File: batchnorm.py

package info (click to toggle)
pytorch 1.7.1-7
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 80,340 kB
  • sloc: cpp: 670,830; python: 343,991; ansic: 67,845; asm: 5,503; sh: 2,924; java: 2,888; xml: 266; makefile: 244; ruby: 148; yacc: 144; objc: 51; lex: 44
file content (584 lines) | stat: -rw-r--r-- 27,239 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
import torch
from torch import Tensor
from ._functions import SyncBatchNorm as sync_batch_norm
from .module import Module
from torch.nn.parameter import Parameter
from .. import functional as F
from .. import init

from typing import Optional, Any


class _NormBase(Module):
    """Common base of _InstanceNorm and _BatchNorm"""
    _version = 2
    __constants__ = ['track_running_stats', 'momentum', 'eps',
                     'num_features', 'affine']
    num_features: int
    eps: float
    momentum: float
    affine: bool
    track_running_stats: bool
    # WARNING: weight and bias purposely not defined here.
    # See https://github.com/pytorch/pytorch/issues/39670

    def __init__(
        self,
        num_features: int,
        eps: float = 1e-5,
        momentum: float = 0.1,
        affine: bool = True,
        track_running_stats: bool = True
    ) -> None:
        super(_NormBase, self).__init__()
        self.num_features = num_features
        self.eps = eps
        self.momentum = momentum
        self.affine = affine
        self.track_running_stats = track_running_stats
        if self.affine:
            self.weight = Parameter(torch.Tensor(num_features))
            self.bias = Parameter(torch.Tensor(num_features))
        else:
            self.register_parameter('weight', None)
            self.register_parameter('bias', None)
        if self.track_running_stats:
            self.register_buffer('running_mean', torch.zeros(num_features))
            self.register_buffer('running_var', torch.ones(num_features))
            self.register_buffer('num_batches_tracked', torch.tensor(0, dtype=torch.long))
        else:
            self.register_parameter('running_mean', None)
            self.register_parameter('running_var', None)
            self.register_parameter('num_batches_tracked', None)
        self.reset_parameters()

    def reset_running_stats(self) -> None:
        if self.track_running_stats:
            self.running_mean.zero_()
            self.running_var.fill_(1)
            self.num_batches_tracked.zero_()

    def reset_parameters(self) -> None:
        self.reset_running_stats()
        if self.affine:
            init.ones_(self.weight)
            init.zeros_(self.bias)

    def _check_input_dim(self, input):
        raise NotImplementedError

    def extra_repr(self):
        return '{num_features}, eps={eps}, momentum={momentum}, affine={affine}, ' \
               'track_running_stats={track_running_stats}'.format(**self.__dict__)

    def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict,
                              missing_keys, unexpected_keys, error_msgs):
        version = local_metadata.get('version', None)

        if (version is None or version < 2) and self.track_running_stats:
            # at version 2: added num_batches_tracked buffer
            #               this should have a default value of 0
            num_batches_tracked_key = prefix + 'num_batches_tracked'
            if num_batches_tracked_key not in state_dict:
                state_dict[num_batches_tracked_key] = torch.tensor(0, dtype=torch.long)

        super(_NormBase, self)._load_from_state_dict(
            state_dict, prefix, local_metadata, strict,
            missing_keys, unexpected_keys, error_msgs)


class _BatchNorm(_NormBase):

    def __init__(self, num_features, eps=1e-5, momentum=0.1, affine=True,
                 track_running_stats=True):
        super(_BatchNorm, self).__init__(
            num_features, eps, momentum, affine, track_running_stats)

    def forward(self, input: Tensor) -> Tensor:
        self._check_input_dim(input)

