File: instancenorm.py

package info (click to toggle)
pytorch 1.7.1-7
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 80,340 kB
  • sloc: cpp: 670,830; python: 343,991; ansic: 67,845; asm: 5,503; sh: 2,924; java: 2,888; xml: 266; makefile: 244; ruby: 148; yacc: 144; objc: 51; lex: 44
file content (286 lines) | stat: -rw-r--r-- 13,329 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
from .batchnorm import _NormBase
from .. import functional as F

from torch import Tensor


class _InstanceNorm(_NormBase):
    def __init__(
        self,
        num_features: int,
        eps: float = 1e-5,
        momentum: float = 0.1,
        affine: bool = False,
        track_running_stats: bool = False
    ) -> None:
        super(_InstanceNorm, self).__init__(
            num_features, eps, momentum, affine, track_running_stats)

    def _check_input_dim(self, input):
        raise NotImplementedError

    def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict,
                              missing_keys, unexpected_keys, error_msgs):
        version = local_metadata.get('version', None)
        # at version 1: removed running_mean and running_var when
        # track_running_stats=False (default)
        if version is None and not self.track_running_stats:
            running_stats_keys = []
            for name in ('running_mean', 'running_var'):
                key = prefix + name
                if key in state_dict:
                    running_stats_keys.append(key)
            if len(running_stats_keys) > 0:
                error_msgs.append(
                    'Unexpected running stats buffer(s) {names} for {klass} '
                    'with track_running_stats=False. If state_dict is a '
                    'checkpoint saved before 0.4.0, this may be expected '
                    'because {klass} does not track running stats by default '
                    'since 0.4.0. Please remove these keys from state_dict. If '
                    'the running stats are actually needed, instead set '
                    'track_running_stats=True in {klass} to enable them. See '
                    'the documentation of {klass} for details.'
                    .format(names=" and ".join('"{}"'.format(k) for k in running_stats_keys),
                            klass=self.__class__.__name__))
                for key in running_stats_keys:
                    state_dict.pop(key)

        super(_InstanceNorm, self)._load_from_state_dict(
            state_dict, prefix, local_metadata, strict,
            missing_keys, unexpected_keys, error_msgs)

    def forward(self, input: Tensor) -> Tensor:
        self._check_input_dim(input)

        return F.instance_norm(
            input, self.running_mean, self.running_var, self.weight, self.bias,
            self.training or not self.track_running_stats, self.momentum, self.eps)


class InstanceNorm1d(_InstanceNorm):
    r"""Applies Instance Normalization over a 3D input (a mini-batch of 1D
    inputs with optional additional channel dimension) as described in the paper
    `Instance Normalization: The Missing Ingredient for Fast Stylization
    <https://arxiv.org/abs/1607.08022>`__.

    .. math::

        y = \frac{x - \mathrm{E}[x]}{ \sqrt{\mathrm{Var}[x] + \epsilon}} * \gamma + \beta

    The mean and standard-deviation are calculated per-dimension separately
    for each object in a mini-batch. :math:`\gamma` and :math:`\beta` are learnable parameter vectors
    of size `C` (where `C` is the input size) if :attr:`affine` is ``True``.
    The standard-deviation is calculated via the biased estimator, equivalent to
    `torch.var(input, unbiased=False)`.

    By default, this layer uses instance statistics computed from input data in
    both training and evaluation modes.

    If :attr:`track_running_stats` is set to ``True``, during training this
    layer keeps running estimates of its computed mean and variance, which are
    then used for normalization during evaluation. The running estimates are
    kept with a default :attr:`momentum` of 0.1.

    .. note::
        This :attr:`momentum` argument is different from one used in optimizer
        classes and the conventional notion of momentum. Mathematically, the
        update rule for running statistics here is
        :math:`\hat{x}_\text{new} = (1 - \text{momentum}) \times \hat{x} + \text{momentum} \times x_t`,
        where :math:`\hat{x}` is the estimated statistic and :math:`x_t` is the
        new observed value.

