1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
|
from typing import Optional
import torch
from torch import Tensor
from torch.nn.parameter import Parameter
from .module import Module
from .. import functional as F
from .. import init
class Embedding(Module):
r"""A simple lookup table that stores embeddings of a fixed dictionary and size.
This module is often used to store word embeddings and retrieve them using indices.
The input to the module is a list of indices, and the output is the corresponding
word embeddings.
Args:
num_embeddings (int): size of the dictionary of embeddings
embedding_dim (int): the size of each embedding vector
padding_idx (int, optional): If given, pads the output with the embedding vector at :attr:`padding_idx`
(initialized to zeros) whenever it encounters the index.
max_norm (float, optional): If given, each embedding vector with norm larger than :attr:`max_norm`
is renormalized to have norm :attr:`max_norm`.
norm_type (float, optional): The p of the p-norm to compute for the :attr:`max_norm` option. Default ``2``.
scale_grad_by_freq (boolean, optional): If given, this will scale gradients by the inverse of frequency of
the words in the mini-batch. Default ``False``.
sparse (bool, optional): If ``True``, gradient w.r.t. :attr:`weight` matrix will be a sparse tensor.
See Notes for more details regarding sparse gradients.
Attributes:
weight (Tensor): the learnable weights of the module of shape (num_embeddings, embedding_dim)
initialized from :math:`\mathcal{N}(0, 1)`
Shape:
- Input: :math:`(*)`, LongTensor of arbitrary shape containing the indices to extract
- Output: :math:`(*, H)`, where `*` is the input shape and :math:`H=\text{embedding\_dim}`
.. note::
Keep in mind that only a limited number of optimizers support
sparse gradients: currently it's :class:`optim.SGD` (`CUDA` and `CPU`),
:class:`optim.SparseAdam` (`CUDA` and `CPU`) and :class:`optim.Adagrad` (`CPU`)
.. note::
With :attr:`padding_idx` set, the embedding vector at
:attr:`padding_idx` is initialized to all zeros. However, note that this
vector can be modified afterwards, e.g., using a customized
initialization method, and thus changing the vector used to pad the
output. The gradient for this vector from :class:`~torch.nn.Embedding`
is always zero.
Examples::
>>> # an Embedding module containing 10 tensors of size 3
>>> embedding = nn.Embedding(10, 3)
>>> # a batch of 2 samples of 4 indices each
>>> input = torch.LongTensor([[1,2,4,5],[4,3,2,9]])
>>> embedding(input)
tensor([[[-0.0251, -1.6902, 0.7172],
[-0.6431, 0.0748, 0.6969],
[ 1.4970, 1.3448, -0.9685],
[-0.3677, -2.7265, -0.1685]],
[[ 1.4970, 1.3448, -0.9685],
[ 0.4362, -0.4004, 0.9400],
[-0.6431, 0.0748, 0.6969],
[ 0.9124, -2.3616, 1.1151]]])
>>> # example with padding_idx
>>> embedding = nn.Embedding(10, 3, padding_idx=0)
>>> input = torch.LongTensor([[0,2,0,5]])
>>> embedding(input)
tensor([[[ 0.0000, 0.0000, 0.0000],
[ 0.1535, -2.0309, 0.9315],
[ 0.0000, 0.0000, 0.0000],
[-0.1655, 0.9897, 0.0635]]])
"""
__constants__ = ['num_embeddings', 'embedding_dim', 'padding_idx', 'max_norm',
'norm_type', 'scale_grad_by_freq', 'sparse']
num_embeddings: int
embedding_dim: int
padding_idx: int
max_norm: float
norm_type: float
scale_grad_by_freq: bool
weight: Tensor
sparse: bool
def __init__(self, num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = None,
max_norm: Optional[float] = None, norm_type: float = 2., scale_grad_by_freq: bool = False,
sparse: bool = False, _weight: Optional[Tensor] = None) -> None:
super(Embedding, self).__init__()
self.num_embeddings = num_embeddings
self.embedding_dim = embedding_dim
