File: conv_relu.py

package info (click to toggle)
pytorch 1.7.1-7
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 80,340 kB
  • sloc: cpp: 670,830; python: 343,991; ansic: 67,845; asm: 5,503; sh: 2,924; java: 2,888; xml: 266; makefile: 244; ruby: 148; yacc: 144; objc: 51; lex: 44
file content (117 lines) | stat: -rw-r--r-- 4,161 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117

import torch
import torch.nn.intrinsic
import torch.nn.intrinsic.qat
import torch.nn.quantized as nnq

from torch.nn.utils import fuse_conv_bn_weights

class ConvReLU1d(nnq.Conv1d):
    r"""
    A ConvReLU1d module is a fused module of Conv1d and ReLU

    We adopt the same interface as :class:`torch.nn.quantized.Conv1d`.

    Attributes:
        Same as torch.nn.quantized.Conv1d

    """
    _FLOAT_MODULE = torch.nn.intrinsic.ConvReLU1d

    def __init__(self, in_channels, out_channels, kernel_size, stride=1,
                 padding=0, dilation=1, groups=1, bias=True,
                 padding_mode='zeros'):
        super(ConvReLU1d, self).__init__(
            in_channels, out_channels, kernel_size, stride=stride,
            padding=padding, dilation=dilation, groups=groups, bias=bias,
            padding_mode=padding_mode)

    def forward(self, input):
        # Temporarily using len(shape) instead of ndim due to JIT issue
        # https://github.com/pytorch/pytorch/issues/23890
        if len(input.shape) != 3:
            raise ValueError("Input shape must be `(N, C, L)`!")
        return torch.ops.quantized.conv1d_relu(
            input, self._packed_params, self.scale, self.zero_point)

    def _get_name(self):
        return 'QuantizedConvReLU1d'

    @classmethod
    def from_float(cls, mod):
        return super(ConvReLU1d, cls).from_float(mod)

class ConvReLU2d(nnq.Conv2d):
    r"""
    A ConvReLU2d module is a fused module of Conv2d and ReLU

    We adopt the same interface as :class:`torch.nn.quantized.Conv2d`.

    Attributes:
        Same as torch.nn.quantized.Conv2d

    """
    _FLOAT_MODULE = torch.nn.intrinsic.ConvReLU2d

    def __init__(self, in_channels, out_channels, kernel_size, stride=1,
                 padding=0, dilation=1, groups=1, bias=True,
                 padding_mode='zeros'):
        super(ConvReLU2d, self).__init__(
            in_channels, out_channels, kernel_size, stride=stride,
            padding=padding, dilation=dilation, groups=groups, bias=bias,
            padding_mode=padding_mode)

    def forward(self, input):
        # Temporarily using len(shape) instead of ndim due to JIT issue
        # https://github.com/pytorch/pytorch/issues/23890
        if len(input.shape) != 4:
            raise ValueError("Input shape must be `(N, C, H, W)`!")
        return torch.ops.quantized.conv2d_relu(
            input, self._packed_params, self.scale, self.zero_point)

    def _get_name(self):
        return 'QuantizedConvReLU2d'

    @classmethod
    def from_float(cls, mod):
        if type(mod) == torch.nn.intrinsic.qat.ConvBnReLU2d:
            mod.weight, mod.bias = fuse_conv_bn_weights(
                mod.weight, mod.bias, mod.bn.running_mean, mod.bn.running_var,
                mod.bn.eps, mod.bn.weight, mod.bn.bias)
        return super(ConvReLU2d, cls).from_float(mod)


class ConvReLU3d(nnq.Conv3d):
    r"""
    A ConvReLU3d module is a fused module of Conv3d and ReLU

    We adopt the same interface as :class:`torch.nn.quantized.Conv3d`.

    Attributes: Same as torch.nn.quantized.Conv3d

    """
    _FLOAT_MODULE = torch.nn.intrinsic.ConvReLU3d

    def __init__(self, in_channels, out_channels, kernel_size, stride=1,
                 padding=0, dilation=1, groups=1, bias=True,
                 padding_mode='zeros'):
        super(ConvReLU3d, self).__init__(
            in_channels, out_channels, kernel_size, stride=stride,
            padding=padding, dilation=dilation, groups=groups, bias=bias,
            padding_mode=padding_mode)

    def forward(self, input):
        # Temporarily using len(shape) instead of ndim due to JIT issue
        # https://github.com/pytorch/pytorch/issues/23890
        if len(input.shape) != 5:
            raise ValueError("Input shape must be `(N, C, D, H, W)`!")
        return torch.ops.quantized.conv3d_relu(
            input, self._packed_params, self.scale, self.zero_point)

    def _get_name(self):
        return 'QuantizedConvReLU3d'

    @classmethod
    def from_float(cls, mod):
        # TODO: Add qat support for ConvReLU3d and ConvBnReLU3d
        return super(ConvReLU3d, cls).from_float(mod)