        # exponential_average_factor is set to self.momentum
        # (when it is available) only so that it gets updated
        # in ONNX graph when this node is exported to ONNX.
        if self.momentum is None:
            exponential_average_factor = 0.0
        else:
            exponential_average_factor = self.momentum

        if self.training and self.track_running_stats:
            # TODO: if statement only here to tell the jit to skip emitting this when it is None
            if self.num_batches_tracked is not None:
                self.num_batches_tracked = self.num_batches_tracked + 1
                if self.momentum is None:  # use cumulative moving average
                    exponential_average_factor = 1.0 / float(self.num_batches_tracked)
                else:  # use exponential moving average
                    exponential_average_factor = self.momentum

        r"""
        Decide whether the mini-batch stats should be used for normalization rather than the buffers.
        Mini-batch stats are used in training mode, and in eval mode when buffers are None.
        """
        if self.training:
            bn_training = True
        else:
            bn_training = (self.running_mean is None) and (self.running_var is None)

        r"""
        Buffers are only updated if they are to be tracked and we are in training mode. Thus they only need to be
        passed when the update should occur (i.e. in training mode when they are tracked), or when buffer stats are
        used for normalization (i.e. in eval mode when buffers are not None).
        """
        return F.batch_norm(
            input,
            # If buffers are not to be tracked, ensure that they won't be updated
            self.running_mean if not self.training or self.track_running_stats else None,
            self.running_var if not self.training or self.track_running_stats else None,
            self.weight, self.bias, bn_training, exponential_average_factor, self.eps)


class BatchNorm1d(_BatchNorm):
    r"""Applies Batch Normalization over a 2D or 3D input (a mini-batch of 1D
    inputs with optional additional channel dimension) as described in the paper
    `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/abs/1502.03167>`__ .

    .. math::

        y = \frac{x - \mathrm{E}[x]}{\sqrt{\mathrm{Var}[x] + \epsilon}} * \gamma + \beta

    The mean and standard-deviation are calculated per-dimension over
    the mini-batches and :math:`\gamma` and :math:`\beta` are learnable parameter vectors
    of size `C` (where `C` is the input size). By default, the elements of :math:`\gamma` are set
    to 1 and the elements of :math:`\beta` are set to 0. The standard-deviation is calculated
    via the biased estimator, equivalent to `torch.var(input, unbiased=False)`.

    Also by default, during training this layer keeps running estimates of its
    computed mean and variance, which are then used for normalization during
    evaluation. The running estimates are kept with a default :attr:`momentum`
    of 0.1.

    If :attr:`track_running_stats` is set to ``False``, this layer then does not
    keep running estimates, and batch statistics are instead used during
    evaluation time as well.

    .. note::
        This :attr:`momentum` argument is different from one used in optimizer
        classes and the conventional notion of momentum. Mathematically, the
        update rule for running statistics here is
        :math:`\hat{x}_\text{new} = (1 - \text{momentum}) \times \hat{x} + \text{momentum} \times x_t`,
        where :math:`\hat{x}` is the estimated statistic and :math:`x_t` is the
        new observed value.

    Because the Batch Normalization is done over the `C` dimension, computing statistics
    on `(N, L)` slices, it's common terminology to call this Temporal Batch Normalization.

    Args:
        num_features: :math:`C` from an expected input of size
            :math:`(N, C, L)` or :math:`L` from input of size :math:`(N, L)`
        eps: a value added to the denominator for numerical stability.
            Default: 1e-5
        momentum: the value used for the running_mean and running_var
            computation. Can be set to ``None`` for cumulative moving average
            (i.e. simple average). Default: 0.1
        affine: a boolean value that when set to ``True``, this module has
            learnable affine parameters. Default: ``True``
        track_running_stats: a boolean value that when set to ``True``, this
            module tracks the running mean and variance, and when set to ``False``,
            this module does not track such statistics, and initializes statistics
            buffers :attr:`running_mean` and :attr:`running_var` as ``None``.
            When these buffers are ``None``, this module always uses batch statistics.
            in both training and eval modes. Default: ``True``

    Shape:
        - Input: :math:`(N, C)` or :math:`(N, C, L)`
        - Output: :math:`(N, C)` or :math:`(N, C, L)` (same shape as input)

    Examples::

