1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506
|
import warnings
from .distance import PairwiseDistance
from .module import Module
from .. import functional as F
from .. import _reduction as _Reduction
from torch import Tensor
from typing import Callable, Optional
class _Loss(Module):
reduction: str
def __init__(self, size_average=None, reduce=None, reduction: str = 'mean') -> None:
super(_Loss, self).__init__()
if size_average is not None or reduce is not None:
self.reduction = _Reduction.legacy_get_string(size_average, reduce)
else:
self.reduction = reduction
class _WeightedLoss(_Loss):
def __init__(self, weight: Optional[Tensor] = None, size_average=None, reduce=None, reduction: str = 'mean') -> None:
super(_WeightedLoss, self).__init__(size_average, reduce, reduction)
self.register_buffer('weight', weight)
class L1Loss(_Loss):
r"""Creates a criterion that measures the mean absolute error (MAE) between each element in
the input :math:`x` and target :math:`y`.
The unreduced (i.e. with :attr:`reduction` set to ``'none'``) loss can be described as:
.. math::
\ell(x, y) = L = \{l_1,\dots,l_N\}^\top, \quad
l_n = \left| x_n - y_n \right|,
where :math:`N` is the batch size. If :attr:`reduction` is not ``'none'``
(default ``'mean'``), then:
.. math::
\ell(x, y) =
\begin{cases}
\operatorname{mean}(L), & \text{if reduction} = \text{'mean';}\\
\operatorname{sum}(L), & \text{if reduction} = \text{'sum'.}
\end{cases}
:math:`x` and :math:`y` are tensors of arbitrary shapes with a total
of :math:`n` elements each.
The sum operation still operates over all the elements, and divides by :math:`n`.
The division by :math:`n` can be avoided if one sets ``reduction = 'sum'``.
Args:
size_average (bool, optional): Deprecated (see :attr:`reduction`). By default,
the losses are averaged over each loss element in the batch. Note that for
some losses, there are multiple elements per sample. If the field :attr:`size_average`
is set to ``False``, the losses are instead summed for each minibatch. Ignored
when reduce is ``False``. Default: ``True``
reduce (bool, optional): Deprecated (see :attr:`reduction`). By default, the
losses are averaged or summed over observations for each minibatch depending
on :attr:`size_average`. When :attr:`reduce` is ``False``, returns a loss per
batch element instead and ignores :attr:`size_average`. Default: ``True``
reduction (string, optional): Specifies the reduction to apply to the output:
``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied,
``'mean'``: the sum of the output will be divided by the number of
elements in the output, ``'sum'``: the output will be summed. Note: :attr:`size_average`
and :attr:`reduce` are in the process of being deprecated, and in the meantime,
specifying either of those two args will override :attr:`reduction`. Default: ``'mean'``
Shape:
- Input: :math:`(N, *)` where :math:`*` means, any number of additional
dimensions
- Target: :math:`(N, *)`, same shape as the input
- Output: scalar. If :attr:`reduction` is ``'none'``, then
:math:`(N, *)`, same shape as the input
Examples::
>>> loss = nn.L1Loss()
>>> input = torch.randn(3, 5, requires_grad=True)
>>> target = torch.randn(3, 5)
>>> output = loss(input, target)
>>> output.backward()
"""
__constants__ = ['reduction']
def __init__(self, size_average=None, reduce=None, reduction: str = 'mean') -> None:
super(L1Loss, self).__init__(size_average, reduce, reduction)
def forward(self, input: Tensor, target: Tensor) -> Tensor:
return F.l1_loss(input, target, reduction=self.reduction)
class NLLLoss(_WeightedLoss):
r"""The negative log likelihood loss. It is useful to train a classification
problem with `C` classes.
If provided, the optional argument :attr:`weight` should be a 1D Tensor assigning
weight to each of the classes. This is particularly useful when you have an
unbalanced training set.
The `input` given through a forward call is expected to contain
log-probabilities of each class. `input` has to be a Tensor of size either
:math:`(minibatch, C)` or :math:`(minibatch, C, d_1, d_2, ..., d_K)`
with :math:`K \geq 1` for the `K`-dimensional case (described later).
Obtaining log-probabilities in a neural network is easily achieved by
adding a `LogSoftmax` layer in the last layer of your network.
You may use `CrossEntropyLoss` instead, if you prefer not to add an extra
layer.
The `target` that this loss expects should be a class index in the range :math:`[0, C-1]`
where `C = number of classes`; if `ignore_index` is specified, this loss also accepts
this class index (this index may not necessarily be in the class range).
The unreduced (i.e. with :attr:`reduction` set to ``'none'``) loss can be described as:
.. math::
\ell(x, y) = L = \{l_1,\dots,l_N\}^\top, \quad
l_n = - w_{y_n} x_{n,y_n}, \quad
w_{c} = \text{weight}[c] \cdot \mathbb{1}\{c \not= \text{ignore\_index}\},
where :math:`x` is the input, :math:`y` is the target, :math:`w` is the weight, and
:math:`N` is the batch size. If :attr:`reduction` is not ``'none'``
(default ``'mean'``), then
.. math::
\ell(x, y) = \begin{cases}
\sum_{n=1}^N \frac{1}{\sum_{n=1}^N w_{y_n}} l_n, &
\text{if reduction} = \text{'mean';}\\
\sum_{n=1}^N l_n, &
\text{if reduction} = \text{'sum'.}
\end{cases}
Can also be used for higher dimension inputs, such as 2D images, by providing
an input of size :math:`(minibatch, C, d_1, d_2, ..., d_K)` with :math:`K \geq 1`,
where :math:`K` is the number of dimensions, and a target of appropriate shape
(see below). In the case of images, it computes NLL loss per-pixel.
Args:
weight (Tensor, optional): a manual rescaling weight given to each
class. If given, it has to be a Tensor of size `C`. Otherwise, it is
treated as if having all ones.
size_average (bool, optional): Deprecated (see :attr:`reduction`). By default,
the losses are averaged over each loss element in the batch. Note that for
some losses, there are multiple elements per sample. If the field :attr:`size_average`
is set to ``False``, the losses are instead summed for each minibatch. Ignored
when reduce is ``False``. Default: ``True``
ignore_index (int, optional): Specifies a target value that is ignored
and does not contribute to the input gradient. When
:attr:`size_average` is ``True``, the loss is averaged over
non-ignored targets.
reduce (bool, optional): Deprecated (see :attr:`reduction`). By default, the
losses are averaged or summed over observations for each minibatch depending
on :attr:`size_average`. When :attr:`reduce` is ``False``, returns a loss per
batch element instead and ignores :attr:`size_average`. Default: ``True``
reduction (string, optional): Specifies the reduction to apply to the output:
``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will
be applied, ``'mean'``: the weighted mean of the output is taken,
``'sum'``: the output will be summed. Note: :attr:`size_average`
and :attr:`reduce` are in the process of being deprecated, and in
the meantime, specifying either of those two args will override
:attr:`reduction`. Default: ``'mean'``
Shape:
- Input: :math:`(N, C)` where `C = number of classes`, or
:math:`(N, C, d_1, d_2, ..., d_K)` with :math:`K \geq 1`
in the case of `K`-dimensional loss.
- Target: :math:`(N)` where each value is :math:`0 \leq \text{targets}[i] \leq C-1`, or
:math:`(N, d_1, d_2, ..., d_K)` with :math:`K \geq 1` in the case of
K-dimensional loss.
- Output: scalar.
If :attr:`reduction` is ``'none'``, then the same size as the target: :math:`(N)`, or
:math:`(N, d_1, d_2, ..., d_K)` with :math:`K \geq 1` in the case
of K-dimensional loss.
