File: rnn.py

package info (click to toggle)
pytorch 1.7.1-7
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 80,340 kB
  • sloc: cpp: 670,830; python: 343,991; ansic: 67,845; asm: 5,503; sh: 2,924; java: 2,888; xml: 266; makefile: 244; ruby: 148; yacc: 144; objc: 51; lex: 44
file content (1052 lines) | stat: -rw-r--r-- 48,317 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
import math
import warnings
import numbers
from typing import List, Tuple, Optional, overload

import torch
from torch import Tensor
from .module import Module
from ..parameter import Parameter
from ..utils.rnn import PackedSequence
from .. import init
from ... import _VF

_rnn_impls = {
    'RNN_TANH': _VF.rnn_tanh,
    'RNN_RELU': _VF.rnn_relu,
}


def apply_permutation(tensor: Tensor, permutation: Tensor, dim: int = 1) -> Tensor:
    return tensor.index_select(dim, permutation)


class RNNBase(Module):
    __constants__ = ['mode', 'input_size', 'hidden_size', 'num_layers', 'bias',
                     'batch_first', 'dropout', 'bidirectional']
    __jit_unused_properties__ = ['all_weights']

    mode: str
    input_size: int
    hidden_size: int
    num_layers: int
    bias: bool
    batch_first: bool
    dropout: float
    bidirectional: bool

    def __init__(self, mode: str, input_size: int, hidden_size: int,
                 num_layers: int = 1, bias: bool = True, batch_first: bool = False,
                 dropout: float = 0., bidirectional: bool = False) -> None:
        super(RNNBase, self).__init__()
        self.mode = mode
        self.input_size = input_size
        self.hidden_size = hidden_size
        self.num_layers = num_layers
        self.bias = bias
        self.batch_first = batch_first
        self.dropout = float(dropout)
        self.bidirectional = bidirectional
        num_directions = 2 if bidirectional else 1

        if not isinstance(dropout, numbers.Number) or not 0 <= dropout <= 1 or \
                isinstance(dropout, bool):
            raise ValueError("dropout should be a number in range [0, 1] "
                             "representing the probability of an element being "
                             "zeroed")
        if dropout > 0 and num_layers == 1:
            warnings.warn("dropout option adds dropout after all but last "
                          "recurrent layer, so non-zero dropout expects "
                          "num_layers greater than 1, but got dropout={} and "
                          "num_layers={}".format(dropout, num_layers))

        if mode == 'LSTM':
            gate_size = 4 * hidden_size
        elif mode == 'GRU':
            gate_size = 3 * hidden_size
        elif mode == 'RNN_TANH':
            gate_size = hidden_size
        elif mode == 'RNN_RELU':
            gate_size = hidden_size
        else:
            raise ValueError("Unrecognized RNN mode: " + mode)

        self._flat_weights_names = []
        self._all_weights = []
        for layer in range(num_layers):
            for direction in range(num_directions):
                layer_input_size = input_size if layer == 0 else hidden_size * num_directions

                w_ih = Parameter(torch.Tensor(gate_size, layer_input_size))
                w_hh = Parameter(torch.Tensor(gate_size, hidden_size))
                b_ih = Parameter(torch.Tensor(gate_size))
                # Second bias vector included for CuDNN compatibility. Only one
                # bias vector is needed in standard definition.
                b_hh = Parameter(torch.Tensor(gate_size))
                layer_params = (w_ih, w_hh, b_ih, b_hh)

                suffix = '_reverse' if direction == 1 else ''
                param_names = ['weight_ih_l{}{}', 'weight_hh_l{}{}']
                if bias:
                    param_names += ['bias_ih_l{}{}', 'bias_hh_l{}{}']
                param_names = [x.format(layer, suffix) for x in param_names]

                for name, param in zip(param_names, layer_params):
                    setattr(self, name, param)
                self._flat_weights_names.extend(param_names)
                self._all_weights.append(param_names)

        self._flat_weights = [(lambda wn: getattr(self, wn) if hasattr(self, wn) else None)(wn) for wn in self._flat_weights_names]
        self.flatten_parameters()
        self.reset_parameters()

    def __setattr__(self, attr, value):
        if hasattr(self, "_flat_weights_names") and attr in self._flat_weights_names:
            # keep self._flat_weights up to date if you do self.weight = ...
            idx = self._flat_weights_names.index(attr)
            self._flat_weights[idx] = value
        super(RNNBase, self).__setattr__(attr, value)

    def flatten_parameters(self) -> None:
        """Resets parameter data pointer so that they can use faster code paths.

        Right now, this works only if the module is on the GPU and cuDNN is enabled.
        Otherwise, it's a no-op.
        """
        # Short-circuits if _flat_weights is only partially instantiated
        if len(self._flat_weights) != len(self._flat_weights_names):
            return

        for w in self._flat_weights:
            if not isinstance(w, Tensor):
                return
        # Short-circuits if any tensor in self._flat_weights is not acceptable to cuDNN
        # or the tensors in _flat_weights are of different dtypes

        first_fw = self._flat_weights[0]
        dtype = first_fw.dtype
        for fw in self._flat_weights:
            if (not isinstance(fw.data, Tensor) or not (fw.data.dtype == dtype) or
                    not fw.data.is_cuda or
                    not torch.backends.cudnn.is_acceptable(fw.data)):
                return

        # If any parameters alias, we fall back to the slower, copying code path. This is
        # a sufficient check, because overlapping parameter buffers that don't completely
        # alias would break the assumptions of the uniqueness check in
        # Module.named_parameters().
        unique_data_ptrs = set(p.data_ptr() for p in self._flat_weights)
        if len(unique_data_ptrs) != len(self._flat_weights):
            return

        with torch.cuda.device_of(first_fw):
            import torch.backends.cudnn.rnn as rnn