if padding_idx is not None:
if padding_idx > 0:
assert padding_idx < self.num_embeddings, 'Padding_idx must be within num_embeddings'
elif padding_idx < 0:
assert padding_idx >= -self.num_embeddings, 'Padding_idx must be within num_embeddings'
padding_idx = self.num_embeddings + padding_idx
self.padding_idx = padding_idx
self.max_norm = max_norm
self.norm_type = norm_type
self.scale_grad_by_freq = scale_grad_by_freq
if _weight is None:
self.weight = Parameter(torch.Tensor(num_embeddings, embedding_dim))
self.reset_parameters()
else:
assert list(_weight.shape) == [num_embeddings, embedding_dim], \
'Shape of weight does not match num_embeddings and embedding_dim'
self.weight = Parameter(_weight)
self.sparse = sparse
def reset_parameters(self) -> None:
init.normal_(self.weight)
if self.padding_idx is not None:
with torch.no_grad():
self.weight[self.padding_idx].fill_(0)
def forward(self, input: Tensor) -> Tensor:
return F.embedding(
input, self.weight, self.padding_idx, self.max_norm,
self.norm_type, self.scale_grad_by_freq, self.sparse)
def extra_repr(self) -> str:
s = '{num_embeddings}, {embedding_dim}'
if self.padding_idx is not None:
s += ', padding_idx={padding_idx}'
if self.max_norm is not None:
s += ', max_norm={max_norm}'
if self.norm_type != 2:
s += ', norm_type={norm_type}'
if self.scale_grad_by_freq is not False:
s += ', scale_grad_by_freq={scale_grad_by_freq}'
if self.sparse is not False:
s += ', sparse=True'
return s.format(**self.__dict__)
@classmethod
def from_pretrained(cls, embeddings, freeze=True, padding_idx=None,
max_norm=None, norm_type=2., scale_grad_by_freq=False,
sparse=False):
r"""Creates Embedding instance from given 2-dimensional FloatTensor.
Args:
embeddings (Tensor): FloatTensor containing weights for the Embedding.
First dimension is being passed to Embedding as ``num_embeddings``, second as ``embedding_dim``.
freeze (boolean, optional): If ``True``, the tensor does not get updated in the learning process.
Equivalent to ``embedding.weight.requires_grad = False``. Default: ``True``
padding_idx (int, optional): See module initialization documentation.
max_norm (float, optional): See module initialization documentation.
norm_type (float, optional): See module initialization documentation. Default ``2``.
scale_grad_by_freq (boolean, optional): See module initialization documentation. Default ``False``.
sparse (bool, optional): See module initialization documentation.
Examples::
>>> # FloatTensor containing pretrained weights
>>> weight = torch.FloatTensor([[1, 2.3, 3], [4, 5.1, 6.3]])
>>> embedding = nn.Embedding.from_pretrained(weight)
>>> # Get embeddings for index 1
>>> input = torch.LongTensor([1])
>>> embedding(input)
tensor([[ 4.0000, 5.1000, 6.3000]])
"""
assert embeddings.dim() == 2, \
'Embeddings parameter is expected to be 2-dimensional'
rows, cols = embeddings.shape
embedding = cls(
num_embeddings=rows,
embedding_dim=cols,
_weight=embeddings,
padding_idx=padding_idx,
max_norm=max_norm,
norm_type=norm_type,
scale_grad_by_freq=scale_grad_by_freq,
sparse=sparse)
embedding.weight.requires_grad = not freeze
return embedding
class EmbeddingBag(Module):
r"""Computes sums or means of 'bags' of embeddings, without instantiating the
intermediate embeddings.
For bags of constant length and no :attr:`per_sample_weights`, this class
* with ``mode="sum"`` is equivalent to :class:`~torch.nn.Embedding` followed by ``torch.sum(dim=0)``,
* with ``mode="mean"`` is equivalent to :class:`~torch.nn.Embedding` followed by ``torch.mean(dim=0)``,
* with ``mode="max"`` is equivalent to :class:`~torch.nn.Embedding` followed by ``torch.max(dim=0)``.