Examples::
>>> m = nn.LogSoftmax(dim=1)
>>> loss = nn.NLLLoss()
>>> # input is of size N x C = 3 x 5
>>> input = torch.randn(3, 5, requires_grad=True)
>>> # each element in target has to have 0 <= value < C
>>> target = torch.tensor([1, 0, 4])
>>> output = loss(m(input), target)
>>> output.backward()
>>>
>>>
>>> # 2D loss example (used, for example, with image inputs)
>>> N, C = 5, 4
>>> loss = nn.NLLLoss()
>>> # input is of size N x C x height x width
>>> data = torch.randn(N, 16, 10, 10)
>>> conv = nn.Conv2d(16, C, (3, 3))
>>> m = nn.LogSoftmax(dim=1)
>>> # each element in target has to have 0 <= value < C
>>> target = torch.empty(N, 8, 8, dtype=torch.long).random_(0, C)
>>> output = loss(m(conv(data)), target)
>>> output.backward()
"""
__constants__ = ['ignore_index', 'reduction']
ignore_index: int
def __init__(self, weight: Optional[Tensor] = None, size_average=None, ignore_index: int = -100,
reduce=None, reduction: str = 'mean') -> None:
super(NLLLoss, self).__init__(weight, size_average, reduce, reduction)
self.ignore_index = ignore_index
def forward(self, input: Tensor, target: Tensor) -> Tensor:
return F.nll_loss(input, target, weight=self.weight, ignore_index=self.ignore_index, reduction=self.reduction)
class NLLLoss2d(NLLLoss):
def __init__(self, weight: Optional[Tensor] = None, size_average=None, ignore_index: int = -100,
reduce=None, reduction: str = 'mean') -> None:
warnings.warn("NLLLoss2d has been deprecated. "
"Please use NLLLoss instead as a drop-in replacement and see "
"https://pytorch.org/docs/master/nn.html#torch.nn.NLLLoss for more details.")
super(NLLLoss2d, self).__init__(weight, size_average, ignore_index, reduce, reduction)
class PoissonNLLLoss(_Loss):
r"""Negative log likelihood loss with Poisson distribution of target.
The loss can be described as:
.. math::
\text{target} \sim \mathrm{Poisson}(\text{input})
\text{loss}(\text{input}, \text{target}) = \text{input} - \text{target} * \log(\text{input})
+ \log(\text{target!})
The last term can be omitted or approximated with Stirling formula. The
approximation is used for target values more than 1. For targets less or
equal to 1 zeros are added to the loss.
Args:
log_input (bool, optional): if ``True`` the loss is computed as
:math:`\exp(\text{input}) - \text{target}*\text{input}`, if ``False`` the loss is
:math:`\text{input} - \text{target}*\log(\text{input}+\text{eps})`.
full (bool, optional): whether to compute full loss, i. e. to add the
Stirling approximation term
.. math::
\text{target}*\log(\text{target}) - \text{target} + 0.5 * \log(2\pi\text{target}).
size_average (bool, optional): Deprecated (see :attr:`reduction`). By default,
the losses are averaged over each loss element in the batch. Note that for
some losses, there are multiple elements per sample. If the field :attr:`size_average`
is set to ``False``, the losses are instead summed for each minibatch. Ignored
when reduce is ``False``. Default: ``True``
eps (float, optional): Small value to avoid evaluation of :math:`\log(0)` when
:attr:`log_input = False`. Default: 1e-8
reduce (bool, optional): Deprecated (see :attr:`reduction`). By default, the
losses are averaged or summed over observations for each minibatch depending
on :attr:`size_average`. When :attr:`reduce` is ``False``, returns a loss per
batch element instead and ignores :attr:`size_average`. Default: ``True``
reduction (string, optional): Specifies the reduction to apply to the output:
``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied,
``'mean'``: the sum of the output will be divided by the number of
elements in the output, ``'sum'``: the output will be summed. Note: :attr:`size_average`
and :attr:`reduce` are in the process of being deprecated, and in the meantime,
specifying either of those two args will override :attr:`reduction`. Default: ``'mean'``
Examples::
>>> loss = nn.PoissonNLLLoss()
>>> log_input = torch.randn(5, 2, requires_grad=True)
>>> target = torch.randn(5, 2)
>>> output = loss(log_input, target)
>>> output.backward()
Shape:
- Input: :math:`(N, *)` where :math:`*` means, any number of additional
dimensions
- Target: :math:`(N, *)`, same shape as the input
- Output: scalar by default. If :attr:`reduction` is ``'none'``, then :math:`(N, *)`,
the same shape as the input
"""
__constants__ = ['log_input', 'full', 'eps', 'reduction']
log_input: bool
full: bool
eps: float
def __init__(self, log_input: bool = True, full: bool = False, size_average=None,
eps: float = 1e-8, reduce=None, reduction: str = 'mean') -> None:
super(PoissonNLLLoss, self).__init__(size_average, reduce, reduction)
self.log_input = log_input
self.full = full
self.eps = eps
def forward(self, log_input: Tensor, target: Tensor) -> Tensor:
return F.poisson_nll_loss(log_input, target, log_input=self.log_input, full=self.full,
eps=self.eps, reduction=self.reduction)
class KLDivLoss(_Loss):
r"""The Kullback-Leibler divergence loss measure
`Kullback-Leibler divergence`_ is a useful distance measure for continuous
distributions and is often useful when performing direct regression over
the space of (discretely sampled) continuous output distributions.
As with :class:`~torch.nn.NLLLoss`, the `input` given is expected to contain
*log-probabilities* and is not restricted to a 2D Tensor.
The targets are interpreted as *probabilities* by default, but could be considered
as *log-probabilities* with :attr:`log_target` set to ``True``.
This criterion expects a `target` `Tensor` of the same size as the
`input` `Tensor`.
The unreduced (i.e. with :attr:`reduction` set to ``'none'``) loss can be described as:
.. math::
l(x,y) = L = \{ l_1,\dots,l_N \}, \quad
l_n = y_n \cdot \left( \log y_n - x_n \right)
where the index :math:`N` spans all dimensions of ``input`` and :math:`L` has the same
shape as ``input``. If :attr:`reduction` is not ``'none'`` (default ``'mean'``), then:
.. math::
\ell(x, y) = \begin{cases}
\operatorname{mean}(L), & \text{if reduction} = \text{'mean';} \\
\operatorname{sum}(L), & \text{if reduction} = \text{'sum'.}
\end{cases}
In default :attr:`reduction` mode ``'mean'``, the losses are averaged for each minibatch over observations
**as well as** over dimensions. ``'batchmean'`` mode gives the correct KL divergence where losses
are averaged over batch dimension only. ``'mean'`` mode's behavior will be changed to the same as
``'batchmean'`` in the next major release.
.. _`kullback-leibler divergence`: https://en.wikipedia.org/wiki/Kullback-Leibler_divergence
Args:
size_average (bool, optional): Deprecated (see :attr:`reduction`). By default,
the losses are averaged over each loss element in the batch. Note that for
some losses, there are multiple elements per sample. If the field :attr:`size_average`
is set to ``False``, the losses are instead summed for each minibatch. Ignored
when reduce is ``False``. Default: ``True``
reduce (bool, optional): Deprecated (see :attr:`reduction`). By default, the
losses are averaged or summed over observations for each minibatch depending
on :attr:`size_average`. When :attr:`reduce` is ``False``, returns a loss per
batch element instead and ignores :attr:`size_average`. Default: ``True``
reduction (string, optional): Specifies the reduction to apply to the output:
``'none'`` | ``'batchmean'`` | ``'sum'`` | ``'mean'``.
``'none'``: no reduction will be applied.
``'batchmean'``: the sum of the output will be divided by batchsize.
``'sum'``: the output will be summed.
``'mean'``: the output will be divided by the number of elements in the output.
Default: ``'mean'``
log_target (bool, optional): Specifies whether `target` is passed in the log space.
Default: ``False``
.. note::
:attr:`size_average` and :attr:`reduce` are in the process of being deprecated,
and in the meantime, specifying either of those two args will override :attr:`reduction`.
.. note::
:attr:`reduction` = ``'mean'`` doesn't return the true kl divergence value, please use
:attr:`reduction` = ``'batchmean'`` which aligns with KL math definition.
In the next major release, ``'mean'`` will be changed to be the same as ``'batchmean'``.
Shape:
- Input: :math:`(N, *)` where :math:`*` means, any number of additional
dimensions
- Target: :math:`(N, *)`, same shape as the input
- Output: scalar by default. If :attr:``reduction`` is ``'none'``, then :math:`(N, *)`,
the same shape as the input
"""
__constants__ = ['reduction']
def __init__(self, size_average=None, reduce=None, reduction: str = 'mean', log_target: bool = False) -> None:
super(KLDivLoss, self).__init__(size_average, reduce, reduction)
self.log_target = log_target
def forward(self, input: Tensor, target: Tensor) -> Tensor:
return F.kl_div(input, target, reduction=self.reduction, log_target=self.log_target)
class MSELoss(_Loss):
r"""Creates a criterion that measures the mean squared error (squared L2 norm) between
each element in the input :math:`x` and target :math:`y`.
