File: container.py

package info (click to toggle)
pytorch 1.7.1-7
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 80,340 kB
  • sloc: cpp: 670,830; python: 343,991; ansic: 67,845; asm: 5,503; sh: 2,924; java: 2,888; xml: 266; makefile: 244; ruby: 148; yacc: 144; objc: 51; lex: 44
file content (649 lines) | stat: -rw-r--r-- 23,812 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
import warnings
from collections import OrderedDict
from torch._six import container_abcs
from itertools import islice
import operator

import torch
from .module import Module
from torch._jit_internal import _copy_to_script_wrapper

from typing import Any, Iterable, Iterator, Mapping, Optional, overload, Tuple, TypeVar, Union


T = TypeVar('T')


class Container(Module):

    def __init__(self, **kwargs: Any) -> None:
        super(Container, self).__init__()
        # DeprecationWarning is ignored by default <sigh>
        warnings.warn("nn.Container is deprecated. All of it's functionality "
                      "is now implemented in nn.Module. Subclass that instead.")
        for key, value in kwargs.items():
            self.add_module(key, value)


class Sequential(Module):
    r"""A sequential container.
    Modules will be added to it in the order they are passed in the constructor.
    Alternatively, an ordered dict of modules can also be passed in.

    To make it easier to understand, here is a small example::

        # Example of using Sequential
        model = nn.Sequential(
                  nn.Conv2d(1,20,5),
                  nn.ReLU(),
                  nn.Conv2d(20,64,5),
                  nn.ReLU()
                )

        # Example of using Sequential with OrderedDict
        model = nn.Sequential(OrderedDict([
                  ('conv1', nn.Conv2d(1,20,5)),
                  ('relu1', nn.ReLU()),
                  ('conv2', nn.Conv2d(20,64,5)),
                  ('relu2', nn.ReLU())
                ]))
    """

    @overload
    def __init__(self, *args: Module) -> None:
        ...

    @overload
    def __init__(self, arg: 'OrderedDict[str, Module]') -> None:
        ...

    def __init__(self, *args: Any):
        super(Sequential, self).__init__()
        if len(args) == 1 and isinstance(args[0], OrderedDict):
            for key, module in args[0].items():
                self.add_module(key, module)
        else:
            for idx, module in enumerate(args):
                self.add_module(str(idx), module)

    def _get_item_by_idx(self, iterator, idx):
        """Get the idx-th item of the iterator"""
        size = len(self)
        idx = operator.index(idx)
        if not -size <= idx < size:
            raise IndexError('index {} is out of range'.format(idx))
        idx %= size
        return next(islice(iterator, idx, None))

    @_copy_to_script_wrapper
    def __getitem__(self: T, idx) -> T:
        if isinstance(idx, slice):
            return self.__class__(OrderedDict(list(self._modules.items())[idx]))
        else:
            return self._get_item_by_idx(self._modules.values(), idx)

    def __setitem__(self, idx: int, module: Module) -> None:
        key = self._get_item_by_idx(self._modules.keys(), idx)
        return setattr(self, key, module)

    def __delitem__(self, idx: Union[slice, int]) -> None:
        if isinstance(idx, slice):
            for key in list(self._modules.keys())[idx]:
                delattr(self, key)
        else:
            key = self._get_item_by_idx(self._modules.keys(), idx)
            delattr(self, key)

    @_copy_to_script_wrapper
    def __len__(self) -> int:
        return len(self._modules)

    @_copy_to_script_wrapper
    def __dir__(self):
        keys = super(Sequential, self).__dir__()
        keys = [key for key in keys if not key.isdigit()]
        return keys

    @_copy_to_script_wrapper
    def __iter__(self) -> Iterator[Module]:
        return iter(self._modules.values())

    # NB: We can't really type check this function as the type of input
    # may change dynamically (as is tested in
    # TestScript.test_sequential_intermediary_types).  Cannot annotate
    # with Any as TorchScript expects a more precise type
    def forward(self, input):
        for module in self:
            input = module(input)
        return input


class ModuleList(Module):
    r"""Holds submodules in a list.

    :class:`~torch.nn.ModuleList` can be indexed like a regular Python list, but
    modules it contains are properly registered, and will be visible by all
    :class:`~torch.nn.Module` methods.