        >>> # With Learnable Parameters
        >>> m = nn.BatchNorm1d(100)
        >>> # Without Learnable Parameters
        >>> m = nn.BatchNorm1d(100, affine=False)
        >>> input = torch.randn(20, 100)
        >>> output = m(input)
    """

    def _check_input_dim(self, input):
        if input.dim() != 2 and input.dim() != 3:
            raise ValueError('expected 2D or 3D input (got {}D input)'
                             .format(input.dim()))


class BatchNorm2d(_BatchNorm):
    r"""Applies Batch Normalization over a 4D input (a mini-batch of 2D inputs
    with additional channel dimension) as described in the paper
    `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/abs/1502.03167>`__ .

    .. math::

        y = \frac{x - \mathrm{E}[x]}{ \sqrt{\mathrm{Var}[x] + \epsilon}} * \gamma + \beta

    The mean and standard-deviation are calculated per-dimension over
    the mini-batches and :math:`\gamma` and :math:`\beta` are learnable parameter vectors
    of size `C` (where `C` is the input size). By default, the elements of :math:`\gamma` are set
    to 1 and the elements of :math:`\beta` are set to 0. The standard-deviation is calculated
    via the biased estimator, equivalent to `torch.var(input, unbiased=False)`.

    Also by default, during training this layer keeps running estimates of its
    computed mean and variance, which are then used for normalization during
    evaluation. The running estimates are kept with a default :attr:`momentum`
    of 0.1.

    If :attr:`track_running_stats` is set to ``False``, this layer then does not
    keep running estimates, and batch statistics are instead used during
    evaluation time as well.

    .. note::
        This :attr:`momentum` argument is different from one used in optimizer
        classes and the conventional notion of momentum. Mathematically, the
        update rule for running statistics here is
        :math:`\hat{x}_\text{new} = (1 - \text{momentum}) \times \hat{x} + \text{momentum} \times x_t`,
        where :math:`\hat{x}` is the estimated statistic and :math:`x_t` is the
        new observed value.

    Because the Batch Normalization is done over the `C` dimension, computing statistics
    on `(N, H, W)` slices, it's common terminology to call this Spatial Batch Normalization.

    Args:
        num_features: :math:`C` from an expected input of size
            :math:`(N, C, H, W)`
        eps: a value added to the denominator for numerical stability.
            Default: 1e-5
        momentum: the value used for the running_mean and running_var
            computation. Can be set to ``None`` for cumulative moving average
            (i.e. simple average). Default: 0.1
        affine: a boolean value that when set to ``True``, this module has
            learnable affine parameters. Default: ``True``
        track_running_stats: a boolean value that when set to ``True``, this
            module tracks the running mean and variance, and when set to ``False``,
            this module does not track such statistics, and initializes statistics
            buffers :attr:`running_mean` and :attr:`running_var` as ``None``.
            When these buffers are ``None``, this module always uses batch statistics.
            in both training and eval modes. Default: ``True``

    Shape:
        - Input: :math:`(N, C, H, W)`
        - Output: :math:`(N, C, H, W)` (same shape as input)

    Examples::

        >>> # With Learnable Parameters
        >>> m = nn.BatchNorm2d(100)
        >>> # Without Learnable Parameters
        >>> m = nn.BatchNorm2d(100, affine=False)
        >>> input = torch.randn(20, 100, 35, 45)
        >>> output = m(input)
    """

    def _check_input_dim(self, input):
        if input.dim() != 4:
            raise ValueError('expected 4D input (got {}D input)'
                             .format(input.dim()))


class BatchNorm3d(_BatchNorm):
    r"""Applies Batch Normalization over a 5D input (a mini-batch of 3D inputs
    with additional channel dimension) as described in the paper
    `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/abs/1502.03167>`__ .

    .. math::

        y = \frac{x - \mathrm{E}[x]}{ \sqrt{\mathrm{Var}[x] + \epsilon}} * \gamma + \beta

    The mean and standard-deviation are calculated per-dimension over
    the mini-batches and :math:`\gamma` and :math:`\beta` are learnable parameter vectors
    of size `C` (where `C` is the input size). By default, the elements of :math:`\gamma` are set
    to 1 and the elements of :math:`\beta` are set to 0. The standard-deviation is calculated
    via the biased estimator, equivalent to `torch.var(input, unbiased=False)`.