The unreduced (i.e. with :attr:`reduction` set to ``'none'``) loss can be described as:
.. math::
\ell(x, y) = L = \{l_1,\dots,l_N\}^\top, \quad
l_n = \left( x_n - y_n \right)^2,
where :math:`N` is the batch size. If :attr:`reduction` is not ``'none'``
(default ``'mean'``), then:
.. math::
\ell(x, y) =
\begin{cases}
\operatorname{mean}(L), & \text{if reduction} = \text{'mean';}\\
\operatorname{sum}(L), & \text{if reduction} = \text{'sum'.}
\end{cases}
:math:`x` and :math:`y` are tensors of arbitrary shapes with a total
of :math:`n` elements each.
The mean operation still operates over all the elements, and divides by :math:`n`.
The division by :math:`n` can be avoided if one sets ``reduction = 'sum'``.
Args:
size_average (bool, optional): Deprecated (see :attr:`reduction`). By default,
the losses are averaged over each loss element in the batch. Note that for
some losses, there are multiple elements per sample. If the field :attr:`size_average`
is set to ``False``, the losses are instead summed for each minibatch. Ignored
when reduce is ``False``. Default: ``True``
reduce (bool, optional): Deprecated (see :attr:`reduction`). By default, the
losses are averaged or summed over observations for each minibatch depending
on :attr:`size_average`. When :attr:`reduce` is ``False``, returns a loss per
batch element instead and ignores :attr:`size_average`. Default: ``True``
reduction (string, optional): Specifies the reduction to apply to the output:
``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied,
``'mean'``: the sum of the output will be divided by the number of
elements in the output, ``'sum'``: the output will be summed. Note: :attr:`size_average`
and :attr:`reduce` are in the process of being deprecated, and in the meantime,
specifying either of those two args will override :attr:`reduction`. Default: ``'mean'``
Shape:
- Input: :math:`(N, *)` where :math:`*` means, any number of additional
dimensions
- Target: :math:`(N, *)`, same shape as the input
Examples::
>>> loss = nn.MSELoss()
>>> input = torch.randn(3, 5, requires_grad=True)
>>> target = torch.randn(3, 5)
>>> output = loss(input, target)
>>> output.backward()
"""
__constants__ = ['reduction']
def __init__(self, size_average=None, reduce=None, reduction: str = 'mean') -> None:
super(MSELoss, self).__init__(size_average, reduce, reduction)
def forward(self, input: Tensor, target: Tensor) -> Tensor:
return F.mse_loss(input, target, reduction=self.reduction)
class BCELoss(_WeightedLoss):
r"""Creates a criterion that measures the Binary Cross Entropy
between the target and the output:
The unreduced (i.e. with :attr:`reduction` set to ``'none'``) loss can be described as:
.. math::
\ell(x, y) = L = \{l_1,\dots,l_N\}^\top, \quad
l_n = - w_n \left[ y_n \cdot \log x_n + (1 - y_n) \cdot \log (1 - x_n) \right],
where :math:`N` is the batch size. If :attr:`reduction` is not ``'none'``
(default ``'mean'``), then
.. math::
\ell(x, y) = \begin{cases}
\operatorname{mean}(L), & \text{if reduction} = \text{'mean';}\\
\operatorname{sum}(L), & \text{if reduction} = \text{'sum'.}
\end{cases}
This is used for measuring the error of a reconstruction in for example
an auto-encoder. Note that the targets :math:`y` should be numbers
between 0 and 1.
Notice that if :math:`x_n` is either 0 or 1, one of the log terms would be
mathematically undefined in the above loss equation. PyTorch chooses to set
:math:`\log (0) = -\infty`, since :math:`\lim_{x\to 0} \log (x) = -\infty`.
However, an infinite term in the loss equation is not desirable for several reasons.
For one, if either :math:`y_n = 0` or :math:`(1 - y_n) = 0`, then we would be
multiplying 0 with infinity. Secondly, if we have an infinite loss value, then
we would also have an infinite term in our gradient, since
:math:`\lim_{x\to 0} \frac{d}{dx} \log (x) = \infty`.
This would make BCELoss's backward method nonlinear with respect to :math:`x_n`,
and using it for things like linear regression would not be straight-forward.
Our solution is that BCELoss clamps its log function outputs to be greater than
or equal to -100. This way, we can always have a finite loss value and a linear
backward method.
Args:
weight (Tensor, optional): a manual rescaling weight given to the loss
of each batch element. If given, has to be a Tensor of size `nbatch`.
size_average (bool, optional): Deprecated (see :attr:`reduction`). By default,
the losses are averaged over each loss element in the batch. Note that for
some losses, there are multiple elements per sample. If the field :attr:`size_average`
is set to ``False``, the losses are instead summed for each minibatch. Ignored
when reduce is ``False``. Default: ``True``
reduce (bool, optional): Deprecated (see :attr:`reduction`). By default, the
losses are averaged or summed over observations for each minibatch depending
on :attr:`size_average`. When :attr:`reduce` is ``False``, returns a loss per
batch element instead and ignores :attr:`size_average`. Default: ``True``
reduction (string, optional): Specifies the reduction to apply to the output:
``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied,
``'mean'``: the sum of the output will be divided by the number of
elements in the output, ``'sum'``: the output will be summed. Note: :attr:`size_average`
and :attr:`reduce` are in the process of being deprecated, and in the meantime,
specifying either of those two args will override :attr:`reduction`. Default: ``'mean'``
Shape:
- Input: :math:`(N, *)` where :math:`*` means, any number of additional
dimensions
- Target: :math:`(N, *)`, same shape as the input
- Output: scalar. If :attr:`reduction` is ``'none'``, then :math:`(N, *)`, same
shape as input.
Examples::
>>> m = nn.Sigmoid()
>>> loss = nn.BCELoss()
>>> input = torch.randn(3, requires_grad=True)
>>> target = torch.empty(3).random_(2)
>>> output = loss(m(input), target)
>>> output.backward()
"""
__constants__ = ['reduction']
def __init__(self, weight: Optional[Tensor] = None, size_average=None, reduce=None, reduction: str = 'mean') -> None:
super(BCELoss, self).__init__(weight, size_average, reduce, reduction)
def forward(self, input: Tensor, target: Tensor) -> Tensor:
return F.binary_cross_entropy(input, target, weight=self.weight, reduction=self.reduction)
class BCEWithLogitsLoss(_Loss):
r"""This loss combines a `Sigmoid` layer and the `BCELoss` in one single
class. This version is more numerically stable than using a plain `Sigmoid`
followed by a `BCELoss` as, by combining the operations into one layer,
we take advantage of the log-sum-exp trick for numerical stability.
The unreduced (i.e. with :attr:`reduction` set to ``'none'``) loss can be described as:
.. math::
\ell(x, y) = L = \{l_1,\dots,l_N\}^\top, \quad
l_n = - w_n \left[ y_n \cdot \log \sigma(x_n)
+ (1 - y_n) \cdot \log (1 - \sigma(x_n)) \right],
where :math:`N` is the batch size. If :attr:`reduction` is not ``'none'``
(default ``'mean'``), then
.. math::
\ell(x, y) = \begin{cases}
\operatorname{mean}(L), & \text{if reduction} = \text{'mean';}\\
\operatorname{sum}(L), & \text{if reduction} = \text{'sum'.}
\end{cases}
This is used for measuring the error of a reconstruction in for example
an auto-encoder. Note that the targets `t[i]` should be numbers
between 0 and 1.
It's possible to trade off recall and precision by adding weights to positive examples.
In the case of multi-label classification the loss can be described as:
.. math::
\ell_c(x, y) = L_c = \{l_{1,c},\dots,l_{N,c}\}^\top, \quad
l_{n,c} = - w_{n,c} \left[ p_c y_{n,c} \cdot \log \sigma(x_{n,c})
+ (1 - y_{n,c}) \cdot \log (1 - \sigma(x_{n,c})) \right],
where :math:`c` is the class number (:math:`c > 1` for multi-label binary classification,
:math:`c = 1` for single-label binary classification),
:math:`n` is the number of the sample in the batch and
:math:`p_c` is the weight of the positive answer for the class :math:`c`.
:math:`p_c > 1` increases the recall, :math:`p_c < 1` increases the precision.
For example, if a dataset contains 100 positive and 300 negative examples of a single class,
then `pos_weight` for the class should be equal to :math:`\frac{300}{100}=3`.
The loss would act as if the dataset contains :math:`3\times 100=300` positive examples.