    Arguments:
        modules (iterable, optional): an iterable of modules to add

    Example::

        class MyModule(nn.Module):
            def __init__(self):
                super(MyModule, self).__init__()
                self.linears = nn.ModuleList([nn.Linear(10, 10) for i in range(10)])

            def forward(self, x):
                # ModuleList can act as an iterable, or be indexed using ints
                for i, l in enumerate(self.linears):
                    x = self.linears[i // 2](x) + l(x)
                return x
    """

    def __init__(self, modules: Optional[Iterable[Module]] = None) -> None:
        super(ModuleList, self).__init__()
        if modules is not None:
            self += modules

    def _get_abs_string_index(self, idx):
        """Get the absolute index for the list of modules"""
        idx = operator.index(idx)
        if not (-len(self) <= idx < len(self)):
            raise IndexError('index {} is out of range'.format(idx))
        if idx < 0:
            idx += len(self)
        return str(idx)

    @_copy_to_script_wrapper
    def __getitem__(self, idx: int) -> Module:
        if isinstance(idx, slice):
            return self.__class__(list(self._modules.values())[idx])
        else:
            return self._modules[self._get_abs_string_index(idx)]

    def __setitem__(self, idx: int, module: Module) -> None:
        idx = self._get_abs_string_index(idx)
        return setattr(self, str(idx), module)

    def __delitem__(self, idx: Union[int, slice]) -> None:
        if isinstance(idx, slice):
            for k in range(len(self._modules))[idx]:
                delattr(self, str(k))
        else:
            delattr(self, self._get_abs_string_index(idx))
        # To preserve numbering, self._modules is being reconstructed with modules after deletion
        str_indices = [str(i) for i in range(len(self._modules))]
        self._modules = OrderedDict(list(zip(str_indices, self._modules.values())))

    @_copy_to_script_wrapper
    def __len__(self) -> int:
        return len(self._modules)

    @_copy_to_script_wrapper
    def __iter__(self) -> Iterator[Module]:
        return iter(self._modules.values())

    def __iadd__(self: T, modules: Iterable[Module]) -> T:
        return self.extend(modules)

    @_copy_to_script_wrapper
    def __dir__(self):
        keys = super(ModuleList, self).__dir__()
        keys = [key for key in keys if not key.isdigit()]
        return keys

    def insert(self, index: int, module: Module) -> None:
        r"""Insert a given module before a given index in the list.

        Arguments:
            index (int): index to insert.
            module (nn.Module): module to insert
        """
        for i in range(len(self._modules), index, -1):
            self._modules[str(i)] = self._modules[str(i - 1)]
        self._modules[str(index)] = module

    def append(self: T, module: Module) -> T:
        r"""Appends a given module to the end of the list.

        Arguments:
            module (nn.Module): module to append
        """
        self.add_module(str(len(self)), module)
        return self

    def extend(self: T, modules: Iterable[Module]) -> T:
        r"""Appends modules from a Python iterable to the end of the list.

        Arguments:
            modules (iterable): iterable of modules to append
        """
        if not isinstance(modules, container_abcs.Iterable):
            raise TypeError("ModuleList.extend should be called with an "
                            "iterable, but got " + type(modules).__name__)
        offset = len(self)
        for i, module in enumerate(modules):
            self.add_module(str(offset + i), module)
        return self

    def forward(self):
        raise NotImplementedError()


class ModuleDict(Module):
    r"""Holds submodules in a dictionary.

    :class:`~torch.nn.ModuleDict` can be indexed like a regular Python dictionary,
    but modules it contains are properly registered, and will be visible by all
    :class:`~torch.nn.Module` methods.

    :class:`~torch.nn.ModuleDict` is an **ordered** dictionary that respects

    * the order of insertion, and

    * in :meth:`~torch.nn.ModuleDict.update`, the order of the merged 
      ``OrderedDict``, ``dict`` (started from Python 3.6) or another
      :class:`~torch.nn.ModuleDict` (the argument to 
      :meth:`~torch.nn.ModuleDict.update`).

    Note that :meth:`~torch.nn.ModuleDict.update` with other unordered mapping
    types (e.g., Python's plain ``dict`` before Python version 3.6) does not
    preserve the order of the merged mapping.