            # Note: no_grad() is necessary since _cudnn_rnn_flatten_weight is
            # an inplace operation on self._flat_weights
            with torch.no_grad():
                if torch._use_cudnn_rnn_flatten_weight():
                    torch._cudnn_rnn_flatten_weight(
                        self._flat_weights, (4 if self.bias else 2),
                        self.input_size, rnn.get_cudnn_mode(self.mode), self.hidden_size, self.num_layers,
                        self.batch_first, bool(self.bidirectional))

    def _apply(self, fn):
        ret = super(RNNBase, self)._apply(fn)

        # Resets _flat_weights
        # Note: be v. careful before removing this, as 3rd party device types
        # likely rely on this behavior to properly .to() modules like LSTM.
        self._flat_weights = [(lambda wn: getattr(self, wn) if hasattr(self, wn) else None)(wn) for wn in self._flat_weights_names]
        # Flattens params (on CUDA)
        self.flatten_parameters()

        return ret

    def reset_parameters(self) -> None:
        stdv = 1.0 / math.sqrt(self.hidden_size)
        for weight in self.parameters():
            init.uniform_(weight, -stdv, stdv)

    def check_input(self, input: Tensor, batch_sizes: Optional[Tensor]) -> None:
        expected_input_dim = 2 if batch_sizes is not None else 3
        if input.dim() != expected_input_dim:
            raise RuntimeError(
                'input must have {} dimensions, got {}'.format(
                    expected_input_dim, input.dim()))
        if self.input_size != input.size(-1):
            raise RuntimeError(
                'input.size(-1) must be equal to input_size. Expected {}, got {}'.format(
                    self.input_size, input.size(-1)))

    def get_expected_hidden_size(self, input: Tensor, batch_sizes: Optional[Tensor]) -> Tuple[int, int, int]:
        if batch_sizes is not None:
            mini_batch = batch_sizes[0]
            mini_batch = int(mini_batch)
        else:
            mini_batch = input.size(0) if self.batch_first else input.size(1)
        num_directions = 2 if self.bidirectional else 1
        expected_hidden_size = (self.num_layers * num_directions,
                                mini_batch, self.hidden_size)
        return expected_hidden_size

    def check_hidden_size(self, hx: Tensor, expected_hidden_size: Tuple[int, int, int],
                          msg: str = 'Expected hidden size {}, got {}') -> None:
        if hx.size() != expected_hidden_size:
            raise RuntimeError(msg.format(expected_hidden_size, list(hx.size())))

    def check_forward_args(self, input: Tensor, hidden: Tensor, batch_sizes: Optional[Tensor]):
        self.check_input(input, batch_sizes)
        expected_hidden_size = self.get_expected_hidden_size(input, batch_sizes)

        self.check_hidden_size(hidden, expected_hidden_size)

    def permute_hidden(self, hx: Tensor, permutation: Optional[Tensor]):
        if permutation is None:
            return hx
        return apply_permutation(hx, permutation)

    def forward(self, input: Tensor, hx: Optional[Tensor] = None) -> Tuple[Tensor, Tensor]:
        is_packed = isinstance(input, PackedSequence)
        if is_packed:
            input, batch_sizes, sorted_indices, unsorted_indices = input
            max_batch_size = batch_sizes[0]
            max_batch_size = int(max_batch_size)
        else:
            batch_sizes = None
            max_batch_size = input.size(0) if self.batch_first else input.size(1)
            sorted_indices = None
            unsorted_indices = None

        if hx is None:
            num_directions = 2 if self.bidirectional else 1
            hx = torch.zeros(self.num_layers * num_directions,
                             max_batch_size, self.hidden_size,
                             dtype=input.dtype, device=input.device)
        else:
            # Each batch of the hidden state should match the input sequence that
            # the user believes he/she is passing in.
            hx = self.permute_hidden(hx, sorted_indices)

        self.check_forward_args(input, hx, batch_sizes)
        _impl = _rnn_impls[self.mode]
        if batch_sizes is None:
            result = _impl(input, hx, self._flat_weights, self.bias, self.num_layers,
                           self.dropout, self.training, self.bidirectional, self.batch_first)
        else:
            result = _impl(input, batch_sizes, hx, self._flat_weights, self.bias,
                           self.num_layers, self.dropout, self.training, self.bidirectional)
        output = result[0]
        hidden = result[1]

        if is_packed:
            output = PackedSequence(output, batch_sizes, sorted_indices, unsorted_indices)
        return output, self.permute_hidden(hidden, unsorted_indices)

    def extra_repr(self) -> str:
        s = '{input_size}, {hidden_size}'
        if self.num_layers != 1:
            s += ', num_layers={num_layers}'
        if self.bias is not True:
            s += ', bias={bias}'
        if self.batch_first is not False:
            s += ', batch_first={batch_first}'
        if self.dropout != 0:
            s += ', dropout={dropout}'
        if self.bidirectional is not False:
            s += ', bidirectional={bidirectional}'
        return s.format(**self.__dict__)

    def __setstate__(self, d):
        super(RNNBase, self).__setstate__(d)
        if 'all_weights' in d:
            self._all_weights = d['all_weights']

        if isinstance(self._all_weights[0][0], str):
            return
        num_layers = self.num_layers
        num_directions = 2 if self.bidirectional else 1
        self._flat_weights_names = []
        self._all_weights = []
        for layer in range(num_layers):
            for direction in range(num_directions):
                suffix = '_reverse' if direction == 1 else ''
                weights = ['weight_ih_l{}{}', 'weight_hh_l{}{}', 'bias_ih_l{}{}', 'bias_hh_l{}{}']
                weights = [x.format(layer, suffix) for x in weights]
                if self.bias:
                    self._all_weights += [weights]
                    self._flat_weights_names.extend(weights)
                else:
                    self._all_weights += [weights[:2]]
                    self._flat_weights_names.extend(weights[:2])
        self._flat_weights = [(lambda wn: getattr(self, wn) if hasattr(self, wn) else None)(wn) for wn in self._flat_weights_names]

    @property
    def all_weights(self) -> List[Parameter]:
        return [[getattr(self, weight) for weight in weights] for weights in self._all_weights]

    def _replicate_for_data_parallel(self):
        replica = super(RNNBase, self)._replicate_for_data_parallel()
        # Need to copy these caches, otherwise the replica will share the same
        # flat weights list.
        replica._flat_weights = replica._flat_weights[:]
        replica._flat_weights_names = replica._flat_weights_names[:]
        return replica


class RNN(RNNBase):
    r"""Applies a multi-layer Elman RNN with :math:`\tanh` or :math:`\text{ReLU}` non-linearity to an
    input sequence.