Examples::
>>> target = torch.ones([10, 64], dtype=torch.float32) # 64 classes, batch size = 10
>>> output = torch.full([10, 64], 1.5) # A prediction (logit)
>>> pos_weight = torch.ones([64]) # All weights are equal to 1
>>> criterion = torch.nn.BCEWithLogitsLoss(pos_weight=pos_weight)
>>> criterion(output, target) # -log(sigmoid(1.5))
tensor(0.2014)
Args:
weight (Tensor, optional): a manual rescaling weight given to the loss
of each batch element. If given, has to be a Tensor of size `nbatch`.
size_average (bool, optional): Deprecated (see :attr:`reduction`). By default,
the losses are averaged over each loss element in the batch. Note that for
some losses, there are multiple elements per sample. If the field :attr:`size_average`
is set to ``False``, the losses are instead summed for each minibatch. Ignored
when reduce is ``False``. Default: ``True``
reduce (bool, optional): Deprecated (see :attr:`reduction`). By default, the
losses are averaged or summed over observations for each minibatch depending
on :attr:`size_average`. When :attr:`reduce` is ``False``, returns a loss per
batch element instead and ignores :attr:`size_average`. Default: ``True``
reduction (string, optional): Specifies the reduction to apply to the output:
``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied,
``'mean'``: the sum of the output will be divided by the number of
elements in the output, ``'sum'``: the output will be summed. Note: :attr:`size_average`
and :attr:`reduce` are in the process of being deprecated, and in the meantime,
specifying either of those two args will override :attr:`reduction`. Default: ``'mean'``
pos_weight (Tensor, optional): a weight of positive examples.
Must be a vector with length equal to the number of classes.
Shape:
- Input: :math:`(N, *)` where :math:`*` means, any number of additional dimensions
- Target: :math:`(N, *)`, same shape as the input
- Output: scalar. If :attr:`reduction` is ``'none'``, then :math:`(N, *)`, same
shape as input.
Examples::
>>> loss = nn.BCEWithLogitsLoss()
>>> input = torch.randn(3, requires_grad=True)
>>> target = torch.empty(3).random_(2)
>>> output = loss(input, target)
>>> output.backward()
"""
def __init__(self, weight: Optional[Tensor] = None, size_average=None, reduce=None, reduction: str = 'mean',
pos_weight: Optional[Tensor] = None) -> None:
super(BCEWithLogitsLoss, self).__init__(size_average, reduce, reduction)
self.register_buffer('weight', weight)
self.register_buffer('pos_weight', pos_weight)
def forward(self, input: Tensor, target: Tensor) -> Tensor:
return F.binary_cross_entropy_with_logits(input, target,
self.weight,
pos_weight=self.pos_weight,
reduction=self.reduction)
class HingeEmbeddingLoss(_Loss):
r"""Measures the loss given an input tensor :math:`x` and a labels tensor :math:`y`
(containing 1 or -1).
This is usually used for measuring whether two inputs are similar or
dissimilar, e.g. using the L1 pairwise distance as :math:`x`, and is typically
used for learning nonlinear embeddings or semi-supervised learning.
The loss function for :math:`n`-th sample in the mini-batch is
.. math::
l_n = \begin{cases}
x_n, & \text{if}\; y_n = 1,\\
\max \{0, \Delta - x_n\}, & \text{if}\; y_n = -1,
\end{cases}
and the total loss functions is
.. math::
\ell(x, y) = \begin{cases}
\operatorname{mean}(L), & \text{if reduction} = \text{'mean';}\\
\operatorname{sum}(L), & \text{if reduction} = \text{'sum'.}
\end{cases}
where :math:`L = \{l_1,\dots,l_N\}^\top`.
Args:
margin (float, optional): Has a default value of `1`.
size_average (bool, optional): Deprecated (see :attr:`reduction`). By default,
the losses are averaged over each loss element in the batch. Note that for
some losses, there are multiple elements per sample. If the field :attr:`size_average`
is set to ``False``, the losses are instead summed for each minibatch. Ignored
when reduce is ``False``. Default: ``True``
reduce (bool, optional): Deprecated (see :attr:`reduction`). By default, the
losses are averaged or summed over observations for each minibatch depending
on :attr:`size_average`. When :attr:`reduce` is ``False``, returns a loss per
batch element instead and ignores :attr:`size_average`. Default: ``True``
reduction (string, optional): Specifies the reduction to apply to the output:
``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied,
``'mean'``: the sum of the output will be divided by the number of
elements in the output, ``'sum'``: the output will be summed. Note: :attr:`size_average`
and :attr:`reduce` are in the process of being deprecated, and in the meantime,
specifying either of those two args will override :attr:`reduction`. Default: ``'mean'``
Shape:
- Input: :math:`(*)` where :math:`*` means, any number of dimensions. The sum operation
operates over all the elements.
- Target: :math:`(*)`, same shape as the input
- Output: scalar. If :attr:`reduction` is ``'none'``, then same shape as the input
"""
__constants__ = ['margin', 'reduction']
margin: float
def __init__(self, margin: float = 1.0, size_average=None, reduce=None, reduction: str = 'mean') -> None:
super(HingeEmbeddingLoss, self).__init__(size_average, reduce, reduction)
self.margin = margin
def forward(self, input: Tensor, target: Tensor) -> Tensor:
return F.hinge_embedding_loss(input, target, margin=self.margin, reduction=self.reduction)
class MultiLabelMarginLoss(_Loss):
r"""Creates a criterion that optimizes a multi-class multi-classification
hinge loss (margin-based loss) between input :math:`x` (a 2D mini-batch `Tensor`)
and output :math:`y` (which is a 2D `Tensor` of target class indices).
For each sample in the mini-batch:
.. math::
\text{loss}(x, y) = \sum_{ij}\frac{\max(0, 1 - (x[y[j]] - x[i]))}{\text{x.size}(0)}
where :math:`x \in \left\{0, \; \cdots , \; \text{x.size}(0) - 1\right\}`, \
:math:`y \in \left\{0, \; \cdots , \; \text{y.size}(0) - 1\right\}`, \
:math:`0 \leq y[j] \leq \text{x.size}(0)-1`, \
and :math:`i \neq y[j]` for all :math:`i` and :math:`j`.
:math:`y` and :math:`x` must have the same size.
The criterion only considers a contiguous block of non-negative targets that
starts at the front.
This allows for different samples to have variable amounts of target classes.
Args:
size_average (bool, optional): Deprecated (see :attr:`reduction`). By default,
the losses are averaged over each loss element in the batch. Note that for
some losses, there are multiple elements per sample. If the field :attr:`size_average`
is set to ``False``, the losses are instead summed for each minibatch. Ignored
when reduce is ``False``. Default: ``True``
reduce (bool, optional): Deprecated (see :attr:`reduction`). By default, the
losses are averaged or summed over observations for each minibatch depending
on :attr:`size_average`. When :attr:`reduce` is ``False``, returns a loss per
batch element instead and ignores :attr:`size_average`. Default: ``True``
reduction (string, optional): Specifies the reduction to apply to the output:
``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied,
``'mean'``: the sum of the output will be divided by the number of
elements in the output, ``'sum'``: the output will be summed. Note: :attr:`size_average`
and :attr:`reduce` are in the process of being deprecated, and in the meantime,
specifying either of those two args will override :attr:`reduction`. Default: ``'mean'``
Shape:
- Input: :math:`(C)` or :math:`(N, C)` where `N` is the batch size and `C`
is the number of classes.
- Target: :math:`(C)` or :math:`(N, C)`, label targets padded by -1 ensuring same shape as the input.
- Output: scalar. If :attr:`reduction` is ``'none'``, then :math:`(N)`.
Examples::
>>> loss = nn.MultiLabelMarginLoss()
>>> x = torch.FloatTensor([[0.1, 0.2, 0.4, 0.8]])
>>> # for target y, only consider labels 3 and 0, not after label -1
>>> y = torch.LongTensor([[3, 0, -1, 1]])
>>> loss(x, y)
>>> # 0.25 * ((1-(0.1-0.2)) + (1-(0.1-0.4)) + (1-(0.8-0.2)) + (1-(0.8-0.4)))
tensor(0.8500)
"""
__constants__ = ['reduction']
def __init__(self, size_average=None, reduce=None, reduction: str = 'mean') -> None:
super(MultiLabelMarginLoss, self).__init__(size_average, reduce, reduction)
def forward(self, input: Tensor, target: Tensor) -> Tensor:
return F.multilabel_margin_loss(input, target, reduction=self.reduction)
class SmoothL1Loss(_Loss):
r"""Creates a criterion that uses a squared term if the absolute
element-wise error falls below beta and an L1 term otherwise.
It is less sensitive to outliers than the `MSELoss` and in some cases
prevents exploding gradients (e.g. see `Fast R-CNN` paper by Ross Girshick).