    Also by default, during training this layer keeps running estimates of its
    computed mean and variance, which are then used for normalization during
    evaluation. The running estimates are kept with a default :attr:`momentum`
    of 0.1.

    If :attr:`track_running_stats` is set to ``False``, this layer then does not
    keep running estimates, and batch statistics are instead used during
    evaluation time as well.

    .. note::
        This :attr:`momentum` argument is different from one used in optimizer
        classes and the conventional notion of momentum. Mathematically, the
        update rule for running statistics here is
        :math:`\hat{x}_\text{new} = (1 - \text{momentum}) \times \hat{x} + \text{momentum} \times x_t`,
        where :math:`\hat{x}` is the estimated statistic and :math:`x_t` is the
        new observed value.

    Because the Batch Normalization is done over the `C` dimension, computing statistics
    on `(N, D, H, W)` slices, it's common terminology to call this Volumetric Batch Normalization
    or Spatio-temporal Batch Normalization.

    Args:
        num_features: :math:`C` from an expected input of size
            :math:`(N, C, D, H, W)`
        eps: a value added to the denominator for numerical stability.
            Default: 1e-5
        momentum: the value used for the running_mean and running_var
            computation. Can be set to ``None`` for cumulative moving average
            (i.e. simple average). Default: 0.1
        affine: a boolean value that when set to ``True``, this module has
            learnable affine parameters. Default: ``True``
        track_running_stats: a boolean value that when set to ``True``, this
            module tracks the running mean and variance, and when set to ``False``,
            this module does not track such statistics, and initializes statistics
            buffers :attr:`running_mean` and :attr:`running_var` as ``None``.
            When these buffers are ``None``, this module always uses batch statistics.
            in both training and eval modes. Default: ``True``

    Shape:
        - Input: :math:`(N, C, D, H, W)`
        - Output: :math:`(N, C, D, H, W)` (same shape as input)

    Examples::

        >>> # With Learnable Parameters
        >>> m = nn.BatchNorm3d(100)
        >>> # Without Learnable Parameters
        >>> m = nn.BatchNorm3d(100, affine=False)
        >>> input = torch.randn(20, 100, 35, 45, 10)
        >>> output = m(input)
    """

    def _check_input_dim(self, input):
        if input.dim() != 5:
            raise ValueError('expected 5D input (got {}D input)'
                             .format(input.dim()))


class SyncBatchNorm(_BatchNorm):
    r"""Applies Batch Normalization over a N-Dimensional input (a mini-batch of [N-2]D inputs
    with additional channel dimension) as described in the paper
    `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/abs/1502.03167>`__ .

    .. math::

        y = \frac{x - \mathrm{E}[x]}{ \sqrt{\mathrm{Var}[x] + \epsilon}} * \gamma + \beta

    The mean and standard-deviation are calculated per-dimension over all
    mini-batches of the same process groups. :math:`\gamma` and :math:`\beta`
    are learnable parameter vectors of size `C` (where `C` is the input size).
    By default, the elements of :math:`\gamma` are sampled from
    :math:`\mathcal{U}(0, 1)` and the elements of :math:`\beta` are set to 0.
    The standard-deviation is calculated via the biased estimator, equivalent to
    `torch.var(input, unbiased=False)`.

    Also by default, during training this layer keeps running estimates of its
    computed mean and variance, which are then used for normalization during
    evaluation. The running estimates are kept with a default :attr:`momentum`
    of 0.1.

    If :attr:`track_running_stats` is set to ``False``, this layer then does not
    keep running estimates, and batch statistics are instead used during
    evaluation time as well.