    For each element in the input sequence, each layer computes the following
    function:

    .. math::
        h_t = \tanh(W_{ih} x_t + b_{ih} + W_{hh} h_{(t-1)} + b_{hh})

    where :math:`h_t` is the hidden state at time `t`, :math:`x_t` is
    the input at time `t`, and :math:`h_{(t-1)}` is the hidden state of the
    previous layer at time `t-1` or the initial hidden state at time `0`.
    If :attr:`nonlinearity` is ``'relu'``, then :math:`\text{ReLU}` is used instead of :math:`\tanh`.

    Args:
        input_size: The number of expected features in the input `x`
        hidden_size: The number of features in the hidden state `h`
        num_layers: Number of recurrent layers. E.g., setting ``num_layers=2``
            would mean stacking two RNNs together to form a `stacked RNN`,
            with the second RNN taking in outputs of the first RNN and
            computing the final results. Default: 1
        nonlinearity: The non-linearity to use. Can be either ``'tanh'`` or ``'relu'``. Default: ``'tanh'``
        bias: If ``False``, then the layer does not use bias weights `b_ih` and `b_hh`.
            Default: ``True``
        batch_first: If ``True``, then the input and output tensors are provided
            as `(batch, seq, feature)`. Default: ``False``
        dropout: If non-zero, introduces a `Dropout` layer on the outputs of each
            RNN layer except the last layer, with dropout probability equal to
            :attr:`dropout`. Default: 0
        bidirectional: If ``True``, becomes a bidirectional RNN. Default: ``False``

    Inputs: input, h_0
        - **input** of shape `(seq_len, batch, input_size)`: tensor containing the features
          of the input sequence. The input can also be a packed variable length
          sequence. See :func:`torch.nn.utils.rnn.pack_padded_sequence`
          or :func:`torch.nn.utils.rnn.pack_sequence`
          for details.
        - **h_0** of shape `(num_layers * num_directions, batch, hidden_size)`: tensor
          containing the initial hidden state for each element in the batch.
          Defaults to zero if not provided. If the RNN is bidirectional,
          num_directions should be 2, else it should be 1.

    Outputs: output, h_n
        - **output** of shape `(seq_len, batch, num_directions * hidden_size)`: tensor
          containing the output features (`h_t`) from the last layer of the RNN,
          for each `t`.  If a :class:`torch.nn.utils.rnn.PackedSequence` has
          been given as the input, the output will also be a packed sequence.

          For the unpacked case, the directions can be separated
          using ``output.view(seq_len, batch, num_directions, hidden_size)``,
          with forward and backward being direction `0` and `1` respectively.
          Similarly, the directions can be separated in the packed case.
        - **h_n** of shape `(num_layers * num_directions, batch, hidden_size)`: tensor
          containing the hidden state for `t = seq_len`.

          Like *output*, the layers can be separated using
          ``h_n.view(num_layers, num_directions, batch, hidden_size)``.

    Shape:
        - Input1: :math:`(L, N, H_{in})` tensor containing input features where
          :math:`H_{in}=\text{input\_size}` and `L` represents a sequence length.
        - Input2: :math:`(S, N, H_{out})` tensor
          containing the initial hidden state for each element in the batch.
          :math:`H_{out}=\text{hidden\_size}`
          Defaults to zero if not provided. where :math:`S=\text{num\_layers} * \text{num\_directions}`
          If the RNN is bidirectional, num_directions should be 2, else it should be 1.
        - Output1: :math:`(L, N, H_{all})` where :math:`H_{all}=\text{num\_directions} * \text{hidden\_size}`
        - Output2: :math:`(S, N, H_{out})` tensor containing the next hidden state
          for each element in the batch

    Attributes:
        weight_ih_l[k]: the learnable input-hidden weights of the k-th layer,
            of shape `(hidden_size, input_size)` for `k = 0`. Otherwise, the shape is
            `(hidden_size, num_directions * hidden_size)`
        weight_hh_l[k]: the learnable hidden-hidden weights of the k-th layer,
            of shape `(hidden_size, hidden_size)`
        bias_ih_l[k]: the learnable input-hidden bias of the k-th layer,
            of shape `(hidden_size)`
        bias_hh_l[k]: the learnable hidden-hidden bias of the k-th layer,
            of shape `(hidden_size)`

    .. note::
        All the weights and biases are initialized from :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})`
        where :math:`k = \frac{1}{\text{hidden\_size}}`

    .. include:: ../cudnn_rnn_determinism.rst

    .. include:: ../cudnn_persistent_rnn.rst

    Examples::

        >>> rnn = nn.RNN(10, 20, 2)
        >>> input = torch.randn(5, 3, 10)
        >>> h0 = torch.randn(2, 3, 20)
        >>> output, hn = rnn(input, h0)
    """

    def __init__(self, *args, **kwargs):
        self.nonlinearity = kwargs.pop('nonlinearity', 'tanh')
        if self.nonlinearity == 'tanh':
            mode = 'RNN_TANH'
        elif self.nonlinearity == 'relu':
            mode = 'RNN_RELU'
        else:
            raise ValueError("Unknown nonlinearity '{}'".format(self.nonlinearity))
        super(RNN, self).__init__(mode, *args, **kwargs)


# XXX: LSTM and GRU implementation is different from RNNBase, this is because:
# 1. we want to support nn.LSTM and nn.GRU in TorchScript and TorchScript in
#    its current state could not support the python Union Type or Any Type
# 2. TorchScript static typing does not allow a Function or Callable type in
#    Dict values, so we have to separately call _VF instead of using _rnn_impls
# 3. This is temporary only and in the transition state that we want to make it
#    on time for the release
#
# More discussion details in https://github.com/pytorch/pytorch/pull/23266
#
# TODO: remove the overriding implementations for LSTM and GRU when TorchScript
# support expressing these two modules generally.
class LSTM(RNNBase):
    r"""Applies a multi-layer long short-term memory (LSTM) RNN to an input
    sequence.