Also known as the Huber loss:
.. math::
\text{loss}(x, y) = \frac{1}{n} \sum_{i} z_{i}
where :math:`z_{i}` is given by:
.. math::
z_{i} =
\begin{cases}
0.5 (x_i - y_i)^2 / beta, & \text{if } |x_i - y_i| < beta \\
|x_i - y_i| - 0.5 * beta, & \text{otherwise }
\end{cases}
:math:`x` and :math:`y` arbitrary shapes with a total of :math:`n` elements each
the sum operation still operates over all the elements, and divides by :math:`n`.
beta is an optional parameter that defaults to 1.
Note: When beta is set to 0, this is equivalent to :class:`L1Loss`.
Passing a negative value in for beta will result in an exception.
The division by :math:`n` can be avoided if sets ``reduction = 'sum'``.
Args:
size_average (bool, optional): Deprecated (see :attr:`reduction`). By default,
the losses are averaged over each loss element in the batch. Note that for
some losses, there are multiple elements per sample. If the field :attr:`size_average`
is set to ``False``, the losses are instead summed for each minibatch. Ignored
when reduce is ``False``. Default: ``True``
reduce (bool, optional): Deprecated (see :attr:`reduction`). By default, the
losses are averaged or summed over observations for each minibatch depending
on :attr:`size_average`. When :attr:`reduce` is ``False``, returns a loss per
batch element instead and ignores :attr:`size_average`. Default: ``True``
reduction (string, optional): Specifies the reduction to apply to the output:
``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied,
``'mean'``: the sum of the output will be divided by the number of
elements in the output, ``'sum'``: the output will be summed. Note: :attr:`size_average`
and :attr:`reduce` are in the process of being deprecated, and in the meantime,
specifying either of those two args will override :attr:`reduction`. Default: ``'mean'``
beta (float, optional): Specifies the threshold at which to change between L1 and L2 loss.
This value defaults to 1.0.
Shape:
- Input: :math:`(N, *)` where :math:`*` means, any number of additional
dimensions
- Target: :math:`(N, *)`, same shape as the input
- Output: scalar. If :attr:`reduction` is ``'none'``, then
:math:`(N, *)`, same shape as the input
"""
__constants__ = ['reduction']
def __init__(self, size_average=None, reduce=None, reduction: str = 'mean', beta: float = 1.0) -> None:
super(SmoothL1Loss, self).__init__(size_average, reduce, reduction)
self.beta = beta
def forward(self, input: Tensor, target: Tensor) -> Tensor:
return F.smooth_l1_loss(input, target, reduction=self.reduction, beta=self.beta)
class SoftMarginLoss(_Loss):
r"""Creates a criterion that optimizes a two-class classification
logistic loss between input tensor :math:`x` and target tensor :math:`y`
(containing 1 or -1).
.. math::
\text{loss}(x, y) = \sum_i \frac{\log(1 + \exp(-y[i]*x[i]))}{\text{x.nelement}()}
Args:
size_average (bool, optional): Deprecated (see :attr:`reduction`). By default,
the losses are averaged over each loss element in the batch. Note that for
some losses, there are multiple elements per sample. If the field :attr:`size_average`
is set to ``False``, the losses are instead summed for each minibatch. Ignored
when reduce is ``False``. Default: ``True``
reduce (bool, optional): Deprecated (see :attr:`reduction`). By default, the
losses are averaged or summed over observations for each minibatch depending
on :attr:`size_average`. When :attr:`reduce` is ``False``, returns a loss per
batch element instead and ignores :attr:`size_average`. Default: ``True``
reduction (string, optional): Specifies the reduction to apply to the output:
``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied,
``'mean'``: the sum of the output will be divided by the number of
elements in the output, ``'sum'``: the output will be summed. Note: :attr:`size_average`
and :attr:`reduce` are in the process of being deprecated, and in the meantime,
specifying either of those two args will override :attr:`reduction`. Default: ``'mean'``
Shape:
- Input: :math:`(*)` where :math:`*` means, any number of additional
dimensions
- Target: :math:`(*)`, same shape as the input
- Output: scalar. If :attr:`reduction` is ``'none'``, then same shape as the input
"""
__constants__ = ['reduction']
def __init__(self, size_average=None, reduce=None, reduction: str = 'mean') -> None:
super(SoftMarginLoss, self).__init__(size_average, reduce, reduction)
def forward(self, input: Tensor, target: Tensor) -> Tensor:
return F.soft_margin_loss(input, target, reduction=self.reduction)
class CrossEntropyLoss(_WeightedLoss):
r"""This criterion combines :func:`nn.LogSoftmax` and :func:`nn.NLLLoss` in one single class.
It is useful when training a classification problem with `C` classes.
If provided, the optional argument :attr:`weight` should be a 1D `Tensor`
assigning weight to each of the classes.
This is particularly useful when you have an unbalanced training set.
The `input` is expected to contain raw, unnormalized scores for each class.
`input` has to be a Tensor of size either :math:`(minibatch, C)` or
:math:`(minibatch, C, d_1, d_2, ..., d_K)`
with :math:`K \geq 1` for the `K`-dimensional case (described later).
This criterion expects a class index in the range :math:`[0, C-1]` as the
`target` for each value of a 1D tensor of size `minibatch`; if `ignore_index`
is specified, this criterion also accepts this class index (this index may not
necessarily be in the class range).
The loss can be described as:
.. math::
\text{loss}(x, class) = -\log\left(\frac{\exp(x[class])}{\sum_j \exp(x[j])}\right)
= -x[class] + \log\left(\sum_j \exp(x[j])\right)
or in the case of the :attr:`weight` argument being specified:
.. math::
\text{loss}(x, class) = weight[class] \left(-x[class] + \log\left(\sum_j \exp(x[j])\right)\right)
The losses are averaged across observations for each minibatch. If the
:attr:`weight` argument is specified then this is a weighted average:
.. math::
\text{loss} = \frac{\sum^{N}_{i=1} loss(i, class[i])}{\sum^{N}_{i=1} weight[class[i]]}
Can also be used for higher dimension inputs, such as 2D images, by providing
an input of size :math:`(minibatch, C, d_1, d_2, ..., d_K)` with :math:`K \geq 1`,
where :math:`K` is the number of dimensions, and a target of appropriate shape
(see below).
Args:
weight (Tensor, optional): a manual rescaling weight given to each class.
If given, has to be a Tensor of size `C`
size_average (bool, optional): Deprecated (see :attr:`reduction`). By default,
the losses are averaged over each loss element in the batch. Note that for
some losses, there are multiple elements per sample. If the field :attr:`size_average`
is set to ``False``, the losses are instead summed for each minibatch. Ignored
when reduce is ``False``. Default: ``True``
ignore_index (int, optional): Specifies a target value that is ignored
and does not contribute to the input gradient. When :attr:`size_average` is
``True``, the loss is averaged over non-ignored targets.
reduce (bool, optional): Deprecated (see :attr:`reduction`). By default, the
losses are averaged or summed over observations for each minibatch depending
on :attr:`size_average`. When :attr:`reduce` is ``False``, returns a loss per
batch element instead and ignores :attr:`size_average`. Default: ``True``
reduction (string, optional): Specifies the reduction to apply to the output:
``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will
be applied, ``'mean'``: the weighted mean of the output is taken,
``'sum'``: the output will be summed. Note: :attr:`size_average`
and :attr:`reduce` are in the process of being deprecated, and in
the meantime, specifying either of those two args will override
:attr:`reduction`. Default: ``'mean'``
Shape:
- Input: :math:`(N, C)` where `C = number of classes`, or
:math:`(N, C, d_1, d_2, ..., d_K)` with :math:`K \geq 1`
in the case of `K`-dimensional loss.
- Target: :math:`(N)` where each value is :math:`0 \leq \text{targets}[i] \leq C-1`, or
:math:`(N, d_1, d_2, ..., d_K)` with :math:`K \geq 1` in the case of
K-dimensional loss.
- Output: scalar.
If :attr:`reduction` is ``'none'``, then the same size as the target:
:math:`(N)`, or
:math:`(N, d_1, d_2, ..., d_K)` with :math:`K \geq 1` in the case
of K-dimensional loss.