    .. note::
        :class:`InstanceNorm1d` and :class:`LayerNorm` are very similar, but
        have some subtle differences. :class:`InstanceNorm1d` is applied
        on each channel of channeled data like multidimensional time series, but
        :class:`LayerNorm` is usually applied on entire sample and often in NLP
        tasks. Additionally, :class:`LayerNorm` applies elementwise affine
        transform, while :class:`InstanceNorm1d` usually don't apply affine
        transform.

    Args:
        num_features: :math:`C` from an expected input of size
            :math:`(N, C, L)` or :math:`L` from input of size :math:`(N, L)`
        eps: a value added to the denominator for numerical stability. Default: 1e-5
        momentum: the value used for the running_mean and running_var computation. Default: 0.1
        affine: a boolean value that when set to ``True``, this module has
            learnable affine parameters, initialized the same way as done for batch normalization.
            Default: ``False``.
        track_running_stats: a boolean value that when set to ``True``, this
            module tracks the running mean and variance, and when set to ``False``,
            this module does not track such statistics and always uses batch
            statistics in both training and eval modes. Default: ``False``

    Shape:
        - Input: :math:`(N, C, L)`
        - Output: :math:`(N, C, L)` (same shape as input)

    Examples::

        >>> # Without Learnable Parameters
        >>> m = nn.InstanceNorm1d(100)
        >>> # With Learnable Parameters
        >>> m = nn.InstanceNorm1d(100, affine=True)
        >>> input = torch.randn(20, 100, 40)
        >>> output = m(input)
    """

    def _check_input_dim(self, input):
        if input.dim() == 2:
            raise ValueError(
                'InstanceNorm1d returns 0-filled tensor to 2D tensor.'
                'This is because InstanceNorm1d reshapes inputs to'
                '(1, N * C, ...) from (N, C,...) and this makes'
                'variances 0.'
            )
        if input.dim() != 3:
            raise ValueError('expected 3D input (got {}D input)'
                             .format(input.dim()))


class InstanceNorm2d(_InstanceNorm):
    r"""Applies Instance Normalization over a 4D input (a mini-batch of 2D inputs
    with additional channel dimension) as described in the paper
    `Instance Normalization: The Missing Ingredient for Fast Stylization
    <https://arxiv.org/abs/1607.08022>`__.

    .. math::

        y = \frac{x - \mathrm{E}[x]}{ \sqrt{\mathrm{Var}[x] + \epsilon}} * \gamma + \beta

    The mean and standard-deviation are calculated per-dimension separately
    for each object in a mini-batch. :math:`\gamma` and :math:`\beta` are learnable parameter vectors
    of size `C` (where `C` is the input size) if :attr:`affine` is ``True``.
    The standard-deviation is calculated via the biased estimator, equivalent to
    `torch.var(input, unbiased=False)`.

    By default, this layer uses instance statistics computed from input data in
    both training and evaluation modes.

    If :attr:`track_running_stats` is set to ``True``, during training this
    layer keeps running estimates of its computed mean and variance, which are
    then used for normalization during evaluation. The running estimates are
    kept with a default :attr:`momentum` of 0.1.

    .. note::
        This :attr:`momentum` argument is different from one used in optimizer
        classes and the conventional notion of momentum. Mathematically, the
        update rule for running statistics here is
        :math:`\hat{x}_\text{new} = (1 - \text{momentum}) \times \hat{x} + \text{momentum} \times x_t`,
        where :math:`\hat{x}` is the estimated statistic and :math:`x_t` is the
        new observed value.

    .. note::
        :class:`InstanceNorm2d` and :class:`LayerNorm` are very similar, but
        have some subtle differences. :class:`InstanceNorm2d` is applied
        on each channel of channeled data like RGB images, but
        :class:`LayerNorm` is usually applied on entire sample and often in NLP
        tasks. Additionally, :class:`LayerNorm` applies elementwise affine
        transform, while :class:`InstanceNorm2d` usually don't apply affine
        transform.