    For each element in the input sequence, each layer computes the following
    function:

    .. math::
        \begin{array}{ll} \\
            i_t = \sigma(W_{ii} x_t + b_{ii} + W_{hi} h_{t-1} + b_{hi}) \\
            f_t = \sigma(W_{if} x_t + b_{if} + W_{hf} h_{t-1} + b_{hf}) \\
            g_t = \tanh(W_{ig} x_t + b_{ig} + W_{hg} h_{t-1} + b_{hg}) \\
            o_t = \sigma(W_{io} x_t + b_{io} + W_{ho} h_{t-1} + b_{ho}) \\
            c_t = f_t \odot c_{t-1} + i_t \odot g_t \\
            h_t = o_t \odot \tanh(c_t) \\
        \end{array}

    where :math:`h_t` is the hidden state at time `t`, :math:`c_t` is the cell
    state at time `t`, :math:`x_t` is the input at time `t`, :math:`h_{t-1}`
    is the hidden state of the layer at time `t-1` or the initial hidden
    state at time `0`, and :math:`i_t`, :math:`f_t`, :math:`g_t`,
    :math:`o_t` are the input, forget, cell, and output gates, respectively.
    :math:`\sigma` is the sigmoid function, and :math:`\odot` is the Hadamard product.

    In a multilayer LSTM, the input :math:`x^{(l)}_t` of the :math:`l` -th layer
    (:math:`l >= 2`) is the hidden state :math:`h^{(l-1)}_t` of the previous layer multiplied by
    dropout :math:`\delta^{(l-1)}_t` where each :math:`\delta^{(l-1)}_t` is a Bernoulli random
    variable which is :math:`0` with probability :attr:`dropout`.

    Args:
        input_size: The number of expected features in the input `x`
        hidden_size: The number of features in the hidden state `h`
        num_layers: Number of recurrent layers. E.g., setting ``num_layers=2``
            would mean stacking two LSTMs together to form a `stacked LSTM`,
            with the second LSTM taking in outputs of the first LSTM and
            computing the final results. Default: 1
        bias: If ``False``, then the layer does not use bias weights `b_ih` and `b_hh`.
            Default: ``True``
        batch_first: If ``True``, then the input and output tensors are provided
            as (batch, seq, feature). Default: ``False``
        dropout: If non-zero, introduces a `Dropout` layer on the outputs of each
            LSTM layer except the last layer, with dropout probability equal to
            :attr:`dropout`. Default: 0
        bidirectional: If ``True``, becomes a bidirectional LSTM. Default: ``False``

    Inputs: input, (h_0, c_0)
        - **input** of shape `(seq_len, batch, input_size)`: tensor containing the features
          of the input sequence.
          The input can also be a packed variable length sequence.
          See :func:`torch.nn.utils.rnn.pack_padded_sequence` or
          :func:`torch.nn.utils.rnn.pack_sequence` for details.
        - **h_0** of shape `(num_layers * num_directions, batch, hidden_size)`: tensor
          containing the initial hidden state for each element in the batch.
          If the LSTM is bidirectional, num_directions should be 2, else it should be 1.
        - **c_0** of shape `(num_layers * num_directions, batch, hidden_size)`: tensor
          containing the initial cell state for each element in the batch.

          If `(h_0, c_0)` is not provided, both **h_0** and **c_0** default to zero.


    Outputs: output, (h_n, c_n)
        - **output** of shape `(seq_len, batch, num_directions * hidden_size)`: tensor
          containing the output features `(h_t)` from the last layer of the LSTM,
          for each `t`. If a :class:`torch.nn.utils.rnn.PackedSequence` has been
          given as the input, the output will also be a packed sequence.

          For the unpacked case, the directions can be separated
          using ``output.view(seq_len, batch, num_directions, hidden_size)``,
          with forward and backward being direction `0` and `1` respectively.
          Similarly, the directions can be separated in the packed case.
        - **h_n** of shape `(num_layers * num_directions, batch, hidden_size)`: tensor
          containing the hidden state for `t = seq_len`.

          Like *output*, the layers can be separated using
          ``h_n.view(num_layers, num_directions, batch, hidden_size)`` and similarly for *c_n*.
        - **c_n** of shape `(num_layers * num_directions, batch, hidden_size)`: tensor
          containing the cell state for `t = seq_len`.

    Attributes:
        weight_ih_l[k] : the learnable input-hidden weights of the :math:`\text{k}^{th}` layer
            `(W_ii|W_if|W_ig|W_io)`, of shape `(4*hidden_size, input_size)` for `k = 0`.
            Otherwise, the shape is `(4*hidden_size, num_directions * hidden_size)`
        weight_hh_l[k] : the learnable hidden-hidden weights of the :math:`\text{k}^{th}` layer
            `(W_hi|W_hf|W_hg|W_ho)`, of shape `(4*hidden_size, hidden_size)`
        bias_ih_l[k] : the learnable input-hidden bias of the :math:`\text{k}^{th}` layer
            `(b_ii|b_if|b_ig|b_io)`, of shape `(4*hidden_size)`
        bias_hh_l[k] : the learnable hidden-hidden bias of the :math:`\text{k}^{th}` layer
            `(b_hi|b_hf|b_hg|b_ho)`, of shape `(4*hidden_size)`

    .. note::
        All the weights and biases are initialized from :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})`
        where :math:`k = \frac{1}{\text{hidden\_size}}`

    .. include:: ../cudnn_rnn_determinism.rst

    .. include:: ../cudnn_persistent_rnn.rst

    Examples::

