1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
|
import math
import torch
from torch import Tensor
from torch.nn.parameter import Parameter
from .. import functional as F
from .. import init
from .module import Module
class Identity(Module):
r"""A placeholder identity operator that is argument-insensitive.
Args:
args: any argument (unused)
kwargs: any keyword argument (unused)
Examples::
>>> m = nn.Identity(54, unused_argument1=0.1, unused_argument2=False)
>>> input = torch.randn(128, 20)
>>> output = m(input)
>>> print(output.size())
torch.Size([128, 20])
"""
def __init__(self, *args, **kwargs):
super(Identity, self).__init__()
def forward(self, input: Tensor) -> Tensor:
return input
class Linear(Module):
r"""Applies a linear transformation to the incoming data: :math:`y = xA^T + b`
This module supports :ref:`TensorFloat32<tf32_on_ampere>`.
Args:
in_features: size of each input sample
out_features: size of each output sample
bias: If set to ``False``, the layer will not learn an additive bias.
Default: ``True``
Shape:
- Input: :math:`(N, *, H_{in})` where :math:`*` means any number of
additional dimensions and :math:`H_{in} = \text{in\_features}`
- Output: :math:`(N, *, H_{out})` where all but the last dimension
are the same shape as the input and :math:`H_{out} = \text{out\_features}`.
Attributes:
weight: the learnable weights of the module of shape
:math:`(\text{out\_features}, \text{in\_features})`. The values are
initialized from :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})`, where
:math:`k = \frac{1}{\text{in\_features}}`
bias: the learnable bias of the module of shape :math:`(\text{out\_features})`.
If :attr:`bias` is ``True``, the values are initialized from
:math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})` where
:math:`k = \frac{1}{\text{in\_features}}`
Examples::
>>> m = nn.Linear(20, 30)
>>> input = torch.randn(128, 20)
>>> output = m(input)
>>> print(output.size())
torch.Size([128, 30])
"""
__constants__ = ['in_features', 'out_features']
in_features: int
out_features: int
weight: Tensor
def __init__(self, in_features: int, out_features: int, bias: bool = True) -> None:
super(Linear, self).__init__()
self.in_features = in_features
self.out_features = out_features
self.weight = Parameter(torch.Tensor(out_features, in_features))
if bias:
self.bias = Parameter(torch.Tensor(out_features))
else:
self.register_parameter('bias', None)
self.reset_parameters()
def reset_parameters(self) -> None:
init.kaiming_uniform_(self.weight, a=math.sqrt(5))
if self.bias is not None:
fan_in, _ = init._calculate_fan_in_and_fan_out(self.weight)
bound = 1 / math.sqrt(fan_in)
init.uniform_(self.bias, -bound, bound)
def forward(self, input: Tensor) -> Tensor:
return F.linear(input, self.weight, self.bias)
def extra_repr(self) -> str:
return 'in_features={}, out_features={}, bias={}'.format(
self.in_features, self.out_features, self.bias is not None
)
# This class exists solely for Transformer; it has an annotation stating
# that bias is never None, which appeases TorchScript
class _LinearWithBias(Linear):
bias: Tensor
def __init__(self, in_features: int, out_features: int) -> None:
super().__init__(in_features, out_features, bias=True)
class Bilinear(Module):
r"""Applies a bilinear transformation to the incoming data:
:math:`y = x_1^T A x_2 + b`
Args:
in1_features: size of each first input sample
in2_features: size of each second input sample
out_features: size of each output sample
bias: If set to False, the layer will not learn an additive bias.
Default: ``True``
Shape:
- Input1: :math:`(N, *, H_{in1})` where :math:`H_{in1}=\text{in1\_features}` and
:math:`*` means any number of additional dimensions. All but the last dimension
of the inputs should be the same.
- Input2: :math:`(N, *, H_{in2})` where :math:`H_{in2}=\text{in2\_features}`.
- Output: :math:`(N, *, H_{out})` where :math:`H_{out}=\text{out\_features}`
and all but the last dimension are the same shape as the input.
Attributes:
weight: the learnable weights of the module of shape
:math:`(\text{out\_features}, \text{in1\_features}, \text{in2\_features})`.
The values are initialized from :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})`, where
:math:`k = \frac{1}{\text{in1\_features}}`
bias: the learnable bias of the module of shape :math:`(\text{out\_features})`.
If :attr:`bias` is ``True``, the values are initialized from
:math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})`, where
:math:`k = \frac{1}{\text{in1\_features}}`
Examples::
>>> m = nn.Bilinear(20, 30, 40)
>>> input1 = torch.randn(128, 20)
>>> input2 = torch.randn(128, 30)
>>> output = m(input1, input2)
>>> print(output.size())
torch.Size([128, 40])
"""
__constants__ = ['in1_features', 'in2_features', 'out_features']
in1_features: int
in2_features: int
out_features: int
weight: Tensor
def __init__(self, in1_features: int, in2_features: int, out_features: int, bias: bool = True) -> None:
super(Bilinear, self).__init__()
self.in1_features = in1_features
self.in2_features = in2_features
self.out_features = out_features
self.weight = Parameter(torch.Tensor(out_features, in1_features, in2_features))
if bias:
self.bias = Parameter(torch.Tensor(out_features))
else:
self.register_parameter('bias', None)
self.reset_parameters()
def reset_parameters(self) -> None:
bound = 1 / math.sqrt(self.weight.size(1))
init.uniform_(self.weight, -bound, bound)
if self.bias is not None:
init.uniform_(self.bias, -bound, bound)
def forward(self, input1: Tensor, input2: Tensor) -> Tensor:
return F.bilinear(input1, input2, self.weight, self.bias)
def extra_repr(self) -> str:
return 'in1_features={}, in2_features={}, out_features={}, bias={}'.format(
self.in1_features, self.in2_features, self.out_features, self.bias is not None
)
# TODO: PartialLinear - maybe in sparse?
|