Examples::
>>> loss = nn.CrossEntropyLoss()
>>> input = torch.randn(3, 5, requires_grad=True)
>>> target = torch.empty(3, dtype=torch.long).random_(5)
>>> output = loss(input, target)
>>> output.backward()
"""
__constants__ = ['ignore_index', 'reduction']
ignore_index: int
def __init__(self, weight: Optional[Tensor] = None, size_average=None, ignore_index: int = -100,
reduce=None, reduction: str = 'mean') -> None:
super(CrossEntropyLoss, self).__init__(weight, size_average, reduce, reduction)
self.ignore_index = ignore_index
def forward(self, input: Tensor, target: Tensor) -> Tensor:
return F.cross_entropy(input, target, weight=self.weight,
ignore_index=self.ignore_index, reduction=self.reduction)
class MultiLabelSoftMarginLoss(_WeightedLoss):
r"""Creates a criterion that optimizes a multi-label one-versus-all
loss based on max-entropy, between input :math:`x` and target :math:`y` of size
:math:`(N, C)`.
For each sample in the minibatch:
.. math::
loss(x, y) = - \frac{1}{C} * \sum_i y[i] * \log((1 + \exp(-x[i]))^{-1})
+ (1-y[i]) * \log\left(\frac{\exp(-x[i])}{(1 + \exp(-x[i]))}\right)
where :math:`i \in \left\{0, \; \cdots , \; \text{x.nElement}() - 1\right\}`,
:math:`y[i] \in \left\{0, \; 1\right\}`.
Args:
weight (Tensor, optional): a manual rescaling weight given to each
class. If given, it has to be a Tensor of size `C`. Otherwise, it is
treated as if having all ones.
size_average (bool, optional): Deprecated (see :attr:`reduction`). By default,
the losses are averaged over each loss element in the batch. Note that for
some losses, there are multiple elements per sample. If the field :attr:`size_average`
is set to ``False``, the losses are instead summed for each minibatch. Ignored
when reduce is ``False``. Default: ``True``
reduce (bool, optional): Deprecated (see :attr:`reduction`). By default, the
losses are averaged or summed over observations for each minibatch depending
on :attr:`size_average`. When :attr:`reduce` is ``False``, returns a loss per
batch element instead and ignores :attr:`size_average`. Default: ``True``
reduction (string, optional): Specifies the reduction to apply to the output:
``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied,
``'mean'``: the sum of the output will be divided by the number of
elements in the output, ``'sum'``: the output will be summed. Note: :attr:`size_average`
and :attr:`reduce` are in the process of being deprecated, and in the meantime,
specifying either of those two args will override :attr:`reduction`. Default: ``'mean'``
Shape:
- Input: :math:`(N, C)` where `N` is the batch size and `C` is the number of classes.
- Target: :math:`(N, C)`, label targets padded by -1 ensuring same shape as the input.
- Output: scalar. If :attr:`reduction` is ``'none'``, then :math:`(N)`.
"""
__constants__ = ['reduction']
def __init__(self, weight: Optional[Tensor] = None, size_average=None, reduce=None, reduction: str = 'mean') -> None:
super(MultiLabelSoftMarginLoss, self).__init__(weight, size_average, reduce, reduction)
def forward(self, input: Tensor, target: Tensor) -> Tensor:
return F.multilabel_soft_margin_loss(input, target, weight=self.weight, reduction=self.reduction)
class CosineEmbeddingLoss(_Loss):
r"""Creates a criterion that measures the loss given input tensors
:math:`x_1`, :math:`x_2` and a `Tensor` label :math:`y` with values 1 or -1.
This is used for measuring whether two inputs are similar or dissimilar,
using the cosine distance, and is typically used for learning nonlinear
embeddings or semi-supervised learning.
The loss function for each sample is:
.. math::
\text{loss}(x, y) =
\begin{cases}
1 - \cos(x_1, x_2), & \text{if } y = 1 \\
\max(0, \cos(x_1, x_2) - \text{margin}), & \text{if } y = -1
\end{cases}
Args:
margin (float, optional): Should be a number from :math:`-1` to :math:`1`,
:math:`0` to :math:`0.5` is suggested. If :attr:`margin` is missing, the
default value is :math:`0`.
size_average (bool, optional): Deprecated (see :attr:`reduction`). By default,
the losses are averaged over each loss element in the batch. Note that for
some losses, there are multiple elements per sample. If the field :attr:`size_average`
is set to ``False``, the losses are instead summed for each minibatch. Ignored
when reduce is ``False``. Default: ``True``
reduce (bool, optional): Deprecated (see :attr:`reduction`). By default, the
losses are averaged or summed over observations for each minibatch depending
on :attr:`size_average`. When :attr:`reduce` is ``False``, returns a loss per
batch element instead and ignores :attr:`size_average`. Default: ``True``
reduction (string, optional): Specifies the reduction to apply to the output:
``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied,
``'mean'``: the sum of the output will be divided by the number of
elements in the output, ``'sum'``: the output will be summed. Note: :attr:`size_average`
and :attr:`reduce` are in the process of being deprecated, and in the meantime,
specifying either of those two args will override :attr:`reduction`. Default: ``'mean'``
"""
__constants__ = ['margin', 'reduction']
margin: float
def __init__(self, margin: float = 0., size_average=None, reduce=None, reduction: str = 'mean') -> None:
super(CosineEmbeddingLoss, self).__init__(size_average, reduce, reduction)
self.margin = margin
def forward(self, input1: Tensor, input2: Tensor, target: Tensor) -> Tensor:
return F.cosine_embedding_loss(input1, input2, target, margin=self.margin, reduction=self.reduction)
class MarginRankingLoss(_Loss):
r"""Creates a criterion that measures the loss given
inputs :math:`x1`, :math:`x2`, two 1D mini-batch `Tensors`,
and a label 1D mini-batch tensor :math:`y` (containing 1 or -1).
If :math:`y = 1` then it assumed the first input should be ranked higher
(have a larger value) than the second input, and vice-versa for :math:`y = -1`.
The loss function for each pair of samples in the mini-batch is:
.. math::
\text{loss}(x1, x2, y) = \max(0, -y * (x1 - x2) + \text{margin})
Args:
margin (float, optional): Has a default value of :math:`0`.
size_average (bool, optional): Deprecated (see :attr:`reduction`). By default,
the losses are averaged over each loss element in the batch. Note that for
some losses, there are multiple elements per sample. If the field :attr:`size_average`
is set to ``False``, the losses are instead summed for each minibatch. Ignored
when reduce is ``False``. Default: ``True``
reduce (bool, optional): Deprecated (see :attr:`reduction`). By default, the
losses are averaged or summed over observations for each minibatch depending
on :attr:`size_average`. When :attr:`reduce` is ``False``, returns a loss per
batch element instead and ignores :attr:`size_average`. Default: ``True``
reduction (string, optional): Specifies the reduction to apply to the output:
``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied,
``'mean'``: the sum of the output will be divided by the number of
elements in the output, ``'sum'``: the output will be summed. Note: :attr:`size_average`
and :attr:`reduce` are in the process of being deprecated, and in the meantime,
specifying either of those two args will override :attr:`reduction`. Default: ``'mean'``
Shape:
- Input1: :math:`(N)` where `N` is the batch size.
- Input2: :math:`(N)`, same shape as the Input1.
- Target: :math:`(N)`, same shape as the inputs.
- Output: scalar. If :attr:`reduction` is ``'none'``, then :math:`(N)`.
Examples::
>>> loss = nn.MarginRankingLoss()
>>> input1 = torch.randn(3, requires_grad=True)
>>> input2 = torch.randn(3, requires_grad=True)
>>> target = torch.randn(3).sign()
>>> output = loss(input1, input2, target)
>>> output.backward()
"""
__constants__ = ['margin', 'reduction']
margin: float
def __init__(self, margin: float = 0., size_average=None, reduce=None, reduction: str = 'mean') -> None:
super(MarginRankingLoss, self).__init__(size_average, reduce, reduction)
self.margin = margin
def forward(self, input1: Tensor, input2: Tensor, target: Tensor) -> Tensor:
return F.margin_ranking_loss(input1, input2, target, margin=self.margin, reduction=self.reduction)
class MultiMarginLoss(_WeightedLoss):
r"""Creates a criterion that optimizes a multi-class classification hinge
loss (margin-based loss) between input :math:`x` (a 2D mini-batch `Tensor`) and
output :math:`y` (which is a 1D tensor of target class indices,
:math:`0 \leq y \leq \text{x.size}(1)-1`):
For each mini-batch sample, the loss in terms of the 1D input :math:`x` and scalar
output :math:`y` is:
.. math::
\text{loss}(x, y) = \frac{\sum_i \max(0, \text{margin} - x[y] + x[i]))^p}{\text{x.size}(0)}
where :math:`x \in \left\{0, \; \cdots , \; \text{x.size}(0) - 1\right\}`
and :math:`i \neq y`.
Optionally, you can give non-equal weighting on the classes by passing
a 1D :attr:`weight` tensor into the constructor.