        >>> rnn = nn.LSTM(10, 20, 2)
        >>> input = torch.randn(5, 3, 10)
        >>> h0 = torch.randn(2, 3, 20)
        >>> c0 = torch.randn(2, 3, 20)
        >>> output, (hn, cn) = rnn(input, (h0, c0))
    """

    def __init__(self, *args, **kwargs):
        super(LSTM, self).__init__('LSTM', *args, **kwargs)

    def check_forward_args(self, input: Tensor, hidden: Tuple[Tensor, Tensor], batch_sizes: Optional[Tensor]):
        self.check_input(input, batch_sizes)
        expected_hidden_size = self.get_expected_hidden_size(input, batch_sizes)

        self.check_hidden_size(hidden[0], expected_hidden_size,
                               'Expected hidden[0] size {}, got {}')
        self.check_hidden_size(hidden[1], expected_hidden_size,
                               'Expected hidden[1] size {}, got {}')

    def permute_hidden(self, hx: Tuple[Tensor, Tensor], permutation: Optional[Tensor]) -> Tuple[Tensor, Tensor]:
        if permutation is None:
            return hx
        return apply_permutation(hx[0], permutation), apply_permutation(hx[1], permutation)

    @overload
    @torch._jit_internal._overload_method  # noqa: F811
    def forward(self, input: Tensor, hx: Optional[Tuple[Tensor, Tensor]] = None
                ) -> Tuple[Tensor, Tuple[Tensor, Tensor]]:  # noqa: F811
        pass

    @overload
    @torch._jit_internal._overload_method  # noqa: F811
    def forward(self, input: PackedSequence, hx: Optional[Tuple[Tensor, Tensor]] = None
                ) -> Tuple[PackedSequence, Tuple[Tensor, Tensor]]:  # noqa: F811
        pass

    def forward(self, input, hx=None):  # noqa: F811
        orig_input = input
        # xxx: isinstance check needs to be in conditional for TorchScript to compile
        if isinstance(orig_input, PackedSequence):
            input, batch_sizes, sorted_indices, unsorted_indices = input
            max_batch_size = batch_sizes[0]
            max_batch_size = int(max_batch_size)
        else:
            batch_sizes = None
            max_batch_size = input.size(0) if self.batch_first else input.size(1)
            sorted_indices = None
            unsorted_indices = None

        if hx is None:
            num_directions = 2 if self.bidirectional else 1
            zeros = torch.zeros(self.num_layers * num_directions,
                                max_batch_size, self.hidden_size,
                                dtype=input.dtype, device=input.device)
            hx = (zeros, zeros)
        else:
            # Each batch of the hidden state should match the input sequence that
            # the user believes he/she is passing in.
            hx = self.permute_hidden(hx, sorted_indices)

        self.check_forward_args(input, hx, batch_sizes)
        if batch_sizes is None:
            result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers,
                              self.dropout, self.training, self.bidirectional, self.batch_first)
        else:
            result = _VF.lstm(input, batch_sizes, hx, self._flat_weights, self.bias,
                              self.num_layers, self.dropout, self.training, self.bidirectional)
        output = result[0]
        hidden = result[1:]
        # xxx: isinstance check needs to be in conditional for TorchScript to compile
        if isinstance(orig_input, PackedSequence):
            output_packed = PackedSequence(output, batch_sizes, sorted_indices, unsorted_indices)
            return output_packed, self.permute_hidden(hidden, unsorted_indices)
        else:
            return output, self.permute_hidden(hidden, unsorted_indices)


class GRU(RNNBase):
    r"""Applies a multi-layer gated recurrent unit (GRU) RNN to an input sequence.


    For each element in the input sequence, each layer computes the following
    function:

    .. math::
        \begin{array}{ll}
            r_t = \sigma(W_{ir} x_t + b_{ir} + W_{hr} h_{(t-1)} + b_{hr}) \\
            z_t = \sigma(W_{iz} x_t + b_{iz} + W_{hz} h_{(t-1)} + b_{hz}) \\
            n_t = \tanh(W_{in} x_t + b_{in} + r_t * (W_{hn} h_{(t-1)}+ b_{hn})) \\
            h_t = (1 - z_t) * n_t + z_t * h_{(t-1)}
        \end{array}

    where :math:`h_t` is the hidden state at time `t`, :math:`x_t` is the input
    at time `t`, :math:`h_{(t-1)}` is the hidden state of the layer
    at time `t-1` or the initial hidden state at time `0`, and :math:`r_t`,
    :math:`z_t`, :math:`n_t` are the reset, update, and new gates, respectively.
    :math:`\sigma` is the sigmoid function, and :math:`*` is the Hadamard product.

    In a multilayer GRU, the input :math:`x^{(l)}_t` of the :math:`l` -th layer
    (:math:`l >= 2`) is the hidden state :math:`h^{(l-1)}_t` of the previous layer multiplied by
    dropout :math:`\delta^{(l-1)}_t` where each :math:`\delta^{(l-1)}_t` is a Bernoulli random
    variable which is :math:`0` with probability :attr:`dropout`.

    Args:
        input_size: The number of expected features in the input `x`
        hidden_size: The number of features in the hidden state `h`
        num_layers: Number of recurrent layers. E.g., setting ``num_layers=2``
            would mean stacking two GRUs together to form a `stacked GRU`,
            with the second GRU taking in outputs of the first GRU and
            computing the final results. Default: 1
        bias: If ``False``, then the layer does not use bias weights `b_ih` and `b_hh`.
            Default: ``True``
        batch_first: If ``True``, then the input and output tensors are provided
            as (batch, seq, feature). Default: ``False``
        dropout: If non-zero, introduces a `Dropout` layer on the outputs of each
            GRU layer except the last layer, with dropout probability equal to
            :attr:`dropout`. Default: 0
        bidirectional: If ``True``, becomes a bidirectional GRU. Default: ``False``

    Inputs: input, h_0
        - **input** of shape `(seq_len, batch, input_size)`: tensor containing the features
          of the input sequence. The input can also be a packed variable length
          sequence. See :func:`torch.nn.utils.rnn.pack_padded_sequence`
          for details.
        - **h_0** of shape `(num_layers * num_directions, batch, hidden_size)`: tensor
          containing the initial hidden state for each element in the batch.
          Defaults to zero if not provided. If the RNN is bidirectional,
          num_directions should be 2, else it should be 1.

