File: distance.py

package info (click to toggle)
pytorch 1.7.1-7
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 80,340 kB
  • sloc: cpp: 670,830; python: 343,991; ansic: 67,845; asm: 5,503; sh: 2,924; java: 2,888; xml: 266; makefile: 244; ruby: 148; yacc: 144; objc: 51; lex: 44
file content (75 lines) | stat: -rw-r--r-- 2,660 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
from .module import Module
from .. import functional as F

from torch import Tensor


class PairwiseDistance(Module):
    r"""
    Computes the batchwise pairwise distance between vectors :math:`v_1`, :math:`v_2` using the p-norm:

    .. math ::
        \Vert x \Vert _p = \left( \sum_{i=1}^n  \vert x_i \vert ^ p \right) ^ {1/p}.

    Args:
        p (real): the norm degree. Default: 2
        eps (float, optional): Small value to avoid division by zero.
            Default: 1e-6
        keepdim (bool, optional): Determines whether or not to keep the vector dimension.
            Default: False
    Shape:
        - Input1: :math:`(N, D)` where `D = vector dimension`
        - Input2: :math:`(N, D)`, same shape as the Input1
        - Output: :math:`(N)`. If :attr:`keepdim` is ``True``, then :math:`(N, 1)`.
    Examples::
        >>> pdist = nn.PairwiseDistance(p=2)
        >>> input1 = torch.randn(100, 128)
        >>> input2 = torch.randn(100, 128)
        >>> output = pdist(input1, input2)
    """
    __constants__ = ['norm', 'eps', 'keepdim']
    norm: float
    eps: float
    keepdim: bool

    def __init__(self, p: float = 2., eps: float = 1e-6, keepdim: bool = False) -> None:
        super(PairwiseDistance, self).__init__()
        self.norm = p
        self.eps = eps
        self.keepdim = keepdim

    def forward(self, x1: Tensor, x2: Tensor) -> Tensor:
        return F.pairwise_distance(x1, x2, self.norm, self.eps, self.keepdim)


class CosineSimilarity(Module):
    r"""Returns cosine similarity between :math:`x_1` and :math:`x_2`, computed along dim.

    .. math ::
        \text{similarity} = \dfrac{x_1 \cdot x_2}{\max(\Vert x_1 \Vert _2 \cdot \Vert x_2 \Vert _2, \epsilon)}.

    Args:
        dim (int, optional): Dimension where cosine similarity is computed. Default: 1
        eps (float, optional): Small value to avoid division by zero.
            Default: 1e-8
    Shape:
        - Input1: :math:`(\ast_1, D, \ast_2)` where D is at position `dim`
        - Input2: :math:`(\ast_1, D, \ast_2)`, same shape as the Input1
        - Output: :math:`(\ast_1, \ast_2)`
    Examples::
        >>> input1 = torch.randn(100, 128)
        >>> input2 = torch.randn(100, 128)
        >>> cos = nn.CosineSimilarity(dim=1, eps=1e-6)
        >>> output = cos(input1, input2)
    """
    __constants__ = ['dim', 'eps']
    dim: int
    eps: float

    def __init__(self, dim: int = 1, eps: float = 1e-8) -> None:
        super(CosineSimilarity, self).__init__()
        self.dim = dim
        self.eps = eps

    def forward(self, x1: Tensor, x2: Tensor) -> Tensor:
        return F.cosine_similarity(x1, x2, self.dim, self.eps)