The loss function then becomes:
.. math::
\text{loss}(x, y) = \frac{\sum_i \max(0, w[y] * (\text{margin} - x[y] + x[i]))^p)}{\text{x.size}(0)}
Args:
p (int, optional): Has a default value of :math:`1`. :math:`1` and :math:`2`
are the only supported values.
margin (float, optional): Has a default value of :math:`1`.
weight (Tensor, optional): a manual rescaling weight given to each
class. If given, it has to be a Tensor of size `C`. Otherwise, it is
treated as if having all ones.
size_average (bool, optional): Deprecated (see :attr:`reduction`). By default,
the losses are averaged over each loss element in the batch. Note that for
some losses, there are multiple elements per sample. If the field :attr:`size_average`
is set to ``False``, the losses are instead summed for each minibatch. Ignored
when reduce is ``False``. Default: ``True``
reduce (bool, optional): Deprecated (see :attr:`reduction`). By default, the
losses are averaged or summed over observations for each minibatch depending
on :attr:`size_average`. When :attr:`reduce` is ``False``, returns a loss per
batch element instead and ignores :attr:`size_average`. Default: ``True``
reduction (string, optional): Specifies the reduction to apply to the output:
``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied,
``'mean'``: the sum of the output will be divided by the number of
elements in the output, ``'sum'``: the output will be summed. Note: :attr:`size_average`
and :attr:`reduce` are in the process of being deprecated, and in the meantime,
specifying either of those two args will override :attr:`reduction`. Default: ``'mean'``
"""
__constants__ = ['p', 'margin', 'reduction']
margin: float
p: int
def __init__(self, p: int = 1, margin: float = 1., weight: Optional[Tensor] = None, size_average=None,
reduce=None, reduction: str = 'mean') -> None:
super(MultiMarginLoss, self).__init__(weight, size_average, reduce, reduction)
if p != 1 and p != 2:
raise ValueError("only p == 1 and p == 2 supported")
assert weight is None or weight.dim() == 1
self.p = p
self.margin = margin
def forward(self, input: Tensor, target: Tensor) -> Tensor:
return F.multi_margin_loss(input, target, p=self.p, margin=self.margin,
weight=self.weight, reduction=self.reduction)
class TripletMarginLoss(_Loss):
r"""Creates a criterion that measures the triplet loss given an input
tensors :math:`x1`, :math:`x2`, :math:`x3` and a margin with a value greater than :math:`0`.
This is used for measuring a relative similarity between samples. A triplet
is composed by `a`, `p` and `n` (i.e., `anchor`, `positive examples` and `negative
examples` respectively). The shapes of all input tensors should be
:math:`(N, D)`.
The distance swap is described in detail in the paper `Learning shallow
convolutional feature descriptors with triplet losses`_ by
V. Balntas, E. Riba et al.
The loss function for each sample in the mini-batch is:
.. math::
L(a, p, n) = \max \{d(a_i, p_i) - d(a_i, n_i) + {\rm margin}, 0\}
where
.. math::
d(x_i, y_i) = \left\lVert {\bf x}_i - {\bf y}_i \right\rVert_p
See also :class:`~torch.nn.TripletMarginWithDistanceLoss`, which computes the
triplet margin loss for input tensors using a custom distance function.
Args:
margin (float, optional): Default: :math:`1`.
p (int, optional): The norm degree for pairwise distance. Default: :math:`2`.
swap (bool, optional): The distance swap is described in detail in the paper
`Learning shallow convolutional feature descriptors with triplet losses` by
V. Balntas, E. Riba et al. Default: ``False``.
size_average (bool, optional): Deprecated (see :attr:`reduction`). By default,
the losses are averaged over each loss element in the batch. Note that for
some losses, there are multiple elements per sample. If the field :attr:`size_average`
is set to ``False``, the losses are instead summed for each minibatch. Ignored
when reduce is ``False``. Default: ``True``
reduce (bool, optional): Deprecated (see :attr:`reduction`). By default, the
losses are averaged or summed over observations for each minibatch depending
on :attr:`size_average`. When :attr:`reduce` is ``False``, returns a loss per
batch element instead and ignores :attr:`size_average`. Default: ``True``
reduction (string, optional): Specifies the reduction to apply to the output:
``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied,
``'mean'``: the sum of the output will be divided by the number of
elements in the output, ``'sum'``: the output will be summed. Note: :attr:`size_average`
and :attr:`reduce` are in the process of being deprecated, and in the meantime,
specifying either of those two args will override :attr:`reduction`. Default: ``'mean'``
Shape:
- Input: :math:`(N, D)` where :math:`D` is the vector dimension.
- Output: A Tensor of shape :math:`(N)` if :attr:`reduction` is ``'none'``, or a scalar
otherwise.
>>> triplet_loss = nn.TripletMarginLoss(margin=1.0, p=2)
>>> anchor = torch.randn(100, 128, requires_grad=True)
>>> positive = torch.randn(100, 128, requires_grad=True)
>>> negative = torch.randn(100, 128, requires_grad=True)
>>> output = triplet_loss(anchor, positive, negative)
>>> output.backward()
.. _Learning shallow convolutional feature descriptors with triplet losses:
http://www.bmva.org/bmvc/2016/papers/paper119/index.html
"""
__constants__ = ['margin', 'p', 'eps', 'swap', 'reduction']
margin: float
p: float
eps: float
swap: bool
def __init__(self, margin: float = 1.0, p: float = 2., eps: float = 1e-6, swap: bool = False, size_average=None,
reduce=None, reduction: str = 'mean'):
super(TripletMarginLoss, self).__init__(size_average, reduce, reduction)
self.margin = margin
self.p = p
self.eps = eps
self.swap = swap
def forward(self, anchor: Tensor, positive: Tensor, negative: Tensor) -> Tensor:
return F.triplet_margin_loss(anchor, positive, negative, margin=self.margin, p=self.p,
eps=self.eps, swap=self.swap, reduction=self.reduction)
class TripletMarginWithDistanceLoss(_Loss):
r"""Creates a criterion that measures the triplet loss given input
tensors :math:`a`, :math:`p`, and :math:`n` (representing anchor,
positive, and negative examples, respectively), and a nonnegative,
real-valued function ("distance function") used to compute the relationship
between the anchor and positive example ("positive distance") and the
anchor and negative example ("negative distance").
The unreduced loss (i.e., with :attr:`reduction` set to ``'none'``)
can be described as:
.. math::
\ell(a, p, n) = L = \{l_1,\dots,l_N\}^\top, \quad
l_i = \max \{d(a_i, p_i) - d(a_i, n_i) + {\rm margin}, 0\}
where :math:`N` is the batch size; :math:`d` is a nonnegative, real-valued function
quantifying the closeness of two tensors, referred to as the :attr:`distance_function`;
and :math:`margin` is a non-negative margin representing the minimum difference
between the positive and negative distances that is required for the loss to
be 0. The input tensors have :math:`N` elements each and can be of any shape
that the distance function can handle.
If :attr:`reduction` is not ``'none'``
(default ``'mean'``), then:
.. math::
\ell(x, y) =
\begin{cases}
\operatorname{mean}(L), & \text{if reduction} = \text{`mean';}\\
\operatorname{sum}(L), & \text{if reduction} = \text{`sum'.}
\end{cases}
See also :class:`~torch.nn.TripletMarginLoss`, which computes the triplet
loss for input tensors using the :math:`l_p` distance as the distance function.
Args:
distance_function (callable, optional): A nonnegative, real-valued function that
quantifies the closeness of two tensors. If not specified,
`nn.PairwiseDistance` will be used. Default: ``None``
margin (float, optional): A non-negative margin representing the minimum difference
between the positive and negative distances required for the loss to be 0. Larger
margins penalize cases where the negative examples are not distant enough from the
anchors, relative to the positives. Default: :math:`1`.
swap (bool, optional): Whether to use the distance swap described in the paper
`Learning shallow convolutional feature descriptors with triplet losses` by
V. Balntas, E. Riba et al. If True, and if the positive example is closer to the
negative example than the anchor is, swaps the positive example and the anchor in
the loss computation. Default: ``False``.
reduction (string, optional): Specifies the (optional) reduction to apply to the output:
``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied,
``'mean'``: the sum of the output will be divided by the number of
elements in the output, ``'sum'``: the output will be summed. Default: ``'mean'``
Shape:
- Input: :math:`(N, *)` where :math:`*` represents any number of additional dimensions
as supported by the distance function.
- Output: A Tensor of shape :math:`(N)` if :attr:`reduction` is ``'none'``, or a scalar
otherwise.