    .. note::
        This :attr:`momentum` argument is different from one used in optimizer
        classes and the conventional notion of momentum. Mathematically, the
        update rule for running statistics here is
        :math:`\hat{x}_\text{new} = (1 - \text{momentum}) \times \hat{x} + \text{momentum} \times x_t`,
        where :math:`\hat{x}` is the estimated statistic and :math:`x_t` is the
        new observed value.

    Because the Batch Normalization is done for each channel in the ``C`` dimension, computing
    statistics on ``(N, +)`` slices, it's common terminology to call this Volumetric Batch
    Normalization or Spatio-temporal Batch Normalization.

    Currently :class:`SyncBatchNorm` only supports
    :class:`~torch.nn.DistributedDataParallel` (DDP) with single GPU per process. Use
    :meth:`torch.nn.SyncBatchNorm.convert_sync_batchnorm()` to convert
    :attr:`BatchNorm*D` layer to :class:`SyncBatchNorm` before wrapping
    Network with DDP.

    Args:
        num_features: :math:`C` from an expected input of size
            :math:`(N, C, +)`
        eps: a value added to the denominator for numerical stability.
            Default: ``1e-5``
        momentum: the value used for the running_mean and running_var
            computation. Can be set to ``None`` for cumulative moving average
            (i.e. simple average). Default: 0.1
        affine: a boolean value that when set to ``True``, this module has
            learnable affine parameters. Default: ``True``
        track_running_stats: a boolean value that when set to ``True``, this
            module tracks the running mean and variance, and when set to ``False``,
            this module does not track such statistics, and initializes statistics
            buffers :attr:`running_mean` and :attr:`running_var` as ``None``.
            When these buffers are ``None``, this module always uses batch statistics.
            in both training and eval modes. Default: ``True``
        process_group: synchronization of stats happen within each process group
            individually. Default behavior is synchronization across the whole
            world

    Shape:
        - Input: :math:`(N, C, +)`
        - Output: :math:`(N, C, +)` (same shape as input)

    Examples::

        >>> # With Learnable Parameters
        >>> m = nn.SyncBatchNorm(100)
        >>> # creating process group (optional)
        >>> # process_ids is a list of int identifying rank ids.
        >>> process_group = torch.distributed.new_group(process_ids)
        >>> # Without Learnable Parameters
        >>> m = nn.BatchNorm3d(100, affine=False, process_group=process_group)
        >>> input = torch.randn(20, 100, 35, 45, 10)
        >>> output = m(input)

        >>> # network is nn.BatchNorm layer
        >>> sync_bn_network = nn.SyncBatchNorm.convert_sync_batchnorm(network, process_group)
        >>> # only single gpu per process is currently supported
        >>> ddp_sync_bn_network = torch.nn.parallel.DistributedDataParallel(
        >>>                         sync_bn_network,
        >>>                         device_ids=[args.local_rank],
        >>>                         output_device=args.local_rank)
    """

    def __init__(
        self,
        num_features: int,
        eps: float = 1e-5,
        momentum: float = 0.1,
        affine: bool = True,
        track_running_stats: bool = True,
        process_group: Optional[Any] = None
    ) -> None:
        super(SyncBatchNorm, self).__init__(num_features, eps, momentum, affine, track_running_stats)
        self.process_group = process_group
        # gpu_size is set through DistributedDataParallel initialization. This is to ensure that SyncBatchNorm is used
        # under supported condition (single GPU per process)
        self.ddp_gpu_size = None

    def _check_input_dim(self, input):
        if input.dim() < 2:
            raise ValueError('expected at least 2D input (got {}D input)'
                             .format(input.dim()))

    def _specify_ddp_gpu_num(self, gpu_size):
        if gpu_size > 1:
            raise ValueError('SyncBatchNorm is only supported for DDP with single GPU per process')
        self.ddp_gpu_size = gpu_size

    def forward(self, input: Tensor) -> Tensor:
        # currently only GPU input is supported
        if not input.is_cuda:
            raise ValueError('SyncBatchNorm expected input tensor to be on GPU')

        self._check_input_dim(input)