    Arguments:
        modules (iterable, optional): a mapping (dictionary) of (string: module)
            or an iterable of key-value pairs of type (string, module)

    Example::

        class MyModule(nn.Module):
            def __init__(self):
                super(MyModule, self).__init__()
                self.choices = nn.ModuleDict({
                        'conv': nn.Conv2d(10, 10, 3),
                        'pool': nn.MaxPool2d(3)
                })
                self.activations = nn.ModuleDict([
                        ['lrelu', nn.LeakyReLU()],
                        ['prelu', nn.PReLU()]
                ])

            def forward(self, x, choice, act):
                x = self.choices[choice](x)
                x = self.activations[act](x)
                return x
    """

    def __init__(self, modules: Optional[Mapping[str, Module]] = None) -> None:
        super(ModuleDict, self).__init__()
        if modules is not None:
            self.update(modules)

    @_copy_to_script_wrapper
    def __getitem__(self, key: str) -> Module:
        return self._modules[key]

    def __setitem__(self, key: str, module: Module) -> None:
        self.add_module(key, module)

    def __delitem__(self, key: str) -> None:
        del self._modules[key]

    @_copy_to_script_wrapper
    def __len__(self) -> int:
        return len(self._modules)

    @_copy_to_script_wrapper
    def __iter__(self) -> Iterator[str]:
        return iter(self._modules)

    @_copy_to_script_wrapper
    def __contains__(self, key: str) -> bool:
        return key in self._modules

    def clear(self) -> None:
        """Remove all items from the ModuleDict.
        """
        self._modules.clear()

    def pop(self, key: str) -> Module:
        r"""Remove key from the ModuleDict and return its module.

        Arguments:
            key (string): key to pop from the ModuleDict
        """
        v = self[key]
        del self[key]
        return v

    @_copy_to_script_wrapper
    def keys(self) -> Iterable[str]:
        r"""Return an iterable of the ModuleDict keys.
        """
        return self._modules.keys()

    @_copy_to_script_wrapper
    def items(self) -> Iterable[Tuple[str, Module]]:
        r"""Return an iterable of the ModuleDict key/value pairs.
        """
        return self._modules.items()

    @_copy_to_script_wrapper
    def values(self) -> Iterable[Module]:
        r"""Return an iterable of the ModuleDict values.
        """
        return self._modules.values()

    def update(self, modules: Mapping[str, Module]) -> None:
        r"""Update the :class:`~torch.nn.ModuleDict` with the key-value pairs from a
        mapping or an iterable, overwriting existing keys.

        .. note::
            If :attr:`modules` is an ``OrderedDict``, a :class:`~torch.nn.ModuleDict`, or
            an iterable of key-value pairs, the order of new elements in it is preserved.

        Arguments:
            modules (iterable): a mapping (dictionary) from string to :class:`~torch.nn.Module`,
                or an iterable of key-value pairs of type (string, :class:`~torch.nn.Module`)
        """
        if not isinstance(modules, container_abcs.Iterable):
            raise TypeError("ModuleDict.update should be called with an "
                            "iterable of key/value pairs, but got " +
                            type(modules).__name__)

        if isinstance(modules, (OrderedDict, ModuleDict, container_abcs.Mapping)):
            for key, module in modules.items():
                self[key] = module
        else:
            for j, m in enumerate(modules):
                if not isinstance(m, container_abcs.Iterable):
                    raise TypeError("ModuleDict update sequence element "
                                    "#" + str(j) + " should be Iterable; is" +
                                    type(m).__name__)
                if not len(m) == 2:
                    raise ValueError("ModuleDict update sequence element "
                                     "#" + str(j) + " has length " + str(len(m)) +
                                     "; 2 is required")
                self[m[0]] = m[1]

    def forward(self):
        raise NotImplementedError()


class ParameterList(Module):
    r"""Holds parameters in a list.

    :class:`~torch.nn.ParameterList` can be indexed like a regular Python
    list, but parameters it contains are properly registered, and will be
    visible by all :class:`~torch.nn.Module` methods.

    Arguments:
        parameters (iterable, optional): an iterable of :class:`~torch.nn.Parameter` to add

    Example::

        class MyModule(nn.Module):
            def __init__(self):
                super(MyModule, self).__init__()
                self.params = nn.ParameterList([nn.Parameter(torch.randn(10, 10)) for i in range(10)])

            def forward(self, x):
                # ParameterList can act as an iterable, or be indexed using ints
                for i, p in enumerate(self.params):
                    x = self.params[i // 2].mm(x) + p.mm(x)
                return x
    """

    def __init__(self, parameters: Optional[Iterable['Parameter']] = None) -> None:
        super(ParameterList, self).__init__()
        self._initialized = True
        if parameters is not None:
            self += parameters

    def _get_abs_string_index(self, idx):
        """Get the absolute index for the list of modules"""
        idx = operator.index(idx)
        if not (-len(self) <= idx < len(self)):
            raise IndexError('index {} is out of range'.format(idx))
        if idx < 0:
            idx += len(self)
        return str(idx)

    @overload
    def __getitem__(self, idx: int) -> 'Parameter':
        ...