    Outputs: output, h_n
        - **output** of shape `(seq_len, batch, num_directions * hidden_size)`: tensor
          containing the output features h_t from the last layer of the GRU,
          for each `t`. If a :class:`torch.nn.utils.rnn.PackedSequence` has been
          given as the input, the output will also be a packed sequence.
          For the unpacked case, the directions can be separated
          using ``output.view(seq_len, batch, num_directions, hidden_size)``,
          with forward and backward being direction `0` and `1` respectively.

          Similarly, the directions can be separated in the packed case.
        - **h_n** of shape `(num_layers * num_directions, batch, hidden_size)`: tensor
          containing the hidden state for `t = seq_len`

          Like *output*, the layers can be separated using
          ``h_n.view(num_layers, num_directions, batch, hidden_size)``.

    Shape:
        - Input1: :math:`(L, N, H_{in})` tensor containing input features where
          :math:`H_{in}=\text{input\_size}` and `L` represents a sequence length.
        - Input2: :math:`(S, N, H_{out})` tensor
          containing the initial hidden state for each element in the batch.
          :math:`H_{out}=\text{hidden\_size}`
          Defaults to zero if not provided. where :math:`S=\text{num\_layers} * \text{num\_directions}`
          If the RNN is bidirectional, num_directions should be 2, else it should be 1.
        - Output1: :math:`(L, N, H_{all})` where :math:`H_{all}=\text{num\_directions} * \text{hidden\_size}`
        - Output2: :math:`(S, N, H_{out})` tensor containing the next hidden state
          for each element in the batch

    Attributes:
        weight_ih_l[k] : the learnable input-hidden weights of the :math:`\text{k}^{th}` layer
            (W_ir|W_iz|W_in), of shape `(3*hidden_size, input_size)` for `k = 0`.
            Otherwise, the shape is `(3*hidden_size, num_directions * hidden_size)`
        weight_hh_l[k] : the learnable hidden-hidden weights of the :math:`\text{k}^{th}` layer
            (W_hr|W_hz|W_hn), of shape `(3*hidden_size, hidden_size)`
        bias_ih_l[k] : the learnable input-hidden bias of the :math:`\text{k}^{th}` layer
            (b_ir|b_iz|b_in), of shape `(3*hidden_size)`
        bias_hh_l[k] : the learnable hidden-hidden bias of the :math:`\text{k}^{th}` layer
            (b_hr|b_hz|b_hn), of shape `(3*hidden_size)`

    .. note::
        All the weights and biases are initialized from :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})`
        where :math:`k = \frac{1}{\text{hidden\_size}}`

    .. include:: ../cudnn_persistent_rnn.rst

    Examples::

        >>> rnn = nn.GRU(10, 20, 2)
        >>> input = torch.randn(5, 3, 10)
        >>> h0 = torch.randn(2, 3, 20)
        >>> output, hn = rnn(input, h0)
    """

    def __init__(self, *args, **kwargs):
        super(GRU, self).__init__('GRU', *args, **kwargs)

    @overload
    @torch._jit_internal._overload_method  # noqa: F811
    def forward(self, input: Tensor, hx: Optional[Tensor] = None) -> Tuple[Tensor, Tensor]:  # noqa: F811
        pass

    @overload
    @torch._jit_internal._overload_method  # noqa: F811
    def forward(self, input: PackedSequence, hx: Optional[Tensor] = None) -> Tuple[PackedSequence, Tensor]:  # noqa: F811
        pass

    def forward(self, input, hx=None):  # noqa: F811
        orig_input = input
        # xxx: isinstance check needs to be in conditional for TorchScript to compile
        if isinstance(orig_input, PackedSequence):
            input, batch_sizes, sorted_indices, unsorted_indices = input
            max_batch_size = batch_sizes[0]
            max_batch_size = int(max_batch_size)
        else:
            batch_sizes = None
            max_batch_size = input.size(0) if self.batch_first else input.size(1)
            sorted_indices = None
            unsorted_indices = None

        if hx is None:
            num_directions = 2 if self.bidirectional else 1
            hx = torch.zeros(self.num_layers * num_directions,
                             max_batch_size, self.hidden_size,
                             dtype=input.dtype, device=input.device)
        else:
            # Each batch of the hidden state should match the input sequence that
            # the user believes he/she is passing in.
            hx = self.permute_hidden(hx, sorted_indices)

        self.check_forward_args(input, hx, batch_sizes)
        if batch_sizes is None:
            result = _VF.gru(input, hx, self._flat_weights, self.bias, self.num_layers,
                             self.dropout, self.training, self.bidirectional, self.batch_first)
        else:
            result = _VF.gru(input, batch_sizes, hx, self._flat_weights, self.bias,
                             self.num_layers, self.dropout, self.training, self.bidirectional)
        output = result[0]
        hidden = result[1]