Examples::
>>> # Initialize embeddings
>>> embedding = nn.Embedding(1000, 128)
>>> anchor_ids = torch.randint(0, 1000, (1,), requires_grad=True)
>>> positive_ids = torch.randint(0, 1000, (1,), requires_grad=True)
>>> negative_ids = torch.randint(0, 1000, (1,), requires_grad=True)
>>> anchor = embedding(anchor_ids)
>>> positive = embedding(positive_ids)
>>> negative = embedding(negative_ids)
>>>
>>> # Built-in Distance Function
>>> triplet_loss = \
>>> nn.TripletMarginWithDistanceLoss(distance_function=nn.PairwiseDistance())
>>> output = triplet_loss(anchor, positive, negative)
>>> output.backward()
>>>
>>> # Custom Distance Function
>>> def l_infinity(x1, x2):
>>> return torch.max(torch.abs(x1 - x2), dim=1).values
>>>
>>> triplet_loss = \
>>> nn.TripletMarginWithDistanceLoss(distance_function=l_infinity, margin=1.5)
>>> output = triplet_loss(anchor, positive, negative)
>>> output.backward()
>>>
>>> # Custom Distance Function (Lambda)
>>> triplet_loss = \
>>> nn.TripletMarginWithDistanceLoss(
>>> distance_function=lambda x, y: 1.0 - F.cosine_similarity(x, y))
>>> output = triplet_loss(anchor, positive, negative)
>>> output.backward()
Reference:
V. Balntas, et al.: Learning shallow convolutional feature descriptors with triplet losses:
http://www.bmva.org/bmvc/2016/papers/paper119/index.html
"""
__constants__ = ['margin', 'swap', 'reduction']
margin: float
swap: bool
def __init__(self, *, distance_function: Optional[Callable[[Tensor, Tensor], Tensor]] = None,
margin: float = 1.0, swap: bool = False, reduction: str = 'mean'):
super(TripletMarginWithDistanceLoss, self).__init__(size_average=None, reduce=None, reduction=reduction)
self.distance_function = distance_function if distance_function is not None else PairwiseDistance()
self.margin = margin
self.swap = swap
def forward(self, anchor: Tensor, positive: Tensor, negative: Tensor) -> Tensor:
return F.triplet_margin_with_distance_loss(anchor, positive, negative,
distance_function=self.distance_function,
margin=self.margin, swap=self.swap, reduction=self.reduction)
class CTCLoss(_Loss):
r"""The Connectionist Temporal Classification loss.
Calculates loss between a continuous (unsegmented) time series and a target sequence. CTCLoss sums over the
probability of possible alignments of input to target, producing a loss value which is differentiable
with respect to each input node. The alignment of input to target is assumed to be "many-to-one", which
limits the length of the target sequence such that it must be :math:`\leq` the input length.
Args:
blank (int, optional): blank label. Default :math:`0`.
reduction (string, optional): Specifies the reduction to apply to the output:
``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied,
``'mean'``: the output losses will be divided by the target lengths and
then the mean over the batch is taken. Default: ``'mean'``
zero_infinity (bool, optional):
Whether to zero infinite losses and the associated gradients.
Default: ``False``
Infinite losses mainly occur when the inputs are too short
to be aligned to the targets.
Shape:
- Log_probs: Tensor of size :math:`(T, N, C)`,
where :math:`T = \text{input length}`,
:math:`N = \text{batch size}`, and
:math:`C = \text{number of classes (including blank)}`.
The logarithmized probabilities of the outputs (e.g. obtained with
:func:`torch.nn.functional.log_softmax`).
- Targets: Tensor of size :math:`(N, S)` or
:math:`(\operatorname{sum}(\text{target\_lengths}))`,
where :math:`N = \text{batch size}` and
:math:`S = \text{max target length, if shape is } (N, S)`.
It represent the target sequences. Each element in the target
sequence is a class index. And the target index cannot be blank (default=0).
In the :math:`(N, S)` form, targets are padded to the
length of the longest sequence, and stacked.
In the :math:`(\operatorname{sum}(\text{target\_lengths}))` form,
the targets are assumed to be un-padded and
concatenated within 1 dimension.
- Input_lengths: Tuple or tensor of size :math:`(N)`,
where :math:`N = \text{batch size}`. It represent the lengths of the
inputs (must each be :math:`\leq T`). And the lengths are specified
for each sequence to achieve masking under the assumption that sequences
are padded to equal lengths.
- Target_lengths: Tuple or tensor of size :math:`(N)`,
where :math:`N = \text{batch size}`. It represent lengths of the targets.
Lengths are specified for each sequence to achieve masking under the
assumption that sequences are padded to equal lengths. If target shape is
:math:`(N,S)`, target_lengths are effectively the stop index
:math:`s_n` for each target sequence, such that ``target_n = targets[n,0:s_n]`` for
each target in a batch. Lengths must each be :math:`\leq S`
If the targets are given as a 1d tensor that is the concatenation of individual
targets, the target_lengths must add up to the total length of the tensor.
- Output: scalar. If :attr:`reduction` is ``'none'``, then
:math:`(N)`, where :math:`N = \text{batch size}`.
Examples::
>>> # Target are to be padded
>>> T = 50 # Input sequence length
>>> C = 20 # Number of classes (including blank)
>>> N = 16 # Batch size
>>> S = 30 # Target sequence length of longest target in batch (padding length)
>>> S_min = 10 # Minimum target length, for demonstration purposes
>>>
>>> # Initialize random batch of input vectors, for *size = (T,N,C)
>>> input = torch.randn(T, N, C).log_softmax(2).detach().requires_grad_()
>>>
>>> # Initialize random batch of targets (0 = blank, 1:C = classes)
>>> target = torch.randint(low=1, high=C, size=(N, S), dtype=torch.long)
>>>
>>> input_lengths = torch.full(size=(N,), fill_value=T, dtype=torch.long)
>>> target_lengths = torch.randint(low=S_min, high=S, size=(N,), dtype=torch.long)
>>> ctc_loss = nn.CTCLoss()
>>> loss = ctc_loss(input, target, input_lengths, target_lengths)
>>> loss.backward()
>>>
>>>
>>> # Target are to be un-padded
>>> T = 50 # Input sequence length
>>> C = 20 # Number of classes (including blank)
>>> N = 16 # Batch size
>>>
>>> # Initialize random batch of input vectors, for *size = (T,N,C)
>>> input = torch.randn(T, N, C).log_softmax(2).detach().requires_grad_()
>>> input_lengths = torch.full(size=(N,), fill_value=T, dtype=torch.long)
>>>
>>> # Initialize random batch of targets (0 = blank, 1:C = classes)
>>> target_lengths = torch.randint(low=1, high=T, size=(N,), dtype=torch.long)
>>> target = torch.randint(low=1, high=C, size=(sum(target_lengths),), dtype=torch.long)
>>> ctc_loss = nn.CTCLoss()
>>> loss = ctc_loss(input, target, input_lengths, target_lengths)
>>> loss.backward()
Reference:
A. Graves et al.: Connectionist Temporal Classification:
Labelling Unsegmented Sequence Data with Recurrent Neural Networks:
https://www.cs.toronto.edu/~graves/icml_2006.pdf
Note:
In order to use CuDNN, the following must be satisfied: :attr:`targets` must be
in concatenated format, all :attr:`input_lengths` must be `T`. :math:`blank=0`,
:attr:`target_lengths` :math:`\leq 256`, the integer arguments must be of
dtype :attr:`torch.int32`.
The regular implementation uses the (more common in PyTorch) `torch.long` dtype.
Note:
In some circumstances when using the CUDA backend with CuDNN, this operator
may select a nondeterministic algorithm to increase performance. If this is
undesirable, you can try to make the operation deterministic (potentially at
a performance cost) by setting ``torch.backends.cudnn.deterministic =
True``.
Please see the notes on :doc:`/notes/randomness` for background.
"""
__constants__ = ['blank', 'reduction']
blank: int
zero_infinity: bool
def __init__(self, blank: int = 0, reduction: str = 'mean', zero_infinity: bool = False):
super(CTCLoss, self).__init__(reduction=reduction)
self.blank = blank
self.zero_infinity = zero_infinity
def forward(self, log_probs: Tensor, targets: Tensor, input_lengths: Tensor, target_lengths: Tensor) -> Tensor:
return F.ctc_loss(log_probs, targets, input_lengths, target_lengths, self.blank, self.reduction,
self.zero_infinity)
# TODO: L1HingeEmbeddingCriterion
# TODO: MSECriterion weight
# TODO: ClassSimplexCriterion
|