    @overload
    def __getitem__(self: T, idx: slice) -> T:
        ...

    def __getitem__(self, idx):
        if isinstance(idx, slice):
            return self.__class__(list(self._parameters.values())[idx])
        else:
            idx = self._get_abs_string_index(idx)
            return self._parameters[str(idx)]

    def __setitem__(self, idx: int, param: 'Parameter') -> None:
        idx = self._get_abs_string_index(idx)
        return self.register_parameter(str(idx), param)

    def __setattr__(self, key: Any, value: Any) -> None:
        if getattr(self, "_initialized", False) and not isinstance(value, torch.nn.Parameter):
            warnings.warn("Setting attributes on ParameterList is not supported.")
        super(ParameterList, self).__setattr__(key, value)

    def __len__(self) -> int:
        return len(self._parameters)

    def __iter__(self) -> Iterator['Parameter']:
        return iter(self._parameters.values())

    def __iadd__(self: T, parameters: Iterable['Parameter']) -> T:
        return self.extend(parameters)

    def __dir__(self):
        keys = super(ParameterList, self).__dir__()
        keys = [key for key in keys if not key.isdigit()]
        return keys

    def append(self: T, parameter: 'Parameter') -> T:
        """Appends a given parameter at the end of the list.

        Arguments:
            parameter (nn.Parameter): parameter to append
        """
        self.register_parameter(str(len(self)), parameter)
        return self

    def extend(self: T, parameters: Iterable['Parameter']) -> T:
        """Appends parameters from a Python iterable to the end of the list.

        Arguments:
            parameters (iterable): iterable of parameters to append
        """
        if not isinstance(parameters, container_abcs.Iterable):
            raise TypeError("ParameterList.extend should be called with an "
                            "iterable, but got " + type(parameters).__name__)
        offset = len(self)
        for i, param in enumerate(parameters):
            self.register_parameter(str(offset + i), param)
        return self

    def extra_repr(self) -> str:
        child_lines = []
        for k, p in self._parameters.items():
            size_str = 'x'.join(str(size) for size in p.size())
            device_str = '' if not p.is_cuda else ' (GPU {})'.format(p.get_device())
            parastr = 'Parameter containing: [{} of size {}{}]'.format(
                torch.typename(p), size_str, device_str)
            child_lines.append('  (' + str(k) + '): ' + parastr)
        tmpstr = '\n'.join(child_lines)
        return tmpstr

    def __call__(self, input):
        raise RuntimeError('ParameterList should not be called.')

    def _replicate_for_data_parallel(self):
        warnings.warn("nn.ParameterList is being used with DataParallel but this is not "
                      "supported. This list will appear empty for the models replicated "
                      "on each GPU except the original one.")

        return super(ParameterList, self)._replicate_for_data_parallel()


class ParameterDict(Module):
    r"""Holds parameters in a dictionary.

    ParameterDict can be indexed like a regular Python dictionary, but parameters it
    contains are properly registered, and will be visible by all Module methods.

    :class:`~torch.nn.ParameterDict` is an **ordered** dictionary that respects

    * the order of insertion, and

    * in :meth:`~torch.nn.ParameterDict.update`, the order of the merged ``OrderedDict``
      or another :class:`~torch.nn.ParameterDict` (the argument to
      :meth:`~torch.nn.ParameterDict.update`).

    Note that :meth:`~torch.nn.ParameterDict.update` with other unordered mapping
    types (e.g., Python's plain ``dict``) does not preserve the order of the
    merged mapping.