However, :class:`~torch.nn.EmbeddingBag` is much more time and memory efficient than using a chain of these
operations.
EmbeddingBag also supports per-sample weights as an argument to the forward
pass. This scales the output of the Embedding before performing a weighted
reduction as specified by ``mode``. If :attr:`per_sample_weights`` is passed, the
only supported ``mode`` is ``"sum"``, which computes a weighted sum according to
:attr:`per_sample_weights`.
Args:
num_embeddings (int): size of the dictionary of embeddings
embedding_dim (int): the size of each embedding vector
max_norm (float, optional): If given, each embedding vector with norm larger than :attr:`max_norm`
is renormalized to have norm :attr:`max_norm`.
norm_type (float, optional): The p of the p-norm to compute for the :attr:`max_norm` option. Default ``2``.
scale_grad_by_freq (boolean, optional): if given, this will scale gradients by the inverse of frequency of
the words in the mini-batch. Default ``False``.
Note: this option is not supported when ``mode="max"``.
mode (string, optional): ``"sum"``, ``"mean"`` or ``"max"``. Specifies the way to reduce the bag.
``"sum"`` computes the weighted sum, taking :attr:`per_sample_weights`
into consideration. ``"mean"`` computes the average of the values
in the bag, ``"max"`` computes the max value over each bag.
Default: ``"mean"``
sparse (bool, optional): if ``True``, gradient w.r.t. :attr:`weight` matrix will be a sparse tensor. See
Notes for more details regarding sparse gradients. Note: this option is not
supported when ``mode="max"``.
include_last_offset (bool, optional): if ``True``, :attr:`offsets` has one additional element, where the last element
is equivalent to the size of `indices`. This matches the CSR format.
Attributes:
weight (Tensor): the learnable weights of the module of shape `(num_embeddings, embedding_dim)`
initialized from :math:`\mathcal{N}(0, 1)`.
Inputs: :attr:`input` (LongTensor), :attr:`offsets` (LongTensor, optional), and
:attr:`per_index_weights` (Tensor, optional)
- If :attr:`input` is 2D of shape `(B, N)`,
it will be treated as ``B`` bags (sequences) each of fixed length ``N``, and
this will return ``B`` values aggregated in a way depending on the :attr:`mode`.
:attr:`offsets` is ignored and required to be ``None`` in this case.
- If :attr:`input` is 1D of shape `(N)`,
it will be treated as a concatenation of multiple bags (sequences).
:attr:`offsets` is required to be a 1D tensor containing the
starting index positions of each bag in :attr:`input`. Therefore,
for :attr:`offsets` of shape `(B)`, :attr:`input` will be viewed as
having ``B`` bags. Empty bags (i.e., having 0-length) will have
returned vectors filled by zeros.
per_sample_weights (Tensor, optional): a tensor of float / double weights, or None
to indicate all weights should be taken to be ``1``. If specified, :attr:`per_sample_weights`
must have exactly the same shape as input and is treated as having the same
:attr:`offsets`, if those are not ``None``. Only supported for ``mode='sum'``.
