1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
|
from torch.onnx.symbolic_helper import parse_args
import torch.onnx.symbolic_helper as sym_help
import torch.onnx.symbolic_registry as sym_registry
import importlib
from inspect import getmembers, isfunction
def register_quantized_ops(domain, version):
# Register all the non-quantized ops
sym_registry.register_version('', version)
# Register all quantized ops
module = importlib.import_module('torch.onnx.symbolic_caffe2')
sym_registry._symbolic_versions['caffe2'] = module
quant_version_ops = getmembers(sym_registry._symbolic_versions['caffe2'])
for op in quant_version_ops:
if isfunction(op[1]) and not sym_registry.is_registered_op(op[0], domain, version):
aten_q_ops = ['relu', '_empty_affine_quantized', 'dequantize',
'quantize_per_tensor', 'upsample_nearest2d', 'avg_pool2d',
'reshape', 'slice', 'cat', 'max_pool2d', 'sigmoid']
if op[0] in aten_q_ops:
sym_registry.register_op(op[0], op[1], '', version)
sym_registry.register_op(op[0], op[1], domain, version)
def _permute_helper(g, input, axes):
quant_args = {
"axes_i": axes,
"Y_scale_f": input.node()["Y_scale"],
"Y_zero_point_i": input.node()["Y_zero_point"],
}
output = g.op("_caffe2::Int8Transpose", input, **quant_args)
sym_help._quantized_ops.add(output)
return output
def nchw2nhwc(g, input):
axes = [0, 2, 3, 1]
return _permute_helper(g, input, axes)
def nhwc2nchw(g, input):
axes = [0, 3, 1, 2]
return _permute_helper(g, input, axes)
def linear_prepack(g, weight, bias):
# Mapping to a dummy caffe2 prepack node.
# During the onnx -> c2 conversion we can look up original weight and bias
# from this node
output = g.op("_caffe2::WeightPrepack", weight, bias)
sym_help._quantized_ops.add(output)
return output
@parse_args('v', 'v', 'v', 'f', 'i')
def linear(g, input, weight, bias, scale, zero_point):
kwargs = {
"Y_scale_f": scale,
"Y_zero_point_i": zero_point,
}
output = g.op("_caffe2::Int8FC", input, weight, bias, **kwargs)
sym_help._quantized_ops.add(output)
return output
def conv_prepack(g, input, weight, bias, stride, padding, dilation, groups):
# Mapping to a dummy caffe2 prepack node.
# During the onnx -> c2 conversion we can look up original weight and bias
# from this node
output = g.op("_caffe2::WeightPrepack", input, weight, bias)
sym_help._quantized_ops.add(output)
return output
@parse_args('v', 'v', 'v', 'is', 'is', 'is', 'i', 'f', 'i')
def conv2d(g, input, weight, bias, stride, padding, dilation, groups, scale, zero_point):
kernel_size = weight.node()["shape"][1:3]
kwargs = {
"strides_i": stride,
"pads_i": padding + padding,
"dilations_i": dilation,
"group_i": groups,
"kernels_i": kernel_size,
"order_s": "NHWC",
"Y_scale_f": scale,
"Y_zero_point_i": zero_point,
}
output = g.op("_caffe2::Int8Conv", input, weight, bias, **kwargs)
sym_help._quantized_ops.add(output)
return output
@parse_args('v', 'v', 'v', 'is', 'is', 'is', 'i', 'f', 'i')
def conv2d_relu(g, input, weight, bias, stride, padding, dilation, groups, scale, zero_point):
kernel_size = weight.node()["shape"][1:3]
kwargs = {
"strides_i": stride,
"pads_i": padding + padding,
"dilations_i": dilation,
"group_i": groups,
"kernels_i": kernel_size,
"order_s": "NHWC",
"Y_scale_f": scale,
"Y_zero_point_i": zero_point,
}
output = g.op("_caffe2::Int8ConvRelu", input, weight, bias, **kwargs)
sym_help._quantized_ops.add(output)
return output
@parse_args('v', 'v', 'f', 'i')
def add(g, input_a, input_b, scale, zero_point):
kwargs = {
"Y_scale_f": scale,
"Y_zero_point_i": zero_point,
}
output = g.op("_caffe2::Int8Add", input_a, input_b, **kwargs)
sym_help._quantized_ops.add(output)
return output
@parse_args('v')
def relu(g, input):
if input not in sym_help._quantized_ops:
from torch.onnx.symbolic_opset9 import relu
return relu(g, input)
kwargs = {
"Y_scale_f": input.node()["Y_scale"],
"Y_zero_point_i": input.node()["Y_zero_point"],
}
output = g.op("_caffe2::Int8Relu", input, **kwargs)
sym_help._quantized_ops.add(output)
return output
@parse_args('v', 'f', 'i', 't')
def quantize_per_tensor(g, input, scale, zero_point, dtype):
kwargs = {
"Y_scale_f": scale,
"Y_zero_point_i": zero_point,
}
output = g.op("_caffe2::Int8Quantize", input, **kwargs)
sym_help._quantized_ops.add(output)
return output
@parse_args('v')