        # xxx: isinstance check needs to be in conditional for TorchScript to compile
        if isinstance(orig_input, PackedSequence):
            output_packed = PackedSequence(output, batch_sizes, sorted_indices, unsorted_indices)
            return output_packed, self.permute_hidden(hidden, unsorted_indices)
        else:
            return output, self.permute_hidden(hidden, unsorted_indices)


class RNNCellBase(Module):
    __constants__ = ['input_size', 'hidden_size', 'bias']

    input_size: int
    hidden_size: int
    bias: bool
    weight_ih: Tensor
    weight_hh: Tensor
    # WARNING: bias_ih and bias_hh purposely not defined here.
    # See https://github.com/pytorch/pytorch/issues/39670

    def __init__(self, input_size: int, hidden_size: int, bias: bool, num_chunks: int) -> None:
        super(RNNCellBase, self).__init__()
        self.input_size = input_size
        self.hidden_size = hidden_size
        self.bias = bias
        self.weight_ih = Parameter(torch.Tensor(num_chunks * hidden_size, input_size))
        self.weight_hh = Parameter(torch.Tensor(num_chunks * hidden_size, hidden_size))
        if bias:
            self.bias_ih = Parameter(torch.Tensor(num_chunks * hidden_size))
            self.bias_hh = Parameter(torch.Tensor(num_chunks * hidden_size))
        else:
            self.register_parameter('bias_ih', None)
            self.register_parameter('bias_hh', None)
        self.reset_parameters()

    def extra_repr(self) -> str:
        s = '{input_size}, {hidden_size}'
        if 'bias' in self.__dict__ and self.bias is not True:
            s += ', bias={bias}'
        if 'nonlinearity' in self.__dict__ and self.nonlinearity != "tanh":
            s += ', nonlinearity={nonlinearity}'
        return s.format(**self.__dict__)

    def check_forward_input(self, input: Tensor) -> None:
        if input.size(1) != self.input_size:
            raise RuntimeError(
                "input has inconsistent input_size: got {}, expected {}".format(
                    input.size(1), self.input_size))

    def check_forward_hidden(self, input: Tensor, hx: Tensor, hidden_label: str = '') -> None:
        if input.size(0) != hx.size(0):
            raise RuntimeError(
                "Input batch size {} doesn't match hidden{} batch size {}".format(
                    input.size(0), hidden_label, hx.size(0)))

        if hx.size(1) != self.hidden_size:
            raise RuntimeError(
                "hidden{} has inconsistent hidden_size: got {}, expected {}".format(
                    hidden_label, hx.size(1), self.hidden_size))

    def reset_parameters(self) -> None:
        stdv = 1.0 / math.sqrt(self.hidden_size)
        for weight in self.parameters():
            init.uniform_(weight, -stdv, stdv)


class RNNCell(RNNCellBase):
    r"""An Elman RNN cell with tanh or ReLU non-linearity.

    .. math::

        h' = \tanh(W_{ih} x + b_{ih}  +  W_{hh} h + b_{hh})

    If :attr:`nonlinearity` is `'relu'`, then ReLU is used in place of tanh.

    Args:
        input_size: The number of expected features in the input `x`
        hidden_size: The number of features in the hidden state `h`
        bias: If ``False``, then the layer does not use bias weights `b_ih` and `b_hh`.
            Default: ``True``
        nonlinearity: The non-linearity to use. Can be either ``'tanh'`` or ``'relu'``. Default: ``'tanh'``

    Inputs: input, hidden
        - **input** of shape `(batch, input_size)`: tensor containing input features
        - **hidden** of shape `(batch, hidden_size)`: tensor containing the initial hidden
          state for each element in the batch.
          Defaults to zero if not provided.

    Outputs: h'
        - **h'** of shape `(batch, hidden_size)`: tensor containing the next hidden state
          for each element in the batch

    Shape:
        - Input1: :math:`(N, H_{in})` tensor containing input features where
          :math:`H_{in}` = `input_size`
        - Input2: :math:`(N, H_{out})` tensor containing the initial hidden
          state for each element in the batch where :math:`H_{out}` = `hidden_size`
          Defaults to zero if not provided.
        - Output: :math:`(N, H_{out})` tensor containing the next hidden state
          for each element in the batch

    Attributes:
        weight_ih: the learnable input-hidden weights, of shape
            `(hidden_size, input_size)`
        weight_hh: the learnable hidden-hidden weights, of shape
            `(hidden_size, hidden_size)`
        bias_ih: the learnable input-hidden bias, of shape `(hidden_size)`
        bias_hh: the learnable hidden-hidden bias, of shape `(hidden_size)`

    .. note::
        All the weights and biases are initialized from :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})`
        where :math:`k = \frac{1}{\text{hidden\_size}}`

    Examples::

        >>> rnn = nn.RNNCell(10, 20)
        >>> input = torch.randn(6, 3, 10)
        >>> hx = torch.randn(3, 20)
        >>> output = []
        >>> for i in range(6):
                hx = rnn(input[i], hx)
                output.append(hx)
    """
    __constants__ = ['input_size', 'hidden_size', 'bias', 'nonlinearity']
    nonlinearity: str

    def __init__(self, input_size: int, hidden_size: int, bias: bool = True, nonlinearity: str = "tanh") -> None:
        super(RNNCell, self).__init__(input_size, hidden_size, bias, num_chunks=1)
        self.nonlinearity = nonlinearity

    def forward(self, input: Tensor, hx: Optional[Tensor] = None) -> Tensor:
        self.check_forward_input(input)
        if hx is None:
            hx = torch.zeros(input.size(0), self.hidden_size, dtype=input.dtype, device=input.device)
        self.check_forward_hidden(input, hx, '')
        if self.nonlinearity == "tanh":
            ret = _VF.rnn_tanh_cell(
                input, hx,
                self.weight_ih, self.weight_hh,
                self.bias_ih, self.bias_hh,
            )
        elif self.nonlinearity == "relu":
            ret = _VF.rnn_relu_cell(
                input, hx,
                self.weight_ih, self.weight_hh,
                self.bias_ih, self.bias_hh,
            )
        else:
            ret = input  # TODO: remove when jit supports exception flow
            raise RuntimeError(
                "Unknown nonlinearity: {}".format(self.nonlinearity))
        return ret


class LSTMCell(RNNCellBase):
    r"""A long short-term memory (LSTM) cell.

    .. math::

        \begin{array}{ll}
        i = \sigma(W_{ii} x + b_{ii} + W_{hi} h + b_{hi}) \\
        f = \sigma(W_{if} x + b_{if} + W_{hf} h + b_{hf}) \\
        g = \tanh(W_{ig} x + b_{ig} + W_{hg} h + b_{hg}) \\
        o = \sigma(W_{io} x + b_{io} + W_{ho} h + b_{ho}) \\
        c' = f * c + i * g \\
        h' = o * \tanh(c') \\
        \end{array}

    where :math:`\sigma` is the sigmoid function, and :math:`*` is the Hadamard product.