Output shape: `(B, embedding_dim)`
Examples::
>>> # an Embedding module containing 10 tensors of size 3
>>> embedding_sum = nn.EmbeddingBag(10, 3, mode='sum')
>>> # a batch of 2 samples of 4 indices each
>>> input = torch.LongTensor([1,2,4,5,4,3,2,9])
>>> offsets = torch.LongTensor([0,4])
>>> embedding_sum(input, offsets)
tensor([[-0.8861, -5.4350, -0.0523],
[ 1.1306, -2.5798, -1.0044]])
"""
__constants__ = ['num_embeddings', 'embedding_dim', 'max_norm', 'norm_type',
'scale_grad_by_freq', 'mode', 'sparse', 'include_last_offset']
num_embeddings: int
embedding_dim: int
max_norm: float
norm_type: float
scale_grad_by_freq: bool
weight: Tensor
mode: str
sparse: bool
include_last_offset: bool
def __init__(self, num_embeddings: int, embedding_dim: int,
max_norm: Optional[float] = None, norm_type: float = 2., scale_grad_by_freq: bool = False,
mode: str = 'mean', sparse: bool = False, _weight: Optional[Tensor] = None,
include_last_offset: bool = False) -> None:
super(EmbeddingBag, self).__init__()
self.num_embeddings = num_embeddings
self.embedding_dim = embedding_dim
self.max_norm = max_norm
self.norm_type = norm_type
self.scale_grad_by_freq = scale_grad_by_freq
if _weight is None:
self.weight = Parameter(torch.Tensor(num_embeddings, embedding_dim))
self.reset_parameters()
else:
assert list(_weight.shape) == [num_embeddings, embedding_dim], \
'Shape of weight does not match num_embeddings and embedding_dim'
self.weight = Parameter(_weight)
self.mode = mode
self.sparse = sparse
self.include_last_offset = include_last_offset
def reset_parameters(self) -> None:
init.normal_(self.weight)
def forward(self, input: Tensor, offsets: Optional[Tensor] = None, per_sample_weights: Optional[Tensor] = None) -> Tensor:
return F.embedding_bag(input, self.weight, offsets,
self.max_norm, self.norm_type,
self.scale_grad_by_freq, self.mode, self.sparse,
per_sample_weights, self.include_last_offset)
def extra_repr(self) -> str:
s = '{num_embeddings}, {embedding_dim}'
if self.max_norm is not None:
s += ', max_norm={max_norm}'
if self.norm_type != 2:
s += ', norm_type={norm_type}'
if self.scale_grad_by_freq is not False:
s += ', scale_grad_by_freq={scale_grad_by_freq}'
s += ', mode={mode}'
return s.format(**self.__dict__)
@classmethod
def from_pretrained(cls, embeddings: Tensor, freeze: bool = True, max_norm: Optional[float] = None,
norm_type: float = 2., scale_grad_by_freq: bool = False,
mode: str = 'mean', sparse: bool = False, include_last_offset: bool = False) -> 'EmbeddingBag':
r"""Creates EmbeddingBag instance from given 2-dimensional FloatTensor.
Args:
embeddings (Tensor): FloatTensor containing weights for the EmbeddingBag.
First dimension is being passed to EmbeddingBag as 'num_embeddings', second as 'embedding_dim'.
freeze (boolean, optional): If ``True``, the tensor does not get updated in the learning process.
Equivalent to ``embeddingbag.weight.requires_grad = False``. Default: ``True``
max_norm (float, optional): See module initialization documentation. Default: ``None``
norm_type (float, optional): See module initialization documentation. Default ``2``.
scale_grad_by_freq (boolean, optional): See module initialization documentation. Default ``False``.
mode (string, optional): See module initialization documentation. Default: ``"mean"``
sparse (bool, optional): See module initialization documentation. Default: ``False``.
include_last_offset (bool, optional): See module initialization documentation. Default: ``False``.
Examples::
>>> # FloatTensor containing pretrained weights
>>> weight = torch.FloatTensor([[1, 2.3, 3], [4, 5.1, 6.3]])
>>> embeddingbag = nn.EmbeddingBag.from_pretrained(weight)
>>> # Get embeddings for index 1
>>> input = torch.LongTensor([[1, 0]])
>>> embeddingbag(input)
tensor([[ 2.5000, 3.7000, 4.6500]])
"""
assert embeddings.dim() == 2, \
'Embeddings parameter is expected to be 2-dimensional'
rows, cols = embeddings.shape
embeddingbag = cls(
num_embeddings=rows,
embedding_dim=cols,
_weight=embeddings,
max_norm=max_norm,
norm_type=norm_type,
scale_grad_by_freq=scale_grad_by_freq,
mode=mode,
sparse=sparse,
include_last_offset=include_last_offset)
embeddingbag.weight.requires_grad = not freeze
return embeddingbag
|