    Arguments:
        parameters (iterable, optional): a mapping (dictionary) of
            (string : :class:`~torch.nn.Parameter`) or an iterable of key-value pairs
            of type (string, :class:`~torch.nn.Parameter`)

    Example::

        class MyModule(nn.Module):
            def __init__(self):
                super(MyModule, self).__init__()
                self.params = nn.ParameterDict({
                        'left': nn.Parameter(torch.randn(5, 10)),
                        'right': nn.Parameter(torch.randn(5, 10))
                })

            def forward(self, x, choice):
                x = self.params[choice].mm(x)
                return x
    """

    def __init__(self, parameters: Optional[Mapping[str, 'Parameter']] = None) -> None:
        super(ParameterDict, self).__init__()
        self._initialized = True
        if parameters is not None:
            self.update(parameters)

    def __getitem__(self, key: str) -> 'Parameter':
        return self._parameters[key]

    def __setitem__(self, key: str, parameter: 'Parameter') -> None:
        self.register_parameter(key, parameter)

    def __delitem__(self, key: str) -> None:
        del self._parameters[key]

    def __setattr__(self, key: Any, value: Any) -> None:
        if getattr(self, "_initialized", False) and not isinstance(value, torch.nn.Parameter):
            warnings.warn("Setting attributes on ParameterDict is not supported.")
        super(ParameterDict, self).__setattr__(key, value)

    def __len__(self) -> int:
        return len(self._parameters)

    def __iter__(self) -> Iterator[str]:
        return iter(self._parameters.keys())

    def __contains__(self, key: str) -> bool:
        return key in self._parameters

    def clear(self) -> None:
        """Remove all items from the ParameterDict.
        """
        self._parameters.clear()

    def pop(self, key: str) -> 'Parameter':
        r"""Remove key from the ParameterDict and return its parameter.

        Arguments:
            key (string): key to pop from the ParameterDict
        """
        v = self[key]
        del self[key]
        return v

    def keys(self) -> Iterable[str]:
        r"""Return an iterable of the ParameterDict keys.
        """
        return self._parameters.keys()

    def items(self) -> Iterable[Tuple[str, 'Parameter']]:
        r"""Return an iterable of the ParameterDict key/value pairs.
        """
        return self._parameters.items()

    def values(self) -> Iterable['Parameter']:
        r"""Return an iterable of the ParameterDict values.
        """
        return self._parameters.values()

    def update(self, parameters: Mapping[str, 'Parameter']) -> None:
        r"""Update the :class:`~torch.nn.ParameterDict` with the key-value pairs from a
        mapping or an iterable, overwriting existing keys.

        .. note::
            If :attr:`parameters` is an ``OrderedDict``, a :class:`~torch.nn.ParameterDict`, or
            an iterable of key-value pairs, the order of new elements in it is preserved.

        Arguments:
            parameters (iterable): a mapping (dictionary) from string to
                :class:`~torch.nn.Parameter`, or an iterable of
                key-value pairs of type (string, :class:`~torch.nn.Parameter`)
        """
        if not isinstance(parameters, container_abcs.Iterable):
            raise TypeError("ParametersDict.update should be called with an "
                            "iterable of key/value pairs, but got " +
                            type(parameters).__name__)

        if isinstance(parameters, (OrderedDict, ParameterDict)):
            for key, parameter in parameters.items():
                self[key] = parameter
        elif isinstance(parameters, container_abcs.Mapping):
            for key, parameter in sorted(parameters.items()):
                self[key] = parameter
        else:
            for j, p in enumerate(parameters):
                if not isinstance(p, container_abcs.Iterable):
                    raise TypeError("ParameterDict update sequence element "
                                    "#" + str(j) + " should be Iterable; is" +
                                    type(p).__name__)
                if not len(p) == 2:
                    raise ValueError("ParameterDict update sequence element "
                                     "#" + str(j) + " has length " + str(len(p)) +
                                     "; 2 is required")
                self[p[0]] = p[1]

    def extra_repr(self) -> str:
        child_lines = []
        for k, p in self._parameters.items():
            size_str = 'x'.join(str(size) for size in p.size())
            device_str = '' if not p.is_cuda else ' (GPU {})'.format(p.get_device())
            parastr = 'Parameter containing: [{} of size {}{}]'.format(
                torch.typename(p), size_str, device_str)
            child_lines.append('  (' + k + '): ' + parastr)
        tmpstr = '\n'.join(child_lines)
        return tmpstr

    def __call__(self, input):
        raise RuntimeError('ParameterDict should not be called.')

    def _replicate_for_data_parallel(self):
        warnings.warn("nn.ParameterDict is being used with DataParallel but this is not "
                      "supported. This dict will appear empty for the models replicated "
                      "on each GPU except the original one.")

        return super(ParameterDict, self)._replicate_for_data_parallel()