    Args:
        input_size: The number of expected features in the input `x`
        hidden_size: The number of features in the hidden state `h`
        bias: If ``False``, then the layer does not use bias weights `b_ih` and
            `b_hh`. Default: ``True``

    Inputs: input, (h_0, c_0)
        - **input** of shape `(batch, input_size)`: tensor containing input features
        - **h_0** of shape `(batch, hidden_size)`: tensor containing the initial hidden
          state for each element in the batch.
        - **c_0** of shape `(batch, hidden_size)`: tensor containing the initial cell state
          for each element in the batch.

          If `(h_0, c_0)` is not provided, both **h_0** and **c_0** default to zero.

    Outputs: (h_1, c_1)
        - **h_1** of shape `(batch, hidden_size)`: tensor containing the next hidden state
          for each element in the batch
        - **c_1** of shape `(batch, hidden_size)`: tensor containing the next cell state
          for each element in the batch

    Attributes:
        weight_ih: the learnable input-hidden weights, of shape
            `(4*hidden_size, input_size)`
        weight_hh: the learnable hidden-hidden weights, of shape
            `(4*hidden_size, hidden_size)`
        bias_ih: the learnable input-hidden bias, of shape `(4*hidden_size)`
        bias_hh: the learnable hidden-hidden bias, of shape `(4*hidden_size)`

    .. note::
        All the weights and biases are initialized from :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})`
        where :math:`k = \frac{1}{\text{hidden\_size}}`

    Examples::

        >>> rnn = nn.LSTMCell(10, 20)
        >>> input = torch.randn(3, 10)
        >>> hx = torch.randn(3, 20)
        >>> cx = torch.randn(3, 20)
        >>> output = []
        >>> for i in range(6):
                hx, cx = rnn(input[i], (hx, cx))
                output.append(hx)
    """

    def __init__(self, input_size: int, hidden_size: int, bias: bool = True) -> None:
        super(LSTMCell, self).__init__(input_size, hidden_size, bias, num_chunks=4)

    def forward(self, input: Tensor, hx: Optional[Tuple[Tensor, Tensor]] = None) -> Tuple[Tensor, Tensor]:
        self.check_forward_input(input)
        if hx is None:
            zeros = torch.zeros(input.size(0), self.hidden_size, dtype=input.dtype, device=input.device)
            hx = (zeros, zeros)
        self.check_forward_hidden(input, hx[0], '[0]')
        self.check_forward_hidden(input, hx[1], '[1]')
        return _VF.lstm_cell(
            input, hx,
            self.weight_ih, self.weight_hh,
            self.bias_ih, self.bias_hh,
        )


class GRUCell(RNNCellBase):
    r"""A gated recurrent unit (GRU) cell

    .. math::

        \begin{array}{ll}
        r = \sigma(W_{ir} x + b_{ir} + W_{hr} h + b_{hr}) \\
        z = \sigma(W_{iz} x + b_{iz} + W_{hz} h + b_{hz}) \\
        n = \tanh(W_{in} x + b_{in} + r * (W_{hn} h + b_{hn})) \\
        h' = (1 - z) * n + z * h
        \end{array}

    where :math:`\sigma` is the sigmoid function, and :math:`*` is the Hadamard product.

    Args:
        input_size: The number of expected features in the input `x`
        hidden_size: The number of features in the hidden state `h`
        bias: If ``False``, then the layer does not use bias weights `b_ih` and
            `b_hh`. Default: ``True``

    Inputs: input, hidden
        - **input** of shape `(batch, input_size)`: tensor containing input features
        - **hidden** of shape `(batch, hidden_size)`: tensor containing the initial hidden
          state for each element in the batch.
          Defaults to zero if not provided.

    Outputs: h'
        - **h'** of shape `(batch, hidden_size)`: tensor containing the next hidden state
          for each element in the batch

    Shape:
        - Input1: :math:`(N, H_{in})` tensor containing input features where
          :math:`H_{in}` = `input_size`
        - Input2: :math:`(N, H_{out})` tensor containing the initial hidden
          state for each element in the batch where :math:`H_{out}` = `hidden_size`
          Defaults to zero if not provided.
        - Output: :math:`(N, H_{out})` tensor containing the next hidden state
          for each element in the batch

    Attributes:
        weight_ih: the learnable input-hidden weights, of shape
            `(3*hidden_size, input_size)`
        weight_hh: the learnable hidden-hidden weights, of shape
            `(3*hidden_size, hidden_size)`
        bias_ih: the learnable input-hidden bias, of shape `(3*hidden_size)`
        bias_hh: the learnable hidden-hidden bias, of shape `(3*hidden_size)`

    .. note::
        All the weights and biases are initialized from :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})`
        where :math:`k = \frac{1}{\text{hidden\_size}}`

    Examples::

        >>> rnn = nn.GRUCell(10, 20)
        >>> input = torch.randn(6, 3, 10)
        >>> hx = torch.randn(3, 20)
        >>> output = []
        >>> for i in range(6):
                hx = rnn(input[i], hx)
                output.append(hx)
    """

    def __init__(self, input_size: int, hidden_size: int, bias: bool = True) -> None:
        super(GRUCell, self).__init__(input_size, hidden_size, bias, num_chunks=3)

    def forward(self, input: Tensor, hx: Optional[Tensor] = None) -> Tensor:
        self.check_forward_input(input)
        if hx is None:
            hx = torch.zeros(input.size(0), self.hidden_size, dtype=input.dtype, device=input.device)
        self.check_forward_hidden(input, hx, '')
        return _VF.gru_cell(
            input, hx,
            self.weight_ih, self.weight_hh,
            self.bias_ih, self.bias_hh,
        )