File: linear.py

package info (click to toggle)
pytorch 1.7.1-7
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 80,340 kB
  • sloc: cpp: 670,830; python: 343,991; ansic: 67,845; asm: 5,503; sh: 2,924; java: 2,888; xml: 266; makefile: 244; ruby: 148; yacc: 144; objc: 51; lex: 44
file content (50 lines) | stat: -rw-r--r-- 1,853 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.intrinsic import LinearReLU

class Linear(nn.Linear):
    r"""
    A linear module attached with FakeQuantize modules for weight,
    used for quantization aware training.

    We adopt the same interface as `torch.nn.Linear`, please see
    https://pytorch.org/docs/stable/nn.html#torch.nn.Linear
    for documentation.

    Similar to `torch.nn.Linear`, with FakeQuantize modules initialized to
    default.

    Attributes:
        weight: fake quant module for weight
    """
    _FLOAT_MODULE = nn.Linear

    def __init__(self, in_features, out_features, bias=True,
                 qconfig=None):
        super(Linear, self).__init__(in_features, out_features, bias)
        assert qconfig, 'qconfig must be provided for QAT module'
        self.qconfig = qconfig
        self.weight_fake_quant = qconfig.weight()

    def forward(self, input):
        return F.linear(input, self.weight_fake_quant(self.weight), self.bias)

    @classmethod
    def from_float(cls, mod):
        r"""Create a qat module from a float module or qparams_dict

            Args: `mod` a float module, either produced by torch.quantization utilities
            or directly from user
        """
        assert type(mod) == cls._FLOAT_MODULE, ' qat.' + cls.__name__ + '.from_float only works for ' + \
            cls._FLOAT_MODULE.__name__
        assert hasattr(mod, 'qconfig'), 'Input float module must have qconfig defined'
        assert mod.qconfig, 'Input float module must have a valid qconfig'
        if type(mod) == LinearReLU:
            mod = mod[0]

        qconfig = mod.qconfig
        qat_linear = cls(mod.in_features, mod.out_features, bias=mod.bias is not None, qconfig=qconfig)
        qat_linear.weight = mod.weight
        qat_linear.bias = mod.bias
        return qat_linear