    Args:
        num_features: :math:`C` from an expected input of size
            :math:`(N, C, H, W)`
        eps: a value added to the denominator for numerical stability. Default: 1e-5
        momentum: the value used for the running_mean and running_var computation. Default: 0.1
        affine: a boolean value that when set to ``True``, this module has
            learnable affine parameters, initialized the same way as done for batch normalization.
            Default: ``False``.
        track_running_stats: a boolean value that when set to ``True``, this
            module tracks the running mean and variance, and when set to ``False``,
            this module does not track such statistics and always uses batch
            statistics in both training and eval modes. Default: ``False``

    Shape:
        - Input: :math:`(N, C, H, W)`
        - Output: :math:`(N, C, H, W)` (same shape as input)

    Examples::

        >>> # Without Learnable Parameters
        >>> m = nn.InstanceNorm2d(100)
        >>> # With Learnable Parameters
        >>> m = nn.InstanceNorm2d(100, affine=True)
        >>> input = torch.randn(20, 100, 35, 45)
        >>> output = m(input)
    """

    def _check_input_dim(self, input):
        if input.dim() != 4:
            raise ValueError('expected 4D input (got {}D input)'
                             .format(input.dim()))


class InstanceNorm3d(_InstanceNorm):
    r"""Applies Instance Normalization over a 5D input (a mini-batch of 3D inputs
    with additional channel dimension) as described in the paper
    `Instance Normalization: The Missing Ingredient for Fast Stylization
    <https://arxiv.org/abs/1607.08022>`__.

    .. math::

        y = \frac{x - \mathrm{E}[x]}{ \sqrt{\mathrm{Var}[x] + \epsilon}} * \gamma + \beta

    The mean and standard-deviation are calculated per-dimension separately
    for each object in a mini-batch. :math:`\gamma` and :math:`\beta` are learnable parameter vectors
    of size C (where C is the input size) if :attr:`affine` is ``True``.
    The standard-deviation is calculated via the biased estimator, equivalent to
    `torch.var(input, unbiased=False)`.

    By default, this layer uses instance statistics computed from input data in
    both training and evaluation modes.

    If :attr:`track_running_stats` is set to ``True``, during training this
    layer keeps running estimates of its computed mean and variance, which are
    then used for normalization during evaluation. The running estimates are
    kept with a default :attr:`momentum` of 0.1.

    .. note::
        This :attr:`momentum` argument is different from one used in optimizer
        classes and the conventional notion of momentum. Mathematically, the
        update rule for running statistics here is
        :math:`\hat{x}_\text{new} = (1 - \text{momentum}) \times \hat{x} + \text{momentum} \times x_t`,
        where :math:`\hat{x}` is the estimated statistic and :math:`x_t` is the
        new observed value.

    .. note::
        :class:`InstanceNorm3d` and :class:`LayerNorm` are very similar, but
        have some subtle differences. :class:`InstanceNorm3d` is applied
        on each channel of channeled data like 3D models with RGB color, but
        :class:`LayerNorm` is usually applied on entire sample and often in NLP
        tasks. Additionally, :class:`LayerNorm` applies elementwise affine
        transform, while :class:`InstanceNorm3d` usually don't apply affine
        transform.

    Args:
        num_features: :math:`C` from an expected input of size
            :math:`(N, C, D, H, W)`
        eps: a value added to the denominator for numerical stability. Default: 1e-5
        momentum: the value used for the running_mean and running_var computation. Default: 0.1
        affine: a boolean value that when set to ``True``, this module has
            learnable affine parameters, initialized the same way as done for batch normalization.
            Default: ``False``.
        track_running_stats: a boolean value that when set to ``True``, this
            module tracks the running mean and variance, and when set to ``False``,
            this module does not track such statistics and always uses batch
            statistics in both training and eval modes. Default: ``False``

    Shape:
        - Input: :math:`(N, C, D, H, W)`
        - Output: :math:`(N, C, D, H, W)` (same shape as input)

    Examples::

        >>> # Without Learnable Parameters
        >>> m = nn.InstanceNorm3d(100)
        >>> # With Learnable Parameters
        >>> m = nn.InstanceNorm3d(100, affine=True)
        >>> input = torch.randn(20, 100, 35, 45, 10)
        >>> output = m(input)
    """

    def _check_input_dim(self, input):
        if input.dim() != 5:
            raise ValueError('expected 5D input (got {}D input)'
                             .format(input.dim()))