        # exponential_average_factor is set to self.momentum
        # (when it is available) only so that it gets updated
        # in ONNX graph when this node is exported to ONNX.
        if self.momentum is None:
            exponential_average_factor = 0.0
        else:
            exponential_average_factor = self.momentum

        if self.training and self.track_running_stats:
            self.num_batches_tracked = self.num_batches_tracked + 1
            if self.momentum is None:  # use cumulative moving average
                exponential_average_factor = 1.0 / self.num_batches_tracked.item()
            else:  # use exponential moving average
                exponential_average_factor = self.momentum

        r"""
        Decide whether the mini-batch stats should be used for normalization rather than the buffers.
        Mini-batch stats are used in training mode, and in eval mode when buffers are None.
        """
        if self.training:
            bn_training = True
        else:
            bn_training = (self.running_mean is None) and (self.running_var is None)

        r"""
        Buffers are only updated if they are to be tracked and we are in training mode. Thus they only need to be
        passed when the update should occur (i.e. in training mode when they are tracked), or when buffer stats are
        used for normalization (i.e. in eval mode when buffers are not None).
        """
        # If buffers are not to be tracked, ensure that they won't be updated
        running_mean = self.running_mean if not self.training or self.track_running_stats else None
        running_var = self.running_var if not self.training or self.track_running_stats else None

        need_sync = bn_training
        if need_sync:
            process_group = torch.distributed.group.WORLD
            if self.process_group:
                process_group = self.process_group
            world_size = torch.distributed.get_world_size(process_group)
            need_sync = world_size > 1

        # fallback to framework BN when synchronization is not necessary
        if not need_sync:
            return F.batch_norm(
                input, running_mean, running_var, self.weight, self.bias,
                bn_training, exponential_average_factor, self.eps)
        else:
            if not self.ddp_gpu_size:
                raise AttributeError('SyncBatchNorm is only supported within torch.nn.parallel.DistributedDataParallel')

            assert bn_training
            return sync_batch_norm.apply(
                input, self.weight, self.bias, running_mean, running_var,
                self.eps, exponential_average_factor, process_group, world_size)

    @classmethod
    def convert_sync_batchnorm(cls, module, process_group=None):
        r"""Helper function to convert all :attr:`BatchNorm*D` layers in the model to
        :class:`torch.nn.SyncBatchNorm` layers.

        Args:
            module (nn.Module): module containing one or more attr:`BatchNorm*D` layers
            process_group (optional): process group to scope synchronization,
                default is the whole world

        Returns:
            The original :attr:`module` with the converted :class:`torch.nn.SyncBatchNorm`
            layers. If the original :attr:`module` is a :attr:`BatchNorm*D` layer,
            a new :class:`torch.nn.SyncBatchNorm` layer object will be returned
            instead.

        Example::

            >>> # Network with nn.BatchNorm layer
            >>> module = torch.nn.Sequential(
            >>>            torch.nn.Linear(20, 100),
            >>>            torch.nn.BatchNorm1d(100),
            >>>          ).cuda()
            >>> # creating process group (optional)
            >>> # process_ids is a list of int identifying rank ids.
            >>> process_group = torch.distributed.new_group(process_ids)
            >>> sync_bn_module = torch.nn.SyncBatchNorm.convert_sync_batchnorm(module, process_group)

        """
        module_output = module
        if isinstance(module, torch.nn.modules.batchnorm._BatchNorm):
            module_output = torch.nn.SyncBatchNorm(module.num_features,
                                                   module.eps, module.momentum,
                                                   module.affine,
                                                   module.track_running_stats,
                                                   process_group)
            if module.affine:
                with torch.no_grad():
                    module_output.weight = module.weight
                    module_output.bias = module.bias
            module_output.running_mean = module.running_mean
            module_output.running_var = module.running_var
            module_output.num_batches_tracked = module.num_batches_tracked
            if hasattr(module, "qconfig"):
                module_output.qconfig = module.qconfig
        for name, child in module.named_children():
            module_output.add_module(name, cls.convert_sync_batchnorm(child, process_group))
        del module
        return module_output