FLOAT_MODULE = torch.nn.intrinsic.BNReLU3d

    def __init__(self, num_features, eps=1e-5, momentum=0.1):
        super(BNReLU3d, self).__init__(num_features, eps=eps, momentum=momentum)

    def forward(self, input):
        # Temporarily using len(shape) instead of ndim due to JIT issue
        # https://github.com/pytorch/pytorch/issues/23890
        if len(input.shape) != 5:
            raise ValueError("Input shape must be `(N, C, D, H, W)`!")
        return torch.ops.quantized.batch_norm3d_relu(
            input, self.weight, self.bias, self.running_mean,
            self.running_var, self.eps, self.scale, self.zero_point)

    def _get_name(self):
        return 'QuantizedBNReLU3d'

    @classmethod
    def from_float(cls, mod):
        # TODO: Add qat support for BNReLU3d
        return super(BNReLU3d, cls).from_float(mod)