def dequantize(g, input):
return g.op("_caffe2::Int8Dequantize", input)
@parse_args('v', 't', 't', 't', 't', 't', 't', 't')
def _empty_affine_quantized(g, input, shape, scale, zero_point, dtype, pin_memory, memory_format, layout):
return input
def upsample_nearest2d(g, input, output_size, align_corners=None, scales_h=None, scales_w=None):
if input not in sym_help._quantized_ops:
from torch.onnx.symbolic_opset9 import upsample_nearest2d as upsample_nearest2d_impl
return upsample_nearest2d_impl(g, input, output_size, align_corners)
output_size = sym_help._parse_arg(output_size, 'is')
kwargs = {
"output_size_i": output_size,
"Y_scale_f": input.node()["Y_scale"],
"Y_zero_point_i": input.node()["Y_zero_point"],
}
input = nchw2nhwc(g, input)
output = g.op("_caffe2::Int8ResizeNearest", input, **kwargs)
output = nhwc2nchw(g, output)
sym_help._quantized_ops.add(output)
return output
@parse_args('v', 'is', 'is', 'is', 'is', 'i')
def max_pool2d(g, input, kernel_size, stride, padding, dilation, ceil_mode):
if input not in sym_help._quantized_ops:
from torch.onnx.symbolic_opset9 import max_pool2d
return max_pool2d(g, input, kernel_size, stride, padding, dilation, ceil_mode)
kwargs = {
"strides_i": stride,
"pads_i": padding + padding,
"kernel_i": kernel_size[0],
"order_s": "NHWC",
"Y_scale_f": input.node()["Y_scale"],
"Y_zero_point_i": input.node()["Y_zero_point"],
}
input = nchw2nhwc(g, input)
output = g.op("_caffe2::Int8MaxPool", input, **kwargs)
output = nhwc2nchw(g, output)
sym_help._quantized_ops.add(output)
return output
@parse_args('v', 'is', 'is', 'is', 'i', 'i', 'none')
def avg_pool2d(g, input, kernel_size, stride, padding, ceil_mode, count_include_pad, divisor_override=None):
if input not in sym_help._quantized_ops:
from torch.onnx.symbolic_opset9 import avg_pool2d
return avg_pool2d(g, input, kernel_size, stride, padding, ceil_mode, count_include_pad, divisor_override)
kwargs = {
"strides_i": stride,
"pads_i": padding + padding,
"kernel_i": kernel_size[0],
"order_s": "NHWC",
"Y_scale_f": input.node()["Y_scale"],
"Y_zero_point_i": input.node()["Y_zero_point"],
}
input = nchw2nhwc(g, input)
output = g.op("_caffe2::Int8AveragePool", input, **kwargs)
output = nhwc2nchw(g, output)
sym_help._quantized_ops.add(output)
return output
def reshape(g, input, shape):
if input not in sym_help._quantized_ops:
from torch.onnx.symbolic_opset9 import reshape
return reshape(g, input, shape)
kwargs = {
"Y_scale_f": input.node()["Y_scale"],
"Y_zero_point_i": input.node()["Y_zero_point"],
}
output = g.op("_caffe2::Int8Reshape", input, shape, **kwargs)
sym_help._quantized_ops.add(output)
return output
@parse_args('v', 'v', 'v', 'v', 'i')
def slice(g, input, dim, start, end, step):
if input not in sym_help._quantized_ops:
from torch.onnx.symbolic_opset9 import slice
return slice(g, input, dim, start, end, step)
if step != 1:
raise RuntimeError("ONNX quantized slice export only works for step 1.")
start = sym_help._parse_arg(start, 'i')
end = sym_help._parse_arg(end, 'i')
dim = sym_help._parse_arg(dim, 'i')
kwargs = {
"start_idx_i": start,
"end_idx_i": end,
"dim_i": dim,
"Y_scale_f": input.node()["Y_scale"],
"Y_zero_point_i": input.node()["Y_zero_point"],
}
output = g.op("_caffe2::Int8Slice", input, **kwargs)
sym_help._quantized_ops.add(output)
return output
def cat(g, tensor_list, dim, scale=None, zero_point=None):
tensors = sym_help._unpack_list(tensor_list)
input = tensors[0]
if input not in sym_help._quantized_ops:
from torch.onnx.symbolic_opset9 import cat
return cat(g, tensor_list, dim)
dim = sym_help._parse_arg(dim, 'i')
kwargs = {
"Y_scale_f": tensors[0].node()["Y_scale"],
"Y_zero_point_i": tensors[0].node()["Y_zero_point"],
}
output = g.op("_caffe2::Int8Concat", *tensors, axis_i=dim, **kwargs)
sym_help._quantized_ops.add(output)
return output
@parse_args('v')
def sigmoid(g, input):
if input not in sym_help._quantized_ops:
from torch.onnx.symbolic_opset9 import sigmoid
return sigmoid(g, input)
# Caffe2 expects the output scale to be 1/2^8
# and output zero_point to be 0 (quint8 type)
out_scale = 1.0 / 256
zero_point = 0
kwargs = {
"Y_scale_f": out_scale,
"Y_zero_point_i": zero_point,
}
output = g.op("_caffe2::Int8Sigmoid", input, **kwargs)
sym_help._quantized_ops.